Poster Session:
ASETS: A Self-Managing Transaction Scheduler *

Mohamed A. Sharaf! Shenoda Guirguis® Alexandros Labrinidis®> Kirk Pruhs? Panos K. Chrysanthis?
1 ECE Department, University of Toronto
2 CS Department, University of Pittsburgh
msharaf @eecg.toronto.edu {shenoda, labrinid, kirk, panos} @cs.pitt.edu

Abstract

User satisfaction determines the success of web-
database applications. User satisfaction can be expressed
in terms of expected response time or expected delay. Given
the bursty and unpredictable behavior of web user popu-
lations, we model user requests as transactions with soft-
deadlines. For such a model of user requests with soft-
deadlines, the hit ratio is not the most expressive metric.
Instead, the average tardiness is a better measure in such
cases. In this paper; we propose and evaluate an adaptive
self-managing algorithm called ASETS, which optimizes
for the average tardiness. ASETS prioritize resources as
needed in order to keep users satisfied under varying work-
loads. Our performance evaluation shows ASETS to out-
perform both EDF and SRPT which are known to be op-
timal for the under and over utilization system conditions
respectively.

1. Introduction

Web-database systems support nowadays the most pre-
vailing e-services ranging from e-banking and e-commerce
applications, to personalized news and weather services.
In such highly interactive applications, user satisfaction
or positive experience determines their success. Given
the bursty and unpredictable behavior of web user popu-
lations, it is therefore crucial for such systems to be self-
manageable, prioritizing resources as needed in order to
keep users satisfied under varying workloads.

One way to model user experience (and therefore quan-
tify user satisfaction) is to define for each requested service
its “ideal” deadline to produce a result. After the deadline,
the impact of additional delay (or fardiness) has a negative
impact on user experience and needs to be minimized. This
is an example of a Real-time Database System with Soft
Deadlines, where “tardy” transactions are not dropped, and

*This work was partially supported by NSF IIS-0534531.

are allowed to complete their execution past their deadline.
In such a system, the overall amount of tardiness is indica-
tive of the overall user satisfaction.

Prioritizing or scheduling transactions in Real-time Sys-
tems in general, and Real-Time Database Management
Systems (RTDBMS) such as Web-databases in particu-
lar, where the transactions have real-time constraints, has
earned a lot of attention in the literature [1, 3, 7, 6, 10, 2, 4,
13, 9]. Of these schemes, the Earliest-Deadline-First (EDF)
policy has been shown to be the best scheduling policy for
light workloads (i.e., workloads that do not overwhelm the
server). On the other hand, it has been shown that the Short-
Remaining-Processing-Time (SRPT) policy is optimal for
scheduling the processing of requests to Web servers [11],
since it can handle overload situations much better. How-
ever, SRPT is oblivious to deadlines, so it would perform
fare worse than EDF for light workloads.

An obvious integration of these two schemes assumes
that one knows the “cross-over” point where SRPT is better
than EDF. Such a point is not easy to determine (since this
should be dependent both on the workload and the dead-
lines), and is also expected to change drastically over time,
as the workload changes. In this paper, we propose ASETS,
an adaptive policy for scheduling (query) transactions in the
presence of soft deadlines, which does not assume any prior
knowledge of the workload or the deadlines.

ASETS is a hybrid between EDF and SRPT that intel-

ligently and dynamically splits the set of transactions cur-
rently in the system into those that should be scheduled us-
ing EDF and those to be scheduled using SRPT. ASETS ac-
tually stands for Adaptive SRPT EDF Transaction Schedul-
ing. To the best of our knowledge, this is the first hybrid
approach to minimize average tardiness, which does not
require any tuning or parameters. Our experimental results
using simulation show that ASETS outperforms both SRPT
and EDF by up to 30% in average tardiness.
Road-map: The rest of the paper is organized as follows:
Section 2 defines the system model. ASETS is motivated
and explained in Section 3, and evaluated in Section 4. Sec-
tion 5 discusses related work. We conclude in Section 6.

97 Sulnd 24dH i3 0LORAHRE {QQJ@/&Q%IIEE;Eurgh Library System. Downle¥ded on November 12,2025 at 18:01:51 UTC from IEEE xﬂ@@ﬁ&(mkﬁb@@@()%

2. System Model

We assume that our web database is an RTDBMS where
each request is a transaction (73) associated with the follow-
ing three characteristics:

e Arrival Time (a;): The time when T; has arrived at the
RTDBMS;

e Deadline (d;): The ideal time by which T; should fin-
ish execution; and

e Length (l;): The processing time needed to execute 7;.

