
Adjourn State Concurrency Control Avoiding

Time-Out Problems in Atomic Commit Protocols
Sebastian Obermeier #1, Stefan Bottcher #2, Martin Hett , Panos K. Chrysanthis *, George Samaras +5

#University of Paderborn, Faculty 5 EIM
33102 Paderborn, Germany

1so@upb. de
2mhllO8uupb .de
3stb@upb .de

*University of Pittsburgh, Department of Computer Science
Pittsburgh, PA 15260, USA
4panos@cs .pitt .edu

+University of Cyprus, Department of Computer Science
CY-1678 Nicosia, Cyprus

4cssamara@cs .ucy. ac. cy

Abstract- The use of atomic commit protocols in mobile ad-
hoc networks involves difficulties in setting up reasonable time-
outs for aborting a pending distributed transaction. This paper
presents the non-blocking Adjourn State, a concurrency control
modification which makes time-outs in an atomic commit protocol
for aborting a transaction unnecessary. Further, it enhances
concurrency among transactions performing conflicting accesses
to resources used by completed distributed transactions waiting
for the commit protocol to be initiated.

I. INTRODUCTION
As mobile devices get ubiquitous and interact cooperatively,

the management of their shared data also becomes increas-
ingly important. Within fixed wired networks, atomic commit-
protocols such as Two-phase Commit protocol (2PC) [6] or
Three-phase Commit protocol (3PC) [11], and their variants
(e.g. [7], [10]), ensure the atomic execution of distributed
transactions. Most of these techniques and protocols rely on
time-outs to detect and handle failures. In the context of mobile
ad-hoc networks where disconnection times are unforeseeable,
it is extremely difficult to set up reasonable time-outs, for
example, for aborting a transaction on a mobile host when its
commit coordinator does not respond immediately during the
execution of a 2PC or 3PC. Hence, the use of standard lock-
based concurrency control techniques and atomic commit pro-
tocols in mobile ad-hoc environments may lead to unbounded
and unpredictable delays due to blocking. This observation
has motivated our search for techniques and protocols that are
more flexible and can more effectively deal with the much
more enhanced failure model of mobile environments.

A. Contributions
We present the "Adjourn State", a non-blocking state that

allows a transaction to execute operations which conflict with
those of another distributed transaction waiting for its coordi-
nator's voteRequest message to initiate commit preparation.
In contrast to the traditional wait state, the Adjourn State
is based on optimistic concurrency control and shows the
following advantages:

0

0

0

It does not require the set-up of transaction time-outs.
It does not block concurrent transactions.
It is compatible with [3] that unlike traditional atomic
commit protocols does not require an abort of the global
transaction if a conflict is detected, but only requires a
partial redo of the local transaction.

II. SYSTEM MODEL

We are assuming a set of mobile devices or hosts (MH) with
local databases. Each MH shares its data via web-services.
Thus, applications on one MH can access data on another MH
by invoking a web-service. Each web-service request initiates
one or more sub-transactions against the local database, or it
can spawn another sub-transaction on another MH.

A. Transaction Model
We assume that the sub-transactions comprising a web-

service obey the following transaction execution model (c.f.
Figure 1), in which transactions are committed using an atomic
commit protocol.

After a MH has received a (sub-)transaction T from the
initiator, the MH processes the transaction's reads and per-
forms all write operations within a private transaction space
(read phase). During the execution of the read phase of a sub-
transaction Ti, Ti may also invoke other sub-transactions Ti,
but the MH must store the invocation parameters for Tj. After
a (sub-)transaction has finished its read phase, it goes through a
validation phase at its local MH. If the validation succeeds, the
MH sends the (sub-)transaction's result along with a list of the
invoked sub-transactions to its initiator. Otherwise, it sends an
abort message. Details of the validation phase are explained
in the following Section II-B. When the initiator of T receives
all the results and must commit the distributed transaction it
invokes an atomic commit protocol by notifying a commit
coordinator instance about all participating sub-transactions.

In the case of 2PC, the commit coordinator sends a
voteRequest message to each MH involved in the distributed

978-1-4244-1837-4/08/$25.00 (© 2008 IEEE 1477 ICDE 2008Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:18:14 UTC from IEEE Xplore. Restrictions apply.

voteRequest prepare
result vote preparE

read vail- Irb(ad Val I Iphase dation I I

otomic CommProtocol

doCommit
ed\

write
phas-e

,it i time

Fig. 1. Transaction Model

transaction T. Each MH that received this voteRequest
replies by sending the vote message on the transaction. After
the coordinator has received all the vote messages and none
of them was for abort, the coordinator issues the doCommit
command and each MH executes the write phase of the
transaction. The coordinator may also abort the transaction
whenever a participant does not respond in a given time
interval or voted for abort.
When 3PC is used, additional prepare and prepared

messages, illustrated by dashed gray lines in Figure 1, are
exchanged before the coordinator sends the final commit
command.
A MH itself may abort a transaction as long as the vote

message has not been sent to the coordinator, e.g., if the
coordinator does not request the vote within a certain period
of time.1

B. Local Concurrency Control by Backward Validation
MHs use optimistic concurrency control [8], more precisely

backward oriented optimistic concurrency control with parallel
validation. In detail, a local sub-transaction To is older than a
local sub-transaction Tv running on the same database, if To
starts its validation phase before Tv does.
A transaction Tv validates to true, if one of the following

three conditions holds for each older transaction To:
1) To has completed its write phase before Tv has started.
2) To has completed its write phase before Tv started its

validation phase, and readset(Tv) n writeset(TO) = 0.
3) TO has not finished its write phase before Tv has started

the validation, and (readset(Tv) u writeset(Tv)) n
writeset(TO) = 0.

