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Abstract—In this paper we introduce MINT (Materialized In-
Network Top-k) Views, a novel framework for optimizing the
execution of continuous monitoring queries in sensor networks.
A typical materialized view V maintains the complete results of a
query Q in order to minimize the cost of future query executions.
In a sensor network context, maintaining consistency between V
and the underlying and distributed base relation R is very expen-
sive in terms of communication. Thus, our approach focuses on
a subset V ′(⊆ V ) that unveils only the k highest-ranked answers
at the sink for some user defined parameter k. We additionally
provide an elaborate description of energy-conscious algorithms
for constructing, pruning and maintaining such recursively-
defined in-network views. Our trace-driven experimentation with
real datasets show that MINT offers significant energy reductions
compared to other predominant data acquisition models.

Index Terms—View Management, Top-K Query Processing,
In-Network Aggregation, Sensor Networks.

I. INTRODUCTION

The improvements in hardware design along with the wide
availability of economically viable embedded sensor systems
make it feasible today to interact and understand the physical
world at an extremely high fidelity [29], [17], [21]. The
applications of sensor networks range from environmental
monitoring (such as atmosphere and habitant monitoring [29],
[25]) to seismic and structural monitoring as well as industry
manufacturing [8], [21]. One of the key challenges in this new
era of sensor networks is the retrieval of sensor readings using
energy-aware algorithms.

In traditional data acquisition techniques [20], [30], [17],
the sensor data is transmitted to the sink (also denoted as
base station or querying node) immediately after it is acquired
from the physical world. Although in-network aggregation
significantly reduces the consumption of energy, the oblivious
transmission of all query results from all sensors at every
acquisition round is still the most energy demanding factor
in such environments [29], [36], [25], [38].

In this paper we model the retrieval of data on the pre-
sumption that the user is only interested in the k highest-
ranked answers rather than all of them. We propose MINT
Views, a novel framework to minimize messaging and thus
energy consumption in the execution of continuous monitoring
queries. Like other frameworks, we support single-relation
queries with the standard aggregate functions but our focus

is to optimize top-k queries over multi-tuple answers. Such
answers are very typical for queries with a GROUP-BY clause
or for non-aggregate queries.

A view V in relational databases is a virtual table that
contains the results from an arbitrary query Q which is
evaluated every time V is referred to. In order to avoid the
unnecessary re-execution of Q it is beneficial to store V on
secondary storage. This introduces the notion of a materialized
view (referred to as view hereafter). Views have a clear space
versus time tradeoff: A fully materialized view V requires more
space but also less time in evaluating Q, whereas a partially
materialized view V ′ requires less space but also more time
in evaluating Q. Materialized views can potentially conserve
energy as the application can avoid the expensive re-evaluation
of the in-network Q.

Materialized views have been studied in numerous seminal
papers including [3], [7], [6], [18]. Although a fully materi-
alized view V maintains the complete results of a query Q,
the distributed nature of a sensor network environment, along
with its distinct characteristics, imposes some fundamental
limitations to this model:

i. Firstly, maintaining consistency between V and the un-
derlying and distributed base relation R (defined by the
sensor readings) is very expensive in terms of energy.
Thus, we focus on maintaining a subset V ′(⊆ V ) that
unveils only the k highest-ranked answers for some user
defined k; and

ii. Secondly, V ′ is recursively defined using the results that
are stored at the lower-levels of the multi-hop routing tree
which interconnects the sink with the sensing devices.
Thus traditional view maintenance techniques are not
directly applicable.

To facilitate our description, consider the scenario in Fig-
ure 1, where we illustrate a deployment of 9 sensors in a
4-room building. We are interested in answering Query 1 at
the sink (rooted above s1). In particular we want to find the
average temperature of each room every one minute.
Query 1
SELECT roomno, AVERAGE(temp)
FROM sensors
GROUP BY roomno
EPOCH DURATION 1 min
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Fig. 1. The left figure illustrates a sensor network scenario that consists of
9 sensors {s1, ..., s9} deployed in four rooms {A, B, C, D}. The label next
to each sensor denotes the identifier of the node and the local temperature
reading. The figure on the right presents a recursively defined In-Network
View (V) to query 1. The label next to each node indicate the local averages
for each room.