The first two parameters above (i.e., a; and d;) are made
available to the RTDBMS once a transaction 7; is submit-
ted to the system, whereas the third parameter (i.e., [;) is
computed by the RTDBMS based on previous statistics and
profiles of transaction execution.

The time when transaction 7; finishes execution is de-
noted as finish time (f;). Ideally, f; should be equal to the
sum of a; and [;. However, this will only happen if trans-
action 7} does not experience any queuing delays or if it is
the only transaction in the system, which is not the norm; a
transaction will typically wait for other transactions to fin-
ish execution first, especially when the system is under high
load.

For soft-deadline transactions, the RTDBMS strives to
finish executing each transaction 7; before its deadline.
However, if T;; cannot meet its deadline, the RTDBMS will
still execute it but the system will be “penalized” for the de-
lay beyond the deadline d;. One natural transaction penalty
is called tardiness, and one natural system performance
metric is average tardiness. These are formally defined as
follows:

Definition 1 Transaction tardiness, t;, for transactionT; is
the total amount of time spent by T; in the RTDBMS beyond
its deadline d;. That is, t; = 0 iff f; < d;, and t; = f; —
d; otherwise. The average tardiness for N transactions is:
1 N

N > imy b

RTDBMSs typically employ a transaction scheduler which
decides the execution order of transactions. In order for
a RTDBMS to perform well when transactions can have
widely varying lengths, it is necessary that transactions are
preemptable, that is, the scheduler can stop a certain trans-
action and switch to another transaction then resume the
first transaction at a later time. One common and natural
class of scheduling policies are called priority based poli-
cies. In a priority based policy, some priority p; assigned to
each transaction 7;, and the highest priority transaction is
always executed first. Different schedulers consider differ-
ent parameters for computing the priority p;. Parameters to
consider (beside those already mentioned above) include:

1. Remaining Processing Time (7;): The current amount
of time needed to finish processing 7T;.

2. Slack Interval (s;): The interval of time between 7T;’s
expected finish time f; and its deadline d; if T; is exe-
cuted right now.

For example, under the EDF scheduling policy, each
transaction is assigned a priority p; = 1/d;, while under
SRPT, p; = 1/r;. In the next section, we will further ex-
plain the EDF and the SRPT policies, as well as our pro-
posed ASETS scheduling policy.

3. Scheduling Policies

In this section, we first illustrate the trade-off between
the two policies widely used for scheduling soft-deadline
transaction, namely, EDF and SRPT in section 3.1. Then,
in section 3.2, we introduce our proposed hybrid policy
ASETS that better optimizes for user satisfaction, that is,
average tardiness.

3.1. EDF vs SRPT in RTDBMS

With respect to average tardiness, two natural policies
are Earliest Deadline First (EDF), and Shortest Remaining
Processing Time (SRPT). These policies can be viewed as
extreme policies on a spectrum of possible priority policies.

Under EDF, a transaction with an early deadline receives
a higher priority, whereas under SRPT, a transaction with a
shorter processing time is the one which receives higher pri-
ority. EDF guarantees that all jobs will meet their deadlines
if the system is not over-utilized. As such, the tardiness of
the system is expected to be zero since all the transactions
make their deadlines. When the system is over-utilized, it
is impossible to finish all transactions by the specified dead-
lines. So some transactions will experience tardiness. Using
an EDF scheduler in such high-load situations will have a
substantial negative impact on the overall tardiness. This
negative impact is known as the domino effect where trans-
actions keep missing their deadlines in a cascaded fashion.
The cause of the domino effect is that EDF might give high
priority to a transaction with an early deadline that it has al-
ready missed, instead of scheduling another one which has
a later deadline that could still be met. As a result, both
transactions will miss their deadlines and accumulate tardi-
ness.

In contrast to EDF, SRPT is the best policy to use when
all transactions have already missed their deadlines. This is
because the problem of minimizing tardiness in this case is
the same as the problem of minimizing response time, for
which SRPT has been shown to be the optimal policy [11].
Howeyver, in the cases when there are transactions that have

Authorized licensed use limited to: University of Pittsburgh Library System. Downlexfed on November 12,2025 at 18:01:51 UTC from IEEE Xplore. Restrictions apply.

d, d, d; d,
T ry T ry |
T2 ry ‘ T2 ry ‘
EDF| r | rp \ EDF | r [rp |
t, t’ t,
SRPT‘ r | 2 | SRPT ‘ I | ‘r1‘ |
v T
(@ (b)

Figure 1. EDF vs SRPT scheduling: (a) A case
when EDF outperforms SRPT, (b) A case when
SRPT outperforms EDF

not missed their deadline yet, SRPT might run into the prob-
lem of assigning a high priority to a short transaction that
has a long deadline instead of scheduling another transac-
tion which is relatively longer out its deadline is imminent
deadline.

