Towards a Content-Provider-Friendly Web Page Crawler

Jie Xu Qinglan Li

Huiming Qu

Alexandros Labrinidis

Advanced Data Management Technologies Laboratory
Department of Computer Science, University of Pittsburgh
Pittsburgh, PA 15260, USA

{xujie, qinglan, huiming, labrinid}@cs.pitt.edu

ABSTRACT

Search engine quality is impacted by two factors: the qual-
ity of the ranking/matching algorithm used and the fresh-
ness of the search engine’s index, which maintains a “snap-
shot” of the Web. Web crawlers capture web pages and
refresh the index, but this is always a never-ending quest,
as web pages get updated frequently (and thus have to be
re-crawled). Knowing when to re-crawl a web page is fun-
damentally linked to the freshness of the index, given the
size of the Web today and the inherent resource constraints:
re-crawling too frequently leads to wasted bandwidth, re-
crawling too infrequently brings down the quality of the
search engine.

In this work, we address the scheduling problem for web
crawlers, with the objective of optimizing the quality of the
index (i.e., maximize the freshness probability of the local
repository as well as of the index). Towards this, we utilize
feedback from the users (content providers) on when their
web pages are updated and consider the entire spectrum of
collaboration, from no feedback to explicit update schedules.
We propose a unified online scheduling algorithm which uti-
lizes different levels of collaboration from content providers.
Extensive experiments with real web traces demonstrate
that cooperation from users plays a major role in improving
search engine index quality.

1. INTRODUCTION

Major web search engines are the most important places
that content providers would like to be listed because people
always turn to search engines to find the specific web page
out of the mass information. Search engines can bring the
content providers with large amount of traffic to increase
their popularity.

Web crawlers are employed to capture and refresh the web
pages in a search engine’s local repository, where a keyword-
based index is built for search. There are two factors that

*Funded in part by NSF ITR Medium Award ANI-0325353
and NIH-NIAID grant NO1-AI50018.

Copyright is held by the author/owner.
Proceedings of the 10th International Workshop on Web and
Databases (WebDB 2007), June 15, 2007, Beijing, China.

are of paramount importance to the quality of search en-
gines: (1) the freshness of the search engine’s index, and (2)
the quality of the ranking/matching algorithm that sorts
the search results based on the relevance to the keyword(s).
The two factors are both challenging, yet orthogonal to each
other. In this paper, we concentrate on (1), that is, how to
optimize the freshness of the index so that the search results
reflect the most up-to-date information from the original
web sites.

Since web pages are frequently updated by the content
providers, freshness of the search engine’s index is always
“endangered” and crawling is a never-ending procedure. Given
the size of today’s web, as well as the inherent resource con-
straint, the exact synchronization between the index (as well
as local repository) and the live web is hard to achieve. How-
ever, if the search engines have more information about the
update schedule of the content providers, the crawling de-
cision can be made easier. For example, a stock informa-
tion web site periodically refresh their web pages; or a NFL
team’s web site at least will update its web pages after each
game. Most commercial web sites have such routine update
schedules, which could be used to collaborate with search
engines to enhance the efficiency and effectiveness of the
crawling schemes. Since the schedule of re-crawling is im-
portant to content providers as well, (re-crawl too frequently
lead to the waste of content providers’ bandwidth, and re-
crawl too infrequently may damage content providers’ popu-
larity), collaboration definitely gives search engines and con-
tent providers a win-win situation.

In this work, we concentrate on the scheduling problem for
web crawlers, with the objective of maximizing the reposi-
tory freshness. Our main contributions are as follows:

e We propose to utilize feedback from the users (content
providers) on when their web pages are updated and con-
sider the entire spectrum of user cooperation (e.g., from
no feedback to full update schedules).

e We propose a unified online scheduling algorithm which
considers the negative impact (i.e., degradation if the
page is not crawled) while incorporating content providers’
multi-level collaboration.

e We implement the web crawler framework and evaluate
our algorithm in various settings. Extensive experiments
with real web traces demonstrate that cooperation from
the users can play a major role in improving search en-
gine index quality.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the related work. Section 3 describes our

system, quality metric, and user profiles. Section 4 elab-
orates our unified online scheduling algorithm and priority
score calculation. In Section 5, we present our empirical ex-
perimental results with real web traces. Finally, we conclude
and discuss our future plans in Section 6.