With the predominant TAG-based [21], [20] in-network
aggregation approach each node forwards tuples of the form
(room,sum,count) to its parent every single time instance1. One
alternative approach is the notion of an In-Network View (V )
(Figure 1 on the right). V materializes the result of Q and
utilizes these results to speedup the next execution of Q. The
performance of V largely relies on the premise of temporal
coherence between consecutively acquired sensor readings as
local changes will affect the intermediate views until the sink.

To improve the performance penalty of In-Network Views,
we propose to prune the local views stored at each node and
focus on the k highest-ranked answers rather than all of them.
This turns out to be extremely useful because now sensors
can discard view updates that do not refer to k highest-ranked
answers. On the other hand, this also imposes an extremely
challenging problem: “a naive local greedy pruning strategy
may easily discard tuples that will be finally among the k
highest-ranked answers”.

To understand this problem, consider again Query 1 but
assume that we are only interested in the top-1 result.
Such a query should return room (C, 75F ). Assuming that
each node naively eliminates anything below its local top-
1 result will lead us to the erroneous answer (D, 76.5F ).
In particular, the leaves {s5, s6, s7, s8, s9} will send their
only tuple to their respective parent. The parents {s2, s3, s4}
will then aggregate the results of their children along with
their own result and forward this result to their own parent
(i.e., s1). In particular, s2 will send (C, 75F ), s3 the tuple
(D, 76.5F ) and s4 the tuple (B, 42F ). It is now easy to see
that if s1 aggregates the results of its children {s2, s3, s4}
along with its own result (B, 40F ), then this will yield
V wrong

0 ={(D, 76.5F ), (C, 75F ), (B, 41F )}, where room D is
the top-1 answer rather than room C.

Our MINT algorithm utilizes an intelligent upper bounding
algorithm and a local parameter k to construct a subset of V ,
denoted as the k-covered bound-set V ′, to be materialized. We
will show that any tuple outside V ′ can safely be eliminated
during the execution of a query because this tuple cannot be
among the k highest-ranked results.

1For clarity in Figure 1, we only depict the average (i.e., sum/count).

The key idea of the MINT pruning algorithm is to exploit
a set of |γ| descriptors (γ = {γ1, γ2, ...}) in order to bound
above the score of tuples that are not known at a given level
of the sensor network. The elements in γ are application
specific: these can either be known in advance, or these can
be defined prior to setting up the execution of a query. In our
discussion and experimentation, we will utilize the following
instances: γ1 =“Maximum possible temperature value” and
γ2 =“Number of sensors in each room”. For instance, the
temperature sensor on the Mica Weather Board [29] might
only record values between -40F to 250F and the barometric
pressure module can only measure pressure in the range
300mb to 1100mb. Thus, γ1 can be known in advance.
Additionally the acquisition and dissemination of γ2 can be
performed during initialization.

Our Contribution

In this paper we make the following contributions:

• We formulate the problem of constructing a hierarchy of
recursively defined top-k views. We solve this problem
by introducing MINT Views. We also present a state-
less, non-materialized version of MINT, coined INT (In-
Network Top-k) Views, that is appropriate for sensing
device with limited memory.

• We introduce the notion of a k-covered bound set V ′

which only maintains the tuples of V that lead to the
k highest ranked answers at the sink. We additionally
provide energy-conscious techniques to incrementally and
immediately update V ′.

• We experimentally validate the efficiency of our proposi-
tions, with an extensive experimental study that utilizes
real sensor readings from the UC-Berkeley study at
the Great Duck Island in Maine [29] and atmospheric
readings from the University of Washington [12].

The remainder of the paper is organized as follows: Sec-
tion II formalizes our system model and Section III overviews
the related research work. Section IV introduces the MINT
View Framework along with a description of its three phases:
construction, pruning and updating. Section V presents an
extensive experimental study and Section VI concludes our
paper.

