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Abstract

Typical web-database systems receive read-only queries,
that generate dynamic web pages as a response, and write-
only updates, that keep information up-to-date. Users ex-
pect short response times and low staleness. However, it
may be extremely hard to apply all updates on time, i.e.,
keep zero staleness, and also get fast response times, espe-
cially in periods of bursty traffic. In this paper, we present
the concept of Quality Contracts (QCs) which combines the
two incomparable performance metrics: response time or
Quality of Service (QoS), and staleness or Quality of Data
(QoD). QCs allows individual users to express their pref-
erences for the expected QoS and QoD of their queries
by assigning “profit” values. To maximize the total profit
from submitted QCs, we propose an adaptive algorithm,
called QUTS. QUTS addresses the problem of prioritiz-
ing the scheduling of updates over queries using a two-
level scheduling scheme that dynamically allocates CPU
resources to updates and queries according to user pref-
erences. We present the results of an extensive experimental
study using real data (taken from a stock information web
site), where we show that QUTS performs better than base-
line algorithms under the entire spectrum of QCs; QUTS
also adapts fast to changing workloads.

1 Introduction

Living without the Web is unimaginable for most of the
developed world today. From checking the scores of the
World Cup soccer games, to automatically aggregating &
monitoring blogs on a specific topic, to accessing personal-
ized weather forecasts, to checking stock quotes and evalu-
ating investment options, theWeb has become an indispens-
able information portal.

∗Funded in part by NSF ITR Award ANI-0325353.

All such data-intensive web applications have a few
common characteristics. First of all, they all exhibit rela-
tively high volumes of user requests, especially during pe-
riods of peak load or flash crowds, for example, during the
World Cup Final game. Secondly, user requests are typi-
cally read-only queries, i.e., users do not perform any up-
dates, for example, all updates to stock prices come only
from “official” sources (such as NYSE) and not from user-
submitted reports. Thirdly, there is also increased possibil-
ity for high volumes of updates, for example, a tsunami of
stock trades because of breaking news regarding a certain
company. Finally, updates arrive in the background and are
applied to the back-end database (which is driving the web
application), keeping the database as fresh as possible.

In all of these applications, end users want short re-
sponse times (i.e. have their queries answered as fast as
possible) and low staleness (i.e., have the updates also be
applied as fast as possible). However, it may be extremely
hard to satisfy both needs, especially in periods of high load.
In these cases, the order by which queries and updates are
executed is expected to play a crucial role in the resulting
query response times and staleness.

To illustrate the impact of scheduling on response time
and staleness and the ensuing trade-off, we ran a simple
experiment with three naive scheduling policies. We con-
sidered (a) the non-preemptive First In First Out (FIFO)
on the combined query and update queue, where queries
and updates are executed according to their arrival times;
(b) the FIFO Update High (FIFO-UH), which consists of a
dual priority queue (one for updates and one for queries)
where the FIFO update queue preempts the FIFO query
queue; and, (c) the FIFO Query High (FIFO-QH), which
consists of a dual priority queue (one for updates and one for
queries) where queries preempt updates. All three schedul-
ing policies used the 2PL-HP (Two Phase Locking-High
Priority) concurrency control scheme [2]. The plain FIFO
could be seen as the most “fair” policy (to both queries and
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Figure 1. Impact of Scheduling on the Trade-off between
Response Time and Staleness.

updates), which, however does not provide any guarantees.
The FIFO-UH guarantees zero staleness, since all the up-
dates are applied as soon as possible, and there will not be
any pending updates when queries get to execute. Finally,
the FIFO-QH is expected to give the best response time for
queries among the three policies, since queries always get
top priority, running ahead of updates.
Figure 1 shows the average staleness and average re-

sponse time from running a simulation experiment using a
real real stock information web server trace. We measured
average staleness as the number of unapplied updates, #uu
(see Section 2.1 for more details on staleness metrics) and
averaged over all queries; the trace consists of about 80,000
user queries with about 490,000 updates arriving during the
same time. In Figure 1, the impact of the three scheduling
policies on performance is clear: FIFO-UH has the low-
est staleness, but the worst response time; FIFO-QH has
the lowest response time, but the worst staleness; the plain
FIFO policy is somewhere in between the two extremes. It
is not clear which of these policies is better, since all three
points are dominating points (i.e., for each point, no other
point exists with smaller values on both dimensions).