2. RELATED WORK

Regarding how much information the crawler has, differ-
ent researchers made different assumptions. However, as
far as we know, no work has considered a unified algorithm
to incorporate different levels of collaboration between the
search engines and the web servers being crawled.

Pandy and Olston [7] assume no feedback from content
providers. Their scheduling algorithm aims at maximizing
the user-centric search repository quality, which includes ad-
dressing page ranking, index maintenance and repository
freshness. In our case, we focus on the repository freshness
problem, and leave index maintenance and page ranking for
our future work.

Wolf et al. [9] consider two cases, one is without user
feedback, the other is with fixed potential time points for
updates (along with a probability for the update to hap-
pen), which they called quasi-deterministic. Their objective
is to minimize the “embarrassment” of search engines (i.e.,
when the web page that a user gets is not relevant to his/her
query). Towards this, they first apply probability theory and
theory of resource allocation problems to find out the the-
oretically optimal crawling times, then map the scheduling
problem to a transportation problem based on network flow
theory. Although the algorithm complexity is polynomial
time in deterministic cases, given the huge input dimension,
it can not be used as an online algorithm (as ours).

Both [2] and [6] address the cache synchronization prob-
lem, which is very close (and can be mapped) to the crawler
scheduling problem. Cho and Garcia-Molina [2] assume
that the synchronization is uniform over time and the order
over elements is fixed, then concentrate on the refreshing
resource allocation problem. Their algorithm uses method
Lagrange multipliers to get the optimal results. As an op-
posite, we assume the crawling capability is known, and we
integrate resource allocation with the scheduling algorithm,
since they are highly interconnected. Olston and Widom [6]
assume that every data source cooperates with caches ac-
tively, which is extremely hard to achieve in the crawler
scheduling problem considering the size of today’s web.

In calculating priority scores, we essentially borrow ideas
from the previous work of one of the authors [5] and combine
with the divergence graphs from the work of [6], to illustrate
the negative impact of a web page, if it is not scheduled to
be re-crawled. Finally, we also incorporate the popularity of
a web page as an important weight factor for the scheduling
of re-crawls.

3. SYSTEM

In this section, we present the basic search engine archi-
tecture, describe our quality metric, and then classify the
user profiles based on their different levels of collaboration.

3.1 System Overview

Web search engines are the gateways where most users
look for specific web pages from the huge internet reposi-
tory. In general, they employ multiple crawlers to grab the

Client

ﬂ Access Request

Search Engine

Content Provider

II Update Request

Ui C2 uU2cC2 UsC3
|
&= R T
= t Crawling Scheduler
Al
Index Repository Crawler

Figure 1: General Web Search Engine Architecture

“snapshots” of live web pages all over the world. The snap-
shots are stored in search engines’ local repositories. Then
an index is built up over the local repository (as in Figure 1).
A query is normally in the form of a keyword set (probably
with priority). When clients submit queries, the search en-
gine will first match the keyword set with its inverted index,
and then apply a page ranking algorithm [1, 3, 4] to rank
each web page that has passed the filtering from the first
step (i.e., is considered relevant to the query). Finally, the
search engine returns to the user a prioritized list of links,
which point the user to the live web pages. The higher the
link’s position in the list, the higher the relevance to the
user’s query.

In this architecture, the users’ experience depends highly
on the quality of the index, which is in turn decided by the
freshness/precision of the local repository. The ideal case is
that the local repository owns exact snapshots of live web
pages. However, this is hard to achieve since (1) web pages
are frequently updated, and (2) the crawling capability is
constrained.

Even with significant crawling capacity, the crawling sched-
uler is still a necessary module. For example, as in Figure 1,
the crawling scheduler tries to schedule three available crawl-
ing slots. Although the crawling capability is enough (equal
number of updates and crawling slots), access of web page 1
(A1) still gets a stale snapshot, as the scheduler chooses to
re-crawl web page 2 (C2) at the first crawling slot. Thus, an
accurate and efficient web crawl scheduling algorithm is of
vital importance to minimize the divergence between local
repositories and the live web.

3.2 Quality Metric

As we mentioned before, the quality of the index depends
heavily on the freshness of the local repository. We define
the quality as an aggregated freshness degree over the entire
local repository. In other words, we measure the probability
that an index access comes from a fresh (up-to-date) web
page in the local repository R, which we denote as Pjresn(R).