II. SYSTEM MODEL AND TERMINOLOGY

In this section we will formalize our system model and
the basic terminology upon which we will describe our al-
gorithms. The main symbols and their respective definitions
are summarized in Table I. Let S denote a set of n sensing
devices S = {s1, s2, ..., sn}. Assume that si (i ≤ n) is
able to acquire m physical attributes A = {a1, a2, ..., am}
from its environment at every discrete time instance t. This
generates tuples of the form {t, a1, a2, ..., am} at each sensor.
At any given time instance, the aforementioned scenario yields
an n × m matrix of readings R:=(sij)n×m. This matrix is
horizontally fragmented across the n sensing devices (i.e., row
i contains the readings of sensor si and R = ∪i∈nRi.
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TABLE I
Definition of Symbols

Symbol Definition
Q A Query
k Number of requested results
si Sensor number i (s0 denotes the sink).
n Number of Sensors {s1, s2, ..., sn}
m Number of Attributes at each sensors {a1, a2, ..., am}
Vi Local View (the results to Q) at sensor si (i ≤ n)
V ′

i Pruned View at si (unveils the top-k answers at s1)

In order to disseminate the query to the n sensors, we utilize
a typical tree-based query dissemination mechanism [16],
where the querying node sends the query Q to one sensor
s1 which recursively forwards the given query to all of
its neighbors until all n sensors have received the given
query. Without loss of generality, we adopt the child anchor
mechanism proposed in [38], where a sensor si confirms to
exactly one of its neighbors sj that it wants to be its child.
This provides sj with a list of children so that sj can know
when all the answers from its children have arrived. We also
assume a TAG [21] topology maintenance policy that adapts
to a shifting network by having each node to monitor the link
quality of its neighbors and to switch parents if the quality
drops below a given threshold.

III. BACKGROUND AND RELATED WORK

The main contribution of this paper is the integration of
the seemingly unrelated areas of Top-k Query Processing and
View Management in order to provide a novel framework for
the continuous acquisition of query answers from a sensor
network.
Top-k Query Processing has been studied in a variety
of contexts including middleware systems [13], [14], web
accessible databases [4], [23], stream processors [2], peer-
to-peer systems [1] and other distributed systems [5], [38],
[37]. For instance the query ”Find the k=5 rooms with the
highest average temperature,” returns a subset of the complete
answer set in order to minimize some cost metric that is
associated with the retrieval of the complete answer set. This
cost is usually measured in terms of disk accesses or network
transmissions, depending on where the data physically resides.

It has been shown in numerous studies [13], [5], [4], [38],
that top-k query processing is meaningful only if the predicate
k refers to a small subset of the complete answer set (usually
up-to 5%). For larger values of k, the query optimizer can
choose to retrieve the complete answer set.

The wave of centralized top-k query processing algorithms
was succeeded in recent literature by their distributed counter-
parts, namely the TPUT [5] algorithm, the TJA [38] algorithm
and the TPAT [32] algorithm. The distributed top-k query pro-
cessing problem with probabilistic guarantees rather than exact
answers was studied in KLEE [24]. In all these scenarios, the
queries are sporadic while we focus on continuous scenarios
where a query is repeatedly evaluated over a specific period
of time.

A method for continually providing approximate answers in
a hierarchical sensor network scenario by exploiting temporal
coherency was addressed in TINA [26], [27]. The basic idea
behind TINA is to send a reading from a sensor only if
the reading differs from the last recorded reading by more
than a stated tolerance ε. In the experimental evaluation of
Section V, we will evaluate the performance of our proposed
algorithms against the version of TINA that always returns
the correct answer (i.e., ε = 0). The problem of continually
providing approximate top-k answers in a client-server setting
was studied in [2]. The problem is tackled by installing
arithmetic constraints at each node which define the current
Top-k scores at any point. This work was later extended
to a hierarchical sensor network environment in [10]. In all
cases the results are approximate and continuous over a single
attribute, thus operate over individual attributes (columns),
while our approach is exact and operates horizontally covering
all tuple attributes.
View Management has been another area of great contri-
butions over the last decades [3], [7], [6], [18]. Material-
ized Views, in particular, have been extremely important in
OLAP and Data Warehousing, where users are required to
get quick answers to their aggregate queries over extremely
large datasets. Most of the proposed solutions assume powerful
and complex centralized or distributed DBMSes. Materialized
views have also been extremely important in mobile databases
because they provided the means to support disconnected
operations [34], [33]. Similarly to mobile databases, we focus
on wireless (sensor) devices with limited energy, CPU and
memory resources. Additionally, our work is fundamentally
different from Temporal View Management [31], [22], as our
queries are not historic.