Example 1: To further illustrate the difference between
the two policies, consider the example illustrated in Fig-
ure 1. The figure shows two sets of transactions 77 and 75
with deadlines d; and ds, and remaining processing r; and
r9, respectively.

In Figure 1(a), the tardiness of EDF (= t2) is less than
that of SRPT (= t1). The reason for SRPT’s higher tardiness
is giving higher priority to 7% which has the shorter remain-
ing processing time (r2) but a longer deadline (d3). For
the other set of transactions in Figure 1(b), EDF provides
higher tardiness (= ¢; + t2). This is because it scheduled
T7 first which is already past its deadline leading to missing
T5’s deadline as well.

It is known that there is no policy that can guaran-
tee that the average tardiness is within any constant factor
of the retrospective optimal average tardiness (the average
tardiness that would have been attained if future transac-
tions were known and every scheduling decision was cor-
rect/optimal) [5]. In fact, even if a policy could somehow
magically process transactions 100 times faster, it still can-
not guarantee average tardiness within a constant factor of
optimal [5]. Further, even if one knew all the future trans-
actions, computing the optimal average tardiness schedule
is NP-hard even if all jobs have the same length [12].

3.2. The ASETS Scheduling Policy

As it is obvious from the previous example, there is no
clear best policy for scheduling transactions with deadlines
that minimizes tardiness under all workloads. Generally

Input: A set of transactions
Output: The id of the transaction to run till next schedul-
ing point
BEGIN
Add all newly arrived jobs to EDF-List
for all T; cEDF-List do
if (t + r; > d;) then then
move 1; to SRPT-List
end if
end for
Tl,E'DF «— Top (EDF-LiSt)
Tl.,SRPT — TOp(SRPT-LiSt)
if ("1,cqr < 71,6rpt — 51,EDF) then
return id of Tl,E'DF
else
return id of Tl.,SRPT
end if
END

Figure 2. The ASETS Algorithm

speaking, EDF performs well at low utilization, whereas at
high utilization, SRPT performs better than EDF.

One possibility is to select the policy dynamically based
on the load of the system. However, measuring the load
with reasonable accuracy may require non-trivial resources.
More importantly, when jobs have deadlines, measuring the
load does not only involve considering the processing re-
quirements of the transactions, but also the relationships be-
tween processing times and deadlines. For example, a batch
of transactions with very low processing requirements but
very tight deadlines will lead to an overloaded condition.
Depending on how one formally defines load, the problem
of determining the load of a collection of transactions with
deadlines either requires solving a network flow or match-
ing problem, or is NP-hard.

In this paper, we propose a hybrid policy for transac-
tion scheduling called Adaptive SRPT EDF Transaction
Scheduling (ASETS). ASETS is a parameter-free adaptive
policy which integrates the advantages of both the SRPT
and EDF policies and automatically adapts to system load.

Under ASETS, the scheduler maintains two priority lists.
In the first list, called EDF-List, transactions are ordered ac-
cording to their deadlines as in the EDF scheduling policy.
In the second list, called SRPT-List, transactions are ordered
according to their remaining processing time as in the SRPT
scheduling policy.

The first list, EDF-List, contains all transactions that can
still make their deadlines. Formally,

Definition 2 A transaction T; with deadline d; is included
in EDF-List if and only if, t +r; < d;, where t is the current
time.

Authorized licensed use limited to: University of Pittsburgh Library System. Downle¥3ed on November 12,2025 at 18:01:51 UTC from IEEE Xplore. Restrictions apply.

The second list, SRPT-List, contains all transactions that
already missed their deadlines. Formally,

Definition 3 A transaction T; with deadline d; is included
in SRPT-List if and only if, t + r; > d;, where t is defined
as above.

Notice that each transaction starts in the EDF-List then it
might move to the SRPT-List if it misses its deadline. Given
the above two lists, at each scheduling point ASETS selects
for execution either the transaction at the top of EDF-List
or the one at the top of SRPT-List. For convenience, we will
call these two transactions: T gpr and 11 srpr, respec-
tively.