Prresn(R) is decided not only by the freshness, Pfresh, of
the web pages but also by the access frequency, faccess, of
the web pages in R. We measure the overall freshness as
the weighted sum of the freshness of each web page in the
local repository [5], where the weight is the access frequency
of the corresponding web page, as shown in the following.

Pfresh(R) - Z (facccss(pi) X Pfresh(pi)) (1)

p;€ER

Number of accesses on p;

facccss (pz) = (2)

Total number of accesses on R

1 if there is no missing update

if there is missing update
(3)
where faccess(pi) is the access frequency of page p; and
Pjresh(pi) is the freshness of page p;. Freshness degradation
is computed with the difference of current time and each
missed update m times the number of missed update, as-
suming time is an ascending real value and current time ¢,
is the largest number on the time axis. Pjresn(ps) is inverted
proportionally to the weighted sum of freshness degradation
caused by each missed update.

The freshness of the repository, Presh(R), is a real number
between 0 and 1 since both faccess(Pi) and Ppresn(pi) scales
from 0 to 1. The higher the value of Pp.sn(R), the better
overall quality of repository R.

3.3 User Profiles

An effective web page crawl scheduler depends on four dif-
ferent types of information: Access History, Crawling His-
tory, Past Update Time Points, and Future Update Time
Points. Access history and crawling history are all collected
from the search engine site, whereas the update informa-
tion depends on how much content providers can provide.
In this paper, we classify three types of users (i.e., content
providers) based on the collaboration levels with the search
engines:

Prresn(pi) = { 1

> MX (tnow—tm)

e Normal User: the web site, such as a personal home
page, that doesn’t provide any information about up-
dates.

e Smart User: the web site that sends a signal every time
it has been updated, so that the crawler can record all
its past update time points (i.e., its update history).

e Super User: the web site that provides not only its up-
date history, but also its future update schedules (with
the probability that an update will happen). Examples
are commercial service providers such as stock infor-
mation providers, which have routine update sched-
ules.

Other than Normal Users, both Smart Users and Super
Users cooperate with search engines to some extent by pro-
viding partial or full update information. We summarize the
different user types with various information in Table 1.

4. PROPOSED ALGORITHM

In this section, we elaborate on our online scheduling al-
gorithm for web crawlers with different levels of collabo-
ration. The objective is to maximize the freshness of the
pages stored/indexed in the search engines’ local reposito-
ries, while also considering the pages’ access probability.

4.1 Scheduling Re-crawls

The search engine assigns priority scores to web page up-
dates from all web sites. For the normal user or the smart
user, only one priority score is assigned to the most recent
update that has happened, whereas for the super users, in

addition to the most recent update, each possible future up-
date will be assigned a priority score as well.

These prioritized past updates (e.g., the most recent up-
date happened) and future updates are put into a priority
queue where the available crawler is always assigned to the
update with highest priority score. Assuming we have M
crawlers, each has the crawling capacity to crawl P pages
per crawling cycle. Then we have totally M x P time slots
to schedule at the beginning of each crawling cycle. For the
past update, the current available crawling slot will be as-
signed. For the future update, the first available crawling
slot after the future update time will be assigned.

4.2 Priority Scores

We calculate priority scores for each web page update ac-
cording to its negative impact which is the freshness degra-
dation if the page is not re-crawled. The bigger the negative
impact, the higher the priority score, and the sooner the web
page will be re-crawled. We distinguish three cases:

¢ Known Update History

For web pages with known update histories, we esti-
mate the negative impacts by timing up the number
of accesses that hit the stale web page and the time
duration that the web page stayed stale. Assume N
is the number of accesses that hit the stale web page
from the last crawl to time t, and t,, is the time when
the my, missed update happens for the web page.

U

S (ltm—tm1) x Niw) (4)

m=0

known
Spa.st =

where U is the total number of missed updates, and
Ny, is the number of stale accesses from the last crawl
to the time of the my, missed update, which is incre-
mentally increased as more missed updates are counted.

e Unknown Update History
For web pages with unknown update history, since we
have no idea about past update time points, we esti-
mate the negative impact with an area of a triangle:

1
S;L:;Iinown _ 5 X (tnow — th) X (Ntnow =+ C) (5)
where trc is the time of last crawl and c is a small
constant to adjust the difference between Equation 4
and the triangle area.

e Future Update

Web pages with future update information provide the
future update schedule with the probability, Pupdate,
that each update will happen. We calculate one prior-
ity score for each future update. Similar to the priority
score of Sﬁg;’tw" and S;‘,;LS’%"O’””, we use the probability of
future access to reflect the importance of each future
update. As we don’t have future access information,
we estimate the future access, C), for the pth cycle, by
using the access history of the past s crawling cycles.
In our experiments, s equals to 5. We apply the aging
scheme to emphasize the recent histories as shown in
the following.