The notion of views in the context of sensor networks, has
appeared in two very recent works. The first one proposes a
new abstraction, coined Model-based Views which provides
users with a unified view of data that hides away the irreg-
ularities of sensor data [11]. These views are implemented
outside the sensor network. Thus, their scope and objective is
supplementary to our approach, in which we utilize in-network
views to optimize the acquisition of data from sensing devices.
The second work [35] is similar to our approach but it uses
in-network views to support ad-hoc queries in a data-centric
environment as opposed to continuous and top-k queries in
our approach.

The problem of materialized views which are generated by
top-k queries in a centralized DBMS scenario was recently
addressed in [9]. In particular, the authors study the problem
of answering a top-k query from a set of N materialized top-k
answers. These answers refer to different top-k queries which
are neither distributed nor organized in a hierarchy, as this is
the case in our setting. Finally in [19], the authors propose to
exploit fully materialized views in sensor networks in order
to speedup the execution of multiple queries. However these
views are complete, rather than top-k, therefore their setting
is closer to the TINA framework rather than the solutions
proposed in this paper.
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IV. THE MINT VIEW FRAMEWORK

In this section we describe the underlying algorithms of
the MINT View Framework. These also support, INT Views,
MINT’s stateless version that is appropriate for sensing device
with limited memory. For ease of exposition, we present our
framework in the following three conceptual phases:

A. The Creation Phase, executed during the first acquisition
of readings from the distributed sensors. This phase
results in n distributed views Vi (i ≤ n);

B. The Pruning Phase, during which each sensor si locally
prunes Vi and generates V ′

i (⊆ Vi). V ′
i contains only the

tuples that might be located among the final top-k results;
and

C. The Update Phase, executed once per epoch, during
which si updates its parent node with V ′

i .

The above conceptual phases are executed distributively using
the tree-based query routing protocol established by the oper-
ating system layer [16] after the query has been disseminated
to the n sensors.

A. MINT Creation Phase

The first phase of the algorithm is a recursive execution
of Algorithm 1 at all sensors in a given network. Recall
that a sensor generates an (m + 1)-tuple of the form v =
{t, a1, a2, ..., am} at each timestamp t. A sensor starts out
by performing the selection σQ that retains the tuples that
satisfy the selection criterion (e.g., temperature>60). Note that
a sensor can acquire concurrently several readings, all of which
might not be of interest to a particular query. For example,
the MICA Weather board which was utilized in the Great
Duck Island study [29] supplements the MICA motes with
14 physical parameters. Thus, we only project the attributes
related to Q prior to storing the result in the in-memory buffer
Vi (line 3). The next step of the algorithm merges the tuples
that arrive from the children of si into Vi (line 4-13). This
yields an in-network view similar to Figure 1 (right).

If the various values at each node of the depicted tree do not
change across consecutive timestamps, then V can efficiently
provide the answer to the subsequent re-execution of Q. On
the contrary, whenever we have a deviation, or a change, in
a parameter at si, this change has to cascade all the way up
to the sink. A change at all sensors has a worst-case message
complexity of O(n) for every single timestamp of the epoch
duration, thus we seek to optimize this process through the
proposition of the pruning phase.

B. MINT Pruning Phase

Algorithm 1 constructs a hierarchy of views, where ancestor
nodes in the routing hierarchy maintain a superset view of
their descendants. Before we explain the details of the pruning
phase which minimizes messaging between sensors consider
the following query:

Q2="SELECT TOP k room,avg(temp) FROM
SENSORS GROUP BY room EPOCH DURATION 1min"

Algorithm 1 : Construct MINT/INT View
Input: A distributed sensor si (∀si ∈ S) that generates m attributes
{a1, a2, ..., am}, a query Q, an empty buffer Vi = {}
Output: A set of n distributed views V = {V1, V2, ..., Vn}.

1: procedure CONSTRUCT MINT VIEW(si, Q)
2: // Execute Q and store the answer in Vi (takes O(1) time).
3: insert(πQ(σQ(current reading())), Vi);
4: for j = 1 to |children(si)| do
5: c = child(si, j); // c is the jth child of node si

6: // w is a list of tuples returned to query Q.
7: w = Construct Mint V iew(c, Q);
8: for l = 1 to |w| do
9: // wl is the lth entry of table w.