To decide between 11 gpr and T1 srp7, We use a sim-
ple greedy heuristic under which T gpr is scheduled for
execution if 71 gpr < 7T1,sRPT — S1,EDF , Otherwise,
T1.srpr is the one scheduled for execution. The premise
underlying this heuristic is to schedule the transaction with
the least “negative” impact. In particular, if T} gpr is
scheduled first, its negative impact is increasing 11 srpT’S
tardiness by 71 gpr. On the other hand, if T sgrpr is
scheduled first, its negative impact is increasing 11 gpr’s
tardiness by 71 srpr minus the amount of slack s1 gpr
that T gpr currently has.

Example 2: Given the example previously illustrated in
Figure 1, ASETS will produce a schedule similar to EDF
for the transactions in Figure 1(a) since they are both in the
EDF-List. For the transactions in Figure 1(b), ASETS will
place T} in the SRPT-List and T> in EDF-List and it will
schedule 75 first since it is the one with minimum negative
impact. This will result in the same scheduler produced by
SRPT which minimizes the tardiness for that setting.

Finally, notice that given the above two list arrange-
ments, in the extreme case where all transactions are past
their deadlines, ASETS is basically equivalent to SRPT. In
the other extreme case where all transactions can meet their
deadlines, then ASETS behaves like EDF. In the general
case, where there is a mix of transactions that have passed
their deadlines and others that can still meet their deadlines,
ASETS policy employs both SRPT and EDF. This allows
our proposed hybrid policy, ASETS, to outperform SRPT
and EDF as it is experimentally shown in the next section.

The policy ASETS need only be invoked in response to
two types of events, the arrival of a job, and the completion
of a job. Using a standard balanced binary search tree, only
time O(log V) is required in each case.

4. Performance Evaluation

We have conducted multiple experiments to evaluate the
performance of our proposed ASETS policy. We describe
the settings for these experiments in section 4.1 and the ex-
perimental results in section 4.2.

| Parameter | Meaning | Value |

l; transaction | Zipf(«) over [1 - 50]
length
« skewness of | 0.5
job length
distribution
k slack factor | [0.0 - kynaz]
a; arrival time | Poisson process
with arrival rate =
SystemUtilization
AvgTransactionLength
SystemUltilization [0.1 -1.0]

Table 1. Experiments parameters summary

4.1. Experimental Setup

We created an RTDBMS simulator and conducted sev-
eral experiments to compare the performance of our pro-
posed ASETS policy against the previously described EDF
and SRPT policies. For completeness, we have also com-
pared it against the traditional First Come First Served
(FCFS) as well as the Least Slack (LS) policy [1], where
under LS, the priority of transaction T; is set to 1/s;.

We created a transaction workload similar to those in
[6, 1]. Specifically, we generated 1000 transaction where
the transaction length [; is generated according to a Zipf
distribution over the range [1-50] time units with the de-
fault Zipf parameter for skewness («) set to 0.5 and it is
skewed toward short transactions.

Each transaction is assigned a deadline d; = a;+1; +k; X
l; where k; is a factor that determines the ratio between the
initial slack time of a transaction and its length. k; is gener-
ated uniformly over the range [0.0—k, 4], Where k4, is a
simulation parameter with default value of 3.0.

The generated transactions arrive at the RTDBMS ac-
cording to a Poisson distribution with arrival rate equal
to SystemUtilization/AvgTransactionLength, where
SystemUtilization is a simulation parameter that takes
the values [0.1-1.0].

The values of average tardiness reported in the next sec-
tion are the averages of 5 runs for each experiment set-
ting. We have conducted multiple experiments to examine
all possible parameters’ values, that are summarized in Ta-
ble 4.1. In all our experiments, ASETS significantly outper-
forms the other scheduling policies. Below, we present a
representative sample of our results.

4.2. Results

In our first experiment, we measured the average tardi-
ness for the five scheduling policies mentioned above as the

Authorized licensed use limited to: University of Pittsburgh Library System. Downle¥ded on November 12,2025 at 18:01:51 UTC from IEEE Xplore. Restrictions apply.

Avgerage Tardiness (time units)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Utilization

Figure 3. Avg Tardiness under Low System
Utilization (« = 0.5)

system utilization increases from 0.1 to 1.0, with Zipf’s pa-
rameter o = 0.5 and k4, = 3.0.