OéXCpfl-F(l—Oé) XZP72 Cy

d=p—s
p—1
d=p—s Cd

Sfutu're = I“update X

(6)

User Type| Normal | Smart | Super |

Access History Yes Yes Yes
Crawling History Yes Yes Yes
Past Update Time Points No Yes Yes
Future Update Time Points No No Yes
Priority Score S;f(ﬁﬁ"ow" S;“g;“f" Sunified
(Eq. 4) | (Eq.5) | (Eq.7)

Table 1: User Types

Having computed priority scores based on different levels
of available information, we summarize how to use the pri-
ority scores for different users in Table 1. For normal users
and smart users, the priority score of each web page will be
the S;,Zﬁ”"w” and ngftw" we calculated in Equation 5 and
Equation 4 respectively, normalized by the total number of
accesses. For super users, the priority score comes from two
parts, past and future. For each future update point, we cal-
culate the weighted sum of normalized S;fg;’tw" in Equation 4
and the Spyiure in Equation 6 which has been normalized, as

Suniﬁed = ﬂ X Sz]fs;twn + (1 - 6) X Sfuture (7)

where [balances the relative impact of past information
versus future information.

5. EXPERIMENTAL STUDY

The objective of our experiments is to investigate the im-
pact of different environmental settings to our algorithm us-
ing real web traces. The goal of our algorithm is to maxi-
mize the aggregated freshness of the local repository, which
decides the quality of search engine index consequentially.
In addition, we evaluate the stability and scalability of our
algorithm under various workloads.

5.1 Experimental Setup

The experimental analysis leverages on a prototype frame-
work built for this project. The system integrates three
types of user profiles with the online scheduling algorithm,
according to priority scores computed by the equations in-
troduced in Section 4.2.

Update Trace We have been crawling the RSS feeds
for some popular news source (CNN, NY Times, Yahoo,
etc) every 30 minutes since Aug 2005. After an initial data
cleaning process to remove noise, these data sets are ready
to be used as the update traces. We observed that there are
no significant update patterns during the entire time period,
so we extracted update requests from a two-month period
as the update trace in our experiments.

Access Trace Using the same set of web pages from our
update trace, we generated synthetic access requests follow-
ing Zipf and Poisson distributions, on the accessed web pages
and the time intervals between accesses.

Architecture Update requests from multiple users (con-
tent providers) and access requests are parsed into the frame-
work, after going through a filter which removes unrelated
requests; then the ranking engine computers priority scores
for each web page and each update request (for Super Users).
The scheduler then dispatchs crawling jobs according to the
priority scores. All experiments were run multiple times and
figures reflect the average statistics from these runs. The
machines we used in our simulation is a Dell PowerEdge

| Parameter | Value |
Date Period | Nov 1, 2006 - Dec 31, 2006

Update Frequency | Max 2928 times per page
Access Size 20k bytes - 50k bytes

Access Zipf 0 over page 0.85
Access Zipf 0 over time 0-1
a (refer to Eq. (6)) 0.8

B (refer to Eq. (7)) 0.8

s (refer to Eq. (6)) 5
Pupdate (refer to Eq. (6)) 0-1

Table 2: Simulation Parameters

2950 server with two Dual-Core Intel Xeon 3GHz CPU pro-
cessors and 4MB L2 cache. It is equipped with 16GB RAM
and 1.5TB hard disk, running Redhat Linux Version 3.4.6-3.
The values of the major parameters are shown in Table 2.
Although we explored the algorithm sensitivity to parameter
values within the stated range, we present here experiments
only on the values specified in Table 2, unless otherwise
noted. We present results with the o and (fixed to 0.8,
and we have additional evidence suggesting that results are
fundamentally the same with variable access trace sizes.

W 20k 50k
1
0.8
? 0.6
Q
c
=
0
L 04
w
0.2 4
o
Normal Smart Super
User Type

Figure 2: Freshness degree in a homogeneous environ-
ment; all users are of a single type (normal, smart, super)
in each experiment. Smart user outperforms normal user
by 10%, super user outperforms smart user by 15%.