10: // Inserts tuple wl into local table Vi in O(1) time.
11: insert(wl, Vi);
12: end for
13: end for
14: send(Vi, parent(si));
15: end procedure

room

vub

2

5

6

11

12

15
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800100

K-Covered

200 400 600

(V’i)
Bound-Set

room countsum sum'

lbvk

Fig. 2. The left table illustrates the Vi of a given node during the execution
of query Q2. The right figure illustrates the intuition of the pruning algorithm.
In particular, we plot the (lb,ub) ranges for the various returned tuples at some
arbitrary node. We then generate a k-covered bound set V ′

i using Algorithm
2. We only propagate a tuple u to the parent of si, if u ∈ V ′

i .

which returns the k rooms with the highest average tempera-
ture. If si could locally define the k-highest answers to Q2 (at
s0), then si could use this information to prune its local view
Vi. However, this is a recursively defined problem that can
only be solved once all tuples percolate up to the sink s0. In
order to avoid this, we utilize a set of descriptors γ which are
utilized to bound above the attributes in V0 and subsequently
enable a powerful pruning framework.

Consider the example of Figure 2 (left), where we illus-
trate the Vi for a given sensor. Prior to the execution of
Q2 we established that γ1=“Maximum possible temperature
value”=120 and γ2=“Number of sensors in each room”=5.
The figure indicates the sum and count for several room
numbers. By observing column 3 (i.e., count), it becomes
evident that the sum for the rooms {2, 5, 11, 12, 15} is a partial
value of the sum returned at the sink (since γ2 = 5).

On the contrary, the tuple of room 6 is already in its final
form (i.e., 500). In this example the sum of each row is
bounded above using the following formula sum′ = sum +
(γ2−count)∗γ1 and bounded below using the actual attribute
sum. This creates six lower-bound (lb) and upper-bound (ub)
pairs which precisely show the range of possible values for
the sum attribute at the sink.

Having such knowledge locally, it can now help us to prune
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(lb, ub) pairs which will not be in the final top-k result. The
intuition behind our algorithm is to identify the kth highest
lower bound (i.e., vlb

k ) and then eliminate all the tuples that
have an upper bound (i.e., vub) below vlb

k . Figure 2 (right),
visually depicts this idea. We will prove that by applying
locally such an operation yields at the end the correct top-
k tuples at the sink. In order to achieve this we define the
notion of a k-Covered Bound-Set as following:

Definition 1: k-Covered Bound-Set (V ′
i ) is the subset of Vi

that satisfies the following condition: If there is some v /∈ V ′
i ,

then vub < vlb
k , where vlb

k is the kth highest lower bound2.

Algorithm 2 illustrates the pruning of Vi at some arbitrary
node si and the construction of the candidate set V ′

i . This
algorithm applies to both the MINT View and the INT
View frameworks. The first step of the algorithm (lines 2-6)
identifies the pruning threshold vlb

k . This threshold allows the
algorithm to prune-away tuples that will not be in the result.

Although Vi physically resides in main memory, we want
to minimize the running time of our algorithms in order
to accommodate the scarce energy budget. In particular, we
utilize similarly to the well known selection algorithm, a k-
element buffer kBuff in order to locate vlb

k in linear time
(i.e., O(k) per tuple). This procedure takes place inside the
kHighest function which inserts vlb

j into kBuff , if the
former is larger than the minimum item in kBuff .

The next step of the algorithm is to locate the tuples that
have an upper bound vub below the threshold vlb

k . By visually
examining Figure 2, it is easy to see that an efficient way to
do so is to create an ordered list of upper bounds and then
perform a linear scan in descending order until a tuple vub

j

(<vlb
k ) is located. Any upper bound below or equal to vub

j can
be safely eliminated.

The ordered list can be constructed in parallel with the
location of the pruning threshold vlb

k . In particular, while
scanning for vlb

k , we insert each upper bound vub
j into a new

table sortedUBs (line 5). This takes only O(1) per tuple as
we utilize an idea similar to bucketsort. However, if memory
is limited then this optimization can be avoided without any
consequence on the correctness of our approach.

In lines 8-12, we finally perform a linear scan of the
sortedUBs table in descending order and stop when we find a
tuple vub

j that is below vlb
k . The correctness of our algorithm

is established by Theorem 1.