The results for that experiment setting are shown in fig-
ures 3 and 4, where Figure 3 shows the average tardiness at
low utilization while Figure 4 shows the average tardiness
at high utilization; we split the utilization across two figures
to zoom in for better understanding of the system behavior.
Specifically, at low utilization (Figure 3), the system is able
to meet most of the deadlines, and hence, EDF performs
better than SRPT. As the utilization grows, the system can-
not meet as much deadlines, and SRPT starts to approach
EDF till it outperforms it at utilization 0.6.

ASETS on the other hand, outperforms both EDF and
SRPT for all values of utilization. However, it is noticed that
the maximum improvements provided by ASETS is around
the cross over point between EDF and SRPT where it re-
duces the average tardiness by up to 30%. This is further
illustrated in Figure 5, where we plot the average tardiness
of ASETS normalized to that of EDF as well as SRPT.

Figure 5 also shows that ASETS outperforms EDF even
at very low utilization values. The reason is that though
the overall average utilization is low, there are still intervals
where the utilization increases significantly above the aver-
age due to the fact that we are using Poisson arrivals. At
those high utilization intervals, ASETS automatically incor-
porates some SRPT scheduling to avoid the domino effect
of EDF. Similarly, at high utilizations, ASETS outperforms
SRPT as it incorporates some EDF scheduling as needed.

Next set of results shows the performance of our pro-
posed algorithm under different deadline settings. Specifi-
cally, we compare the performance of ASETS to SRPT and
EDF under different values of k,,,,. Figures 6, 7, and 8
show the results for k,,,,, values of 1, 2, and 4 respectively.
This is in addition to the results of k,,,, = 3 presented
above in Figure 5.

(%)
o
o

- —_ n N

o o o o

o o o o
L L

Avgerage Tardiness (time units)

o
o
L

Utilization

Figure 4. Avg Tardiness under High System
Utilization (« = 0.5)

The results show that ASETS constantly outperforms the
other two algorithms under the different settings, with the
maximum gain be at the cross-over area. It is also inter-
esting to notice that the cross-over point moves further to
the right (i.e., higher utilization) as we increase the value
of k,q..The reason is that the more loose the deadlines
are (larger k,,q,) the more chances EDF can catch up if it
missed deadlines. Hence EDF can cope with higher utiliza-
tion and outperforms SRPT for a longer range of utilization.

5. Related Work

Previous research efforts have proposed several hybrid
approaches for scheduling real-time transactions (e.g., [3,
6, 7, 4]). However, these approaches have mainly focused
on maximizing the hit-ratio (i.e., the number of transactions
that meet their deadlines) or maximizing the system gain
when each transaction is associated with a value or award.
Below, we discuss some of these hybrid approaches since
they share some features with our proposed ASETS policy.

For instance, the work in [3] studies the performance of
algorithms that use deadline only, value only, or a mix of
both in assigning transaction priorities. Specifically, it stud-
ies the Highest Value First (HVF) and the Highest Density
First (HDF) policies. It also proposes a hybrid policy called
MIX which uses a linear combination between the value and
the absolute deadline in order to maximize the hit-ratio.

Also, towards maximizing the hit-ratio, the work in [6]
proposes a hybrid algorithm to schedule transactions in RT-
DBMS. The algorithm divides transactions into two sets,
one to be scheduled using EDF, and another to be sched-
uled randomly where the size of each list is determined
based on feedback of the achieved hit-ratio. The work in
[6] further extends the proposed approach to maximize sys-

Authorized licensed use limited to: University of Pittsburgh Library System. Downl€ded on November 12,2025 at 18:01:51 UTC from IEEE Xplore. Restrictions apply.

Normalized Tardiness

0.2

—=— ASETS vs EDF
0.1 4 O+ ASETS vs SRPT
0.0

01 02 03 04 05 06 07 08 09 1.0
Utilization

Figure 5. Normalized Average Tardiness
(kmaz:?))

1.0 O O OO
0.9 -
0.8 -
0.7 -
0.6 1
05 -
04 -

Normalized Tardiness

0.3 1

0.2 1
—m— ASETS vs EDF

0.1 <&+ ASETS vs SRPT

0.0 T T T T T
01 02 03 04 05 06 07 08 09 1.0

Utilization

Figure 6. Normalized Average Tardiness
(kmazzl)

tem gain when transactions are associated with values.