5.2 Varying Environment

5.2.1 Homogeneous Environment

First, we create a homogeneous environment, in which
only one type of content providers exists. We ran our ex-
periments on two different sizes of access traces to test the
scalability of our algorithm, the larger size access (50k) and
the smaller size access (20k). The aggregated freshness over
the repository R are reported in Figure 2.

Not surprisingly, the more information content providers
give the crawler, the better quality the crawler achieves.
Specifically, in the 20k trace, the freshness of smart users
outperforms normal users around 10%. With future update
time point information available for super users (even with
a probability to happen), the quality is improved another
15% comparing to smart users, where only past history is
known. The trend is the same for the 50k trace, although

0.8 A

Freshness

0.6
0.4 -
0.2
0 - T T T T T T T T

0.45-0.45-0.1 0.4-0.4-0.2 0.35-0.35-0.3 0.3-0.3-0.4

0.25-0.25-0.5

User Population: Normal-Smart-Super

0.2-0.2-0.6 0.15-0.15-0.7 0.1-0.1-0.8 0.05-0.05-0.9

Figure 3: Freshness Degree under Various User Populations (Normal vs Smart vs Super); by having near 30% of the
population be super users, the crawler achieves the best overall freshness.

the scale varies a bit. Since the trend for the 50k trace is
always close to the 20k trace, we only report results from
the 20k trace for the remaining experiments.

5.2.2 Heterogeneous Environment

In the second set of experiments, we mix three types of
content providers together, and watch the overall freshness
degree under various user population compositions. We
modify the population of the super users, ranging it from
0.1 (10%) to 0.9 (90%) to make the spectrum complete, and
allocate the remaining population evenly into normal and
smart users. The results are shown in Figure 3.

From a first look at Figure 3, we might think that there is
no clear trend to predict the aggregated quality over the user
population. However, when we closely observe the result, it
does present a trend: the best performance is achieved when
super users take near 30% and 60% of the population re-
spectively. Before the super users’ population reaches 30%
(phase 1), the performance increases monotonically. And
after it gets to 60% (phase 3), the performance decreases
monotonically. Between these two points (phase 2), the per-
formance varies a bit, but not as large as the others.

The reason that freshness increases in phase 1 is that as
super users increase, the more information is provided, and
the overall scheduling quality is in turn improved. However,
as the super users’ population reaches 30%, the crawler has
enough information to achieve the best performance, that is
why the freshness remains the same in phase 2. Moreover,
when super users take more than 60% of the population,
they provide more information than the crawler can utilize,
and as such they start competing with each other, taking up
the local maximum time slots instead of the global maximum
and bringing down the overall freshness no matter how other
users perform.

An interesting point is when we compare the super user
in the homogeneous environment, the freshness is actually
higher than all the freshness in phase 3, and almost the same
as freshness in phase 2. This is an unexpected result. Our
guess is since all users behave the same in a homogeneous
environment, they will eventually reach a balanced status so
that the overall performance will not be affected much by
the competition. However, in a heterogeneous environment,
there are other types of users also. As a result, they will

probably become the victims of super users’ competition,
so that their crawling slots were taken by super users, how-
ever, which does not bring a positive impact on the overall
freshness.

In summary, results from the heterogeneous environment
demonstrate that we do not need everyone to be a super user
to achieve the best overall performance. If we get 30% of
users to fully collaborate, we will be able to get the best pos-
sible freshness, however, even small percentages will lead to
an improvement compared to no collaboration. With many
of the content providers having a regular update schedule
(e.g., news feeds), we expect such collaboration to be rela-
tively easy.

5.3 Varying Workload

Having observed the performance of our algorithm in dif-
ferent environments, we now observe the impact of different
workloads.

First, we test different access patterns over time by chang-
ing the 0 value in the Zipf distribution to adjust the access
skewness. We choose the most commonly used 6 value 0.85
to represent the highly skewed access pattern, 0.6 to repre-
sent a moderately skewed pattern, and 0.4 to represent an
almost unskewed access pattern. As shown in Figure 4(a),
the freshness is almost unchanged, which means our algo-
rithm is stable to different access patterns.