Theorem 1. The k-Covered Bound-Set V ′
i correctly identifies

the k-highest ranked answers to Q.
Proof (by contradiction): Let v denote an arbitrary tuple
which is not included in the k-Covered Bound-Set V ′

i . We
have to show that v will have a smaller value than any of the
k highest-ranked tuples w (i.e., v < w). Assume that v ≥ w. It
always holds that vub ≥ v which consequently yields vub ≥ w
(by using the assumption). However if vub ≥ w, then v would
have been included in V ′

i , by definition 1, a contradiction �
2Due to contraposition, the condition could also be expressed using the

implication if vub ≥ vlb
k , then v ∈ V ′

i .

Algorithm 2 : Prune MINT/INT View
Input: A distributed sensor si (∀si ∈ S), a buffer Vi that contains
the local view, a set of descriptors γ = {γ1, γ2, ...}, a query result
parameter k.
Output: A locally pruned view V ′

i , such that V ′
0 can be utilized to

answer a top-k query Q.

1: procedure PRUNE MINT VIEW(Vi)
2: for j = 1 to |Vi| do // Identify the pruning threshold vlb

k .
3: vj = Vi[j] // vj=(vlb

j , vub
j ) pair.

4: kHighest(vlb
j ,kBuff)

5: bucketinsert(vub
j ,sortedUBs)

6: end for
7: vlb

k = min(kBuff);
8: for j = 1 to |sortedUBs| do
9: vub

j =sortedUBs[j]
10: If (vub

j < vlb
k ) then break; end if

11: add to candidates(vj , V
′

i );
12: end for
13: end procedure

C. MINT Update Phase

In the previous step, we transformed Vi into a pruned
subset V ′

i . We shall now describe how to incrementally and
recursively update V ′

i . Let T ′ denote the V ′
i taken at the last

execution of Q. The below description only applies to the
MINT View framework, for which T ′ is available. The update
phase of the INT View framework is simply a re-execution of
Algorithm 1 which re-constructs V ′

i from the beginning.
Since our objective is to identify the correct results at the

sink, we utilize an immediate view maintenance mechanism:
“As soon as a new tuple is generated at si, this update is
reflected in V ′

i ”. In order to minimize communication, si only
re-transmits V ′

i to its parent, if V ′
i has changed (temporal

coherence filter as in TINA). Additionally, in order to min-
imize energy consumption even further, we seek to minimize
processing consumption as well. Therefore, our objective is to
construct V ′

i by avoiding the re-executing of Algorithm 2.
Algorithm 3 presents the MINT Update Algorithm. In

particular, line 3 shows that any tuple update x with an upper
bound (denoted as xub) less than the vlb

k can be ignored. In
the opposite case, we add the tuple x to the set of candidates
V ′

i (line 4). Now the remaining question is whether vlb
k has

changed by this addition of x. If xlb ≤ vlb
k is true then vlb

k has
not changed. Consequently, si only propagates the update x
towards its parent rather than a complete view update. In the
implementation we buffer these updates until all children send
their updates to their parents. If on the contrary vlb

k < xlb, then
vlb

k might have changed. As a result si has to reconstruct V ′
i

using Algorithm 2 and transmit the complete V ′
i to its parent.

This re-construction procedure is necessary to guarantee the
correctness of our framework. Note that the reconstruction
only happens for |V ′

i | elements rather than all the elements
(i.e., |Vi|), had we executed Algorithm 2 for the first time.

D. Discussion

MINT vs. INT: The differences of the two algorithms are
summarized as following: i) MINT exploits a temporal co-
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Algorithm 3 : Update MINT View
Input: A buffer T ′ that contains the V ′

i of the previous time instance,
the vlb

k of T ′, a tuple update x from some child.
Output: A locally pruned view V ′

i , such that V ′
0 can be utilized to

answer a top-k query Q.

1: procedure UPDATE MINT VIEW(T ′, vlb
k , x)

2: V ′
i = T ′;

3: if (vlb
k ≤ xub) then

4: add to candidates(x, V ′
i );

5: if (xlb ≤ vlb
k ) then

6: send(x, parent(si)); // Single tuple x update
7: else // xlb > vlb

k

8: Prune MINT View(V ′
i ); // Using Algorithm 2

9: send(V ′
i , parent(si)); // Complete V ′

i update
10: end if
11: end if
12: T ′ = V ′

i ;
13: end procedure

herence in order to suppress view updates that do not change
between consecutive time instances, while INT has to re-send
these updates, because it is stateless. ii) In MINT, we only
have to update V ′

i using Algorithm 3 (in O(|V ′
i |) time), while

in INT we have to construct it every time from the beginning,
in O(|Vi|) time, using Algorithm 2. iii) INT has the advantage
of not requiring any extra storage thus is more appropriate for
sensors for which the storage is at premium.