C. Problem Description
Regardless of which concrete atomic commit protocol is

used, the following problem occurs when the MH still waits
for a voteRequest on a transaction TO, but the commit coor-
dinator is not reachable anymore, i.e., whenever a transaction
TO has successfully validated and the result message was
sent, but the MH does not receive the voteRequest message.
Then, the last validation condition (3) will be checked by
each newer parallel transaction Tv, and this condition prevents
conflicting transactions Tv from being successfully validated
for the following reason. Every transaction Tv that is started

1Note that in 3PC, a database is not allowed to unilaterally abort a
transaction after the first vote message has been sent, cf. [11].

while TO waits for its coordinator and that wants to access
an object that TO intends to write, validates to false and will
be aborted. In other words, any delay in the commit phase of
TO has a blocking effect on concurrent conflicting transactions
Tv. To solve this problem, [11] has introduced time-outs after
which the MH aborts the transaction TO if it is still allowed
to do so, i.e., if it has not sent its vote message.

However, especially in mobile networks, the question arises:
"What is a reasonable time-out after which the MH should
abort the transaction TO if it is still allowed to do so?". If the
time-out is too large, it prevents concurrent and conflicting
transactions TN from a successful validation, since TN will
not pass the validation phase successfully due to the pending
transaction TO. If the time-out is too short, TO may be
unnecessarily aborted, e.g., when the delay is caused by
the network or when the duration of the validation phase
differs for the MHs participating in the global transaction.
Determining a reasonable time-out is difficult since it involves
not only knowledge about the network conditions, e.g., device
movement, message delivery times, message loss rates, etc.,
it must also consider the device's computing power and CPU
utilization, and the varying duration of the validation phase
for each mobile device. Therefore, our solution, which does
not rely on such a time-out, is much easier to set up and more
effective.

III. SOLUTION

In order to avoid setting up time-outs for aborting a transac-
tion, our solution distinguishes between two states in which a
MH can wait for the coordinator's voteRequest message: the
blocking state and the non-blocking Adjourn State. A MH is
allowed to switch unilaterally from the blocking to the Adjourn
State as long as the vote has not been sent. However, the
MH must perform a second adjourn specific validation phase
before a transaction is allowed to leave the Adjourn State.
Both states, the blocking state and the non-blocking Adjourn
State differ in the way the validation phase for a concurrent
transaction is executed, and therefore show a different blocking
behavior.
A. The Blocking State

While a successfully validated transaction Tv is in the
blocking state, the validation of a newer transaction TN against
the older transaction Tv is done by TN as described in Section
II-B. This means, transaction TN is validated against Tv with
the effect that whenever transaction TN is in conflict with Tv,
TN is aborted.
B. The Non-Blocking Adjourn State
A successfully validated transaction Tv may enter the non-

blocking Adjourn State, after Tv has sent the result message
to the initiator. However, Tv must switch from Adjourn State
to blocking state before it may send the vote to the coordinator.

While Tv is in the non-blocking Adjourn State, the valida-
tion of a concurrent transaction TN is done as follows: TN is
validated against all older transactions except those being in
the Adjourn State. This means, Tv, which is in the Adjourn
State, has no blocking effect on concurrent transactions TN.

1478Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:18:14 UTC from IEEE Xplore. Restrictions apply.

When Tv must leave the Adjourn State, e.g., when the
commit coordinator demands a binding vote on TV, TV must
be validated again in a second adjourn specific validation
phase. However, the scope of this second validation is different
from the first validation phase: This second validation of a
transaction Tv is successful, if and only if the following
condition holds for each transaction TN that has started its
validation while Tv has been in the Adjourn State:

(readset(TN) u writeset(TN)) n writeset(Tv) = 0.
If this validation fails, Tv must either be aborted or can be
locally restarted.
The reason for this concurrency check is the following:

although Tv entered its validation phase before TN, i.e., Tv
is older, TN has not been validated against Tv. Since TN may
have already been committed, the validation of Tv against TN
must be either successful, or Tv must be aborted.

Note that the Adjourn State only delays the validation of
TN against Tv and lets Tv validate against TN instead of TN
against Tv. However, the number of validation tests is exactly
the same as with other commit protocols that use backward
oriented concurrent validation.

IV. EXPERIMENTAL EVALUATION AND RESULTS
In order to evaluate our proposed Adjourn State, we have

developed a simulator of a mobile environment in which MHs
participating in the execution of a transaction may disconnect
and reconnect after a specified time and/or a number of
messages are dropped during a specified period. We have
compared the Adjourn State and the "traditional" blocking
state with different time-out values by measuring transaction
throughput and blocking behavior.