In the second set of experiments, we enlarge the crawl-
ing capacity, and observe the change of aggregated fresh-
ness. The results are shown in Figure 4(b). As expected, in-
creasing the crawling capacity improves the freshness. The
larger the crawling capability, the bigger performance im-
provement super users achieve compared to normal/smart
users. Another observation is that as the original crawl-
ing capacity is large enough (smart users achieve around
86% freshness), doubling/four-fold increase of the crawling
capacity does not lead to a linear increase on the overall
freshness.

5.4 Varying Future Update Info. Accuracy

In the last experiment, we tested the impact of super
users’ prediction precision. We vary the probability of super
users’ precise prediction from 1 (100% precise) to 0.25 (25%
precise), and report the overall freshness in Figure 5.

0.8 1

0.6

0.4 -

Freshness

0.2 1

0.85 0.6 0.4

Skewness of Access

(a) Access Skewness over Time (i.e., different 6 value)

B Normal O Smart @ Super

0.8

0.6

Freshness

0.4 A

0.2

1X 2X 4X
Crawling Capacity

(b) Crawling Capacity: original - double - four times

Figure 4: Freshness Degree under Various Workload: our scheduling algorithm is stable enough to handle different

access skewness and different crawling capacity.

0.8
0.6
0.4
0.2
0+ ‘ . ‘
1 0.25

0.75 0.5
Future Update Information Accuracy P update

Freshness

Figure 5: Freshness Degree under different Super Users’
Prediction Precision: the more accurate of super users’
future update information, the better the aggregated
freshness.

As we expected, the more precise information content
providers give to the crawler, the better crawling quality
can be achieved. The decrease on performance is large when
precision dropped from 100% to 75%. After that, freshness
does not drop as much as the first drop. The reason is that
when a super user provides an inaccurate future update time
point, and the update time point is successfully scheduled
(which happens with high probability), one crawling slot is
“wasted” if this was inaccurate, since the update does not
happen (which leads to a stale web page being crawled).
Moreover, this takes one slot from one of other users, that
one of his/her web pages potentially can be refreshed, which
makes performance even worse.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the scheduling problem for
web crawlers, with the objective of optimizing the aggre-
gated freshness degree of the crawler’s local repository. We
proposed an online scheduling algorithm which crawls web
pages according to their negative impact, if they are not
refreshed. Moreover, we utilize feedback from the content
providers on when their web pages are updated and consider
the entire spectrum of collaboration, from no feedback to
explicit update schedules. Extensive experiments with real

web traces demonstrate that cooperation from the users can
greatly improve search engine index quality. As long as hav-
ing near 30% content providers’ collaboration, the crawler
can achieve the best overall freshness. The stability and
scalability of our algorithm are confirmed as well by our
experimental results.

All our experiments are based upon the real update trace
we collected and the synthetic access traces. In the near
future, we plan to incorporate more real traces. We will
also extend this work by building the inverted index and
measure the direct user experience by taking into account
the page ranking algorithms [1, 3, 4]. Finally, we would like
to develop a user-centric scheduling algorithm based on the
micro-economic paradigm (previous work in [8]).

7. REFERENCES

[1] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and
ISDN Systems, 30(1-7):107-117, 1998.

[2] J. Cho and H. Garcia-Molina. Synchronizing a database to
improve freshness. In Proceedings of SIGMOD ’00, pages
117-128, New York, NY, USA, 2000. ACM Press.

[3] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling
through URL ordering. Computer Networks and ISDN
Systems, 30(1-7):161-172, 1998.

[4] J. Cho and S. Roy. Impact of search engines on page
popularity. In Proc. of the 13th international World Wide
Web conference, 2004.

[5] A. Labrinidis and N. Roussopoulos. Update propagation
strategies for improving the quality of data on the web. In
Proceedings of VLDB ’01, pages 391-400, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[6] C. Olston and J. Widom. Best-effort cache synchronization
with source cooperation. In Proceedings of SIGMOD 02,
pages 73-84, New York, NY, USA, 2002. ACM Press.

[7] S. Pandey and C. Olston. User-centric web crawling. In
Proceedings of WWW 05, pages 401-411, New York, NY,
USA, 2005. ACM Press.

[8] H. Qu, J. Xu, and A. Labrinidis. Quality is in the eye of the
beholder: Towards user-centric web-databases (demo). In
Proceedings of SIGMOD’07, Bejing, China, 2007.

[9] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and
L. Ozsen. Optimal crawling strategies for web search
engines. In Proceedings of WWW ’02, pages 136-147, New
York, NY, USA, 2002. ACM Press.