In [4], another hybrid approach is proposed to schedule
web-broadcasts. Basically, [4] proposes MIA which is a hy-
brid approach between SRPT and EDF that also considers
the popularity of broadcast items to maximize the total sys-
tem gain.

Previous work have also studied the interaction between
transaction scheduling and concurrency control as in [10],
as well as the trade-off between QoS and QoD as in [8].

6. Conclusions

Motivated by the need of an adaptive self-managing
web-database system; in this paper we modeled user re-
quests as transactions with soft-deadlines, and proposed a
new scheduling algorithm called ASETS.

ASETS is based on EDF and SRPT. It intelligently com-
bines the advantages of both EDF and SRPT scheduling

Authorized licensed use limited to: University of Pittsburgh Library System. Downldalied on November 12,2025 at 18:01:51 UTC from IEEE Xplore. Restrictions apply.

[}

1%}

[}

=

£

©

[y

o

[0

S

3

E

2 031
02 -

—=— ASETS vs EDF

0.1 - o ASETS vs SRPT
0.0 1 — ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

0.1 02 03 04 05 06 07 08 09 1.0
Utilization

Figure 7. Normalized Average Tardiness
(kmaz:2)

1.0 4
0.9 1
0.8 -
0.7 1
0.6 -
0.5 1

0.4 1

Normalized Tardiness

031 ¢

0.2

—=— ASETS vs EDF
0.1 <O+ ASETS vs SRPT

0.0 T T T T T
0.1 02 03 04 05 06 07 08 09 10

Utilization

Figure 8. Normalized Average Tardiness
(kmaz:4)

algorithms under low and high system utilization condi-
tions respectively. We evaluated ASETS experimentally
and showed that our proposed approach outperforms both
EDF and SRPT minimizing the average tardiness.

Possible future extension to this work is to examine how
the algorithm will perform under the hard-deadline model.
It would also be very interesting to generalize the model to
consider update transactions.

In conclusion, it should be noted that ASETS is not lim-
ited to web-databases, but it can be applied in any Real Time
system with soft-deadlines where minimizing tardiness is
the right metric.

References

[1] R. K. Abbott and H. Garcia-Molina. Scheduling real-time
transactions: a performance evaluation. ACM TODS, 1992.

(2]
(3]
(4]

(5]

(6]

(7]

S. A. Aldarmi and A. Burns. Dynamic value-density for
scheduling real-time systems. ecrts, 1999.

G. Buttazzo, M. Spuri, and F. Sensini. Value vs. deadline
scheduling in overload conditions. In RTSS ’95.

W. Cao and D. Aksoy. Beat the clock: a multiple attribute
approach for scheduling data broadcast. In MobiDE 05,
2005.

M. Chrobak et al. Preemptive scheduling in overloaded sys-
tems. In Proceedings of the 29'" International Colloquium
on Automata, Languages, and Programming, 2002.

J. R. Haritsa, M. Livny, and M. J. Carey. Earliest deadline
scheduling for real-time database systems. In Proceedings
of RTSS '91.

D.-Z. He, F.-Y. Wang, W. Li, and X.-W. Zhang. Hybrid ear-
liest deadline first /preemption threshold scheduling for real-
time systems. In ICMLC "04.

(8]

9]

[10]

(11]

[12]

[13]

K.-D. Kang, S. H. Son, and J. A. Stankovic. Managing
deadline miss ratio and sensor data freshness in real-time
databases. IEEE TKDE, 16(10), 2004.

K.-Y. Lam, Y. Guo, M. Xiong, and B. Liang. Quality of ser-
vice guarantee for temporal consistency of real-time trans-
actions. IEEE TKDE, 18(8), 2006.

Ozgir Ulusoy and G. G. Belford. Real-time transaction
scheduling in database systems. Inf. Syst., 1993.

B. Schroeder and M. Harchol-Balter. Web servers under
overload: How scheduling can help. ACM Trans. Inter.
Tech.,2006.

Z. Tian, C. Ng, and T. Cheng. An O(n?) algorithm for
scheduling equal-length preemptive jobs on a single ma-
chine to minimize total tardiness. J. Sched., 9(4), 2006.

M. Xiong, S. Han, and K.-Y. Lam. A deferrable scheduling
algorithm for real-time transactions maintaining data fresh-
ness. In RTSS ’05, 2005.

Authorized licensed use limited to: University of Pittsburgh Library System. Downl&ed on November 12,2025 at 18:01:51 UTC from IEEE Xplore. Restrictions apply.