Our experiments have shown that concurrency control us-
ing our Adjourn State enhancement blocks significantly less
transactions compared to the one using the traditional blocking
state. Hence, using Adjourn State significantly decreases the
number of aborted transactions. Additionally, the Adjourn
State achieves a significantly higher transaction throughput in
unreliable networks with many, short disconnections.

Furthermore, our experiments have confirmed the difficulty
in setting up the right time-out that increases the transaction
throughput and reduces the amount of blocking. This justifies
the use of the Adjourn State even in mobile networks with
moderate reliability, since Adjourn State protocols do not
expose the user to the risk of setting up a "wrong" time-out
that leads to performance degradation.

V. RELATED WORK
To avoid locking, concurrency control mechanisms like

multiversion concurrency control [2], timestamp-based concur-
rency control [9], or optimistic concurrency control [8] have
been proposed. However, these approaches do not solve the
problem of setting up time-outs when the database has to
abort a transaction. Our proposed Adjourn State does not rely
on such time-outs, and merges nicely with these concurrency
control mechanisms since it is an "on demand" strategy for
giving concurrent transactions access to resources used by
transactions waiting for the commit protocol to be invoked.

The suspend state, which is proposed by [5], relates to
our concept. However, this approach uses locking instead of
validation and is intended for the use within an environment
consisting of several mobile cells and a fixed-wired network,
in which disconnections are detectable and even foreseeable,
and therefore transactions are considered to be compensatable.
In contrast, our solution does not rely on the concept of
compensation.
Compared to our previous contribution [3], the Adjourn

State proposed in this paper is developed for the combination
of optimistic concurrency control and atomic commit proto-
cols. Since the Adjourn State can be combined with a dynamic
transactional model, the coordinator must get to know the
participating sub-transactions. An approach that allows the
coordinator to keep track of all dynamically invoked sub-
transactions is described in [4].

Our approach is based on the same optimistic principle as
[1], but differs as the Adjourn State does not block resources
after the read phase's result has been sent.

VI. CONCLUSION
In this paper, we have presented Adjourn State, which is a

concurrency control enhancement for atomic commit protocols
that use optimistic concurrency control. A benefit of Adjourn
State is the omission of setting up time-outs for aborting a
transaction in case of network or coordinator failures, which
makes the Adjourn State particularly applicable in unreliable
environments and environments in which disconnections are
unpredictable, such as in a mobile ad-hoc environment.

REFERENCES

[1] Y Al-Houmaily, P. K. Chrysanthis, and S. P. Levitan. An argument
in favor of the presumed commit protocol. In Proc. of the 13th Int'l
Conference on Data Engineering, pages 255-265, April 1997.

[2] P. A. Bernstein and N. Goodman. Multiversion concurrency control -

theory and algorithms. ACM Trans. Database Syst., 8(4):465-483, 1983.
[3] S. Bottcher, L. Gruenwald, and S. Obermeier. Reducing sub-transaction

aborts and blocking time within atomic commit protocols. In 23rd
British National Conference on Databases (BNCOD), Belfast, Northern
Ireland, UK, pages 59-72, 2006.

[4] S. Bottcher and S. Obermeier. Dynamic commit tree management
for service oriented architectures. In Proceedings of the 9th Interna-
tional Conference on Enterprise Information Systems (ICEIS), Funchal,
Madeira - Portugal, 2007.

[5] R. A. Dirckze and L. Gruenwald. A toggle transact. management
technique for mobile multidatabases. In CIKM '98, pages 371-377,
New York, USA, 1998. ACM Press.

[6] J. Gray. Notes on data base operating systems. In M. J. Flynn, J. Gray,
A. K. Jones, et al., editors, Advanced Course: Operating Systems,
volume 60 of Lecture Notes in Computer Science, pages 393-481.
Springer, 1978.

[7] V. Kumar, N. Prabhu, M. H. Dunham, and A. Y Seydim. Tcot-a timeout-
based mobile transaction commitment protocol. IEEE Trans. Com.,
51(10):1212-1218, 2002.

[8] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency
control. ACM Trans. Database Syst., 6(2):213-226, 1981.

[9] P.-J. Leu and B. K. Bhargava. Multidimensional timestamp protocols
for concurrency control. In Proceedings of the Second International
Conference on Data Engineering, pages 482-489, Washington, DC,
USA, 1986. IEEE Computer Society.

[10] P. K. Reddy and M. Kitsuregawa. Reducing the blocking in two-phase
commit with backup sites. Inf. Process. Lett., 86(1):39-47, 2003.

[11] D. Skeen. Nonblocking commit protocols. In Y E. Lien, editor, Pro-
ceedings of the 1981 ACM SIGMOD Intl. Conference on Management
of Data, Ann Arbor, Michigan, pages 133-142. ACM Press, 1981.

1479Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:18:14 UTC from IEEE Xplore. Restrictions apply.