Deferred View Updates: In order to minimize communication
even more in the MINT/INT Views, we could have opted for
a deferred view maintenance mechanism, rather than a im-
mediate one. A deferred mechanism could propagate changes
periodically, after a certain number updates or even randomly.
In all cases this would produce probabilistic answers at the
sink, as the sink would not have at its disposal the most up-to-
date view. Although deferred view maintenance mechanisms
are extremely interesting in the context of sensor networks, as
these allow us to trade accuracy versus energy consumption,
in this paper we only focus on exact answers.

In-Memory Buffering: The materialized views and temporary
results of all algorithms, can either reside in an SRAM-based
buffer or a Flash-based buffer. For instance, a typical MICA
mote with a 2KB SRAM might need to exploit the 512KB
on-chip flash memory, while Intel’s i-mote might easily store
these results in the 64KB SRAM. There is a growing trend
for more available local storage in sensor devices [36] and
therefore local buffering of results is not a threat to our model.

Supported Query Types: We support single-relation queries
with the standard aggregate functions (i.e., SUM, MIN, MAX
and AVERAGE). In contrast with other frameworks, we opti-
mize queries with multi-tuple answers. Such answers could
be generated by a GROUP-BY clause, or by a non-aggregate
query. Note that for single-tuple answers, such as those gen-
erated by an aggregate query without a group-by clause, there
is no notion of a top-k result.

V. EXPERIMENTAL EVALUATION

In this section we present an extensive experimental com-
parison of INT and MINT Views against two other popular
query processing frameworks namely, TAG and TINA.

A. Experimental Methodology

We adopt a trace-driven experimental methodology in which
a real dataset from n sensors is fed into our custom-built C++
simulator. Our methodology is as following:
Algorithms: We implemented i) TAG, which relies on in-
network aggregation to minimize communication; ii) TINA
(exact), which deploys in addition to in-network aggregation
suppression of consecutive values if these do not change; iii)
INT and MINT Views, as these were described in section IV.
As a baseline for comparison we utilize the results from the
TAG approach.
Communication Protocol: Our communication protocol is
structured in the following way: each message is associated
with a 5 Byte TinyOS header. This is augmented with an
additional 6B application layer header that includes: (i) the
sensor identifier (1B), (ii) the message size (4B) and the
depth of a cell from the querying node (1B). In each message
we allocate 2B for environmental readings (e.g., temperature,
humidity, etc.), 4B for aggregate values (max, min and sum)
and 8B for timestamps.
Sensing Device: We use the energy model of Crossbow’s
new generation TelosB [8] sensor device to validate our ideas.
TelosB is a ultra-low power wireless sensor equipped with a
8 MHz MSP430 core, 1MB of external flash storage, and a
250Kbps RF Transceiver that consumes 23mA when the radio
is on. Our performance measure is Energy, in Joules, that is
required at each discrete time instance to resolve the query.
The energy formula is as following: Energy(Joules) =
V olts × Amperes × Seconds. For instance the energy to
transmit 30 bytes at 1.8V is : 1.8V × 23 ∗ 10−3A × 30 ∗
8bits/250kbps = 39µJ .
Datasets: We utilize two datasets: i) Washington State Cli-
mate (AtmoMon): This is a real dataset of atmospheric data
collected at 32 sensors in the Washington and Oregon states,
by the Department of Atmospheric Sciences at the University
of Washington [12]. More specifically, each of the 32 sensors
maintains the average temperature and wind-speed on an
hourly basis for 208 days between June 2003 and June 2004
(i.e., 4990 time moments). ii) Great Duck Island (GDI 2002):
This is a real dataset from the habitat monitoring project
deployed in 2002 on the Great Duck Island which is 15km
off the coast of Maine [29], USA. We use readings from the
14 sensors that had the largest amount of local readings (out of
the initial 43 sensors). The GDI dataset includes readings such
as: light, temperature, thermopile, thermistor, humidity and
voltage. In both datasets we randomly and uniformly divide the
sensors in 16 and 4 areas respectively. Our query is “SELECT
TOP-k area, AVG(temp) FROM sensors GROUP BY area”,
where k is configured as the 5% of the complete answer set.
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Fig. 3. Energy Consumption for the TAG, TINA, INT View and MINT View frameworks using the TelosB sensor energy model.

B. Energy Consumption

In the first experimental series we evaluate the energy
consumption of the four algorithms. Due to the exploitation of
temporal coherence in the TINA and MINT Views, the energy
value between consecutive time instances can greatly vary.
To facilitate our presentation, we apply a spline interpolation
smoothing between consecutive data points which accurately
approximates the TINA and MINT curves.

In Figure 3 (left), we plot the results using the AtmoMon
dataset. Since we utilize TAG as the baseline of comparison,
it always has a value of 100%. The TAG line accounts for
approximately 5.3mJ of energy for all 32 nodes of the network.
Recall that in TAG a sensor always transmits all aggregated
tuples to the sink. Although TINA (exact) still returns all
answers to the sink, it takes the energy consumption down to
4.4mJ with a standard deviation of 0.66mJ. This validates that
by exploiting temporal coherence can be beneficial in most
cases. The INT Views approach on the other hand, performs
in-network pruning of the results which reduces the energy
consumption to 2.26mJ (i.e., ≈ 58% less than TAG).

Finally MINT Views exploit temporal coherence in ad-
dition to top-k pruning and only consume an average of
1.69mJ±0.23mJ which is equivalent to a 68% energy reduc-
tion from TAG, 38% energy reduction from TINA and 10%
from INT. The reason why the TINA and MINT Views follow
a similar pattern is because in both curves the energy reduction
is dominated by the savings that are due to the temporal
coherence between consecutive time points.

By repeating the same experiment on the GDI’02 dataset,
we observe in Figure 3 (right), that MINT continuous to
maintain a competitive advantage over TAG and TINA. In
particular, we observe that MINT consumes 30% less energy
than TAG (i.e. 1.96±0.19mJ versus 2.83mJ). We noticed that
smaller-sized networks are not beneficial for INT and MINT
Views, because shallow query routing trees can not facilitate
top-k pruning. This is also the case for the GDI’02 dataset

which consists of only of 14 sensors. We also observe in this
illustration the surges (deviations) in the INT View Mechanism
(e.g., at time instance 780). This is an indication that the top-k
answer has changed at the particular timestamp and that this
has brought some increase in energy consumption, until the
updates propagate to the sink. Similar surges also exist in the
MINT curve but these can not be observed due to the temporal
coherence fluctuation.

C. Pruning Magnitude

We next study the pruning magnitude of the k-Covered
Bound-Set V ′

i . In Figure 4 we plot with a white box the
average number of tuples at each level of the topology (for
all 4990 time instances). We also plot with a dashed box the
aggregate number of tuples eliminated by Algorithm 2.

We observe that the closer we move towards the sink, the
pruning power of our framework increases exponentially. This
is attributed to the fact that the cardinality of Vi can increase in
the worst case exponentially as well (i.e., each sensor reports
a different room number). In particular, we observe that the
pruning at level five to one ranges from 0% (where only leaf
nodes exist), to 39% in level two and 77% in level one. It is
important to highlight the fact that such a pruning presents a
reduction of more than 20,000 tuples at level one alone.

A final remark is that these results apply to both MINT
and INT, as these two algorithms only differ in how V ′

i is
maintained and not on the final content of the in-network view.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces and formalizes the problem of
exploiting materialized in-network views in order to optimize
the execution of continuous queries in sensor networks.
We formulate the problem of constructing a hierarchy of
recursively defined top-k views. We solve this problem
by introducing MINT Views. We also present a stateless,
non-materialized version of MINT, coined INT (In-Network
Top-k) Views that is appropriate for sensing device with
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limited memory. Our trace-driven experimentation with real
datasets from UC-Berkeley and the University of Washington
show that MINT offers tremendous energy reductions. In the
future we plan to implement and validate our ideas using a
nesC prototype that is currently under development. We also
aim to provide an efficient solution to approximate top-k
views which could offer even more energy savings when
exact answers are not needed.
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