Combining performance metrics In general, if we have
two incompatible performance metrics, such as response
time and staleness, there are two ways to combine them:

(a) Introduce a constraint on one metric (typically fresh-
ness) and optimize on the other metric (typically re-
sponse time), such as [12, 9]. However, this approach
is somewhat limited, as it is “hard-wiring” the metric
to optimize and therefore cannot change it according to
users’ preferences.

(b) Combine them into a single metric and optimize on the
aggregate metric, such as [1, 14], where the individual
metrics are combined using a set of weights that differ-
entiate multiple metrics. However, this approach does
not consider the different preferences of individual users
over the importance of response time versus staleness.

Quality Contracts We believe that user preferences on
the trade-off between Quality of Service (QoS) and Quality
of Data (QoD) are going to be different among users. For
example, if it is not possible to have fresh data fast, some
users may prefer getting fresh data slightly late (i.e., pre-
fer high QoD), whereas others may prefer getting answers
very fast, even if they correspond to slightly stale data (i.e.,
high prefer QoS). As such, we advocate for a way to extend
prior approaches for aggregating QoS and QoD in order to
incorporate individual user preferences.
Towards this, we propose a unifying framework for spec-

ifying QoS and QoD requirements, which we call Quality
Contracts. Quality Contracts, or QCs for short, are based
on the microeconomic paradigm [15, 5], which effectively
merge all dimensions of Quality into a single, unifying con-
cept. The QC framework allows users to specify their pref-
erences among different quality metrics by assigning the
amount of “worth” for the corresponding performance ex-
pectation of each query. In this way, users can specify
the relative importance of QoS over QoD and also spec-
ify the relative importance among their different queries.
The system, on the other hand, can infer the relative impor-
tance of different users’ queries and allocate its resources to
maximize the worth to the user, or, the “profit” to the sys-
tem. With QCs, we can now cast the problem of scheduling
queries and updates according to user preferences into the
problem of optimizing the total profit for the system.

Scheduling under Quality Contracts Given the QC
framework, we propose a novel two-level scheduling
(or meta-scheduling) scheme for scheduling updates and
queries. The basic idea behind the proposed scheme, QUTS
(short for Query-Update Time-Sharing), is in deciding on
the allocation of resources between queries and updates us-
ing the expected “profit gain” of the system. In the presence
of QCs, QUTS dynamically allocates CPU to updates and
queries at the high level, while allowing for maximum flexi-
bility in prioritizing the queries and updates at the low level.

Contributions Our contributions are as follows:

1. We introduce Quality Contracts (QCs), a unifying
framework for expressing user preferences for QoS
and QoD,

2. We advocate that a single global scheduling policy is
not feasible when both QoS and QoD preferences have
to be considered, and propose using a two-level sched-
uler instead,

3. We present QUTS, a two-level scheduler that address
the problem of prioritizing the scheduling of updates
(crucial to QoD) over queries (crucial to both QoS and
QoD) in the presence of user-specified QCs.

In order to evaluate QUTS, we perform an extensive ex-
perimental study, using real data (query traces from a pop-
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ular stock market information server and the corresponding
update trace fromNYSE).We compareQUTS to three base-
line algorithms (which it outperforms), evaluate its adapt-
ability in the presence of rapidly changing workloads (very
good), and examine the sensitivity of the algorithm with re-
gards to its two parameters (very little).

Structure of paper The paper is organized as follows.
In the next section, we describe the system model and in-
troduce the Quality Contracts framework. Section 3 de-
scribes the baseline algorithms. We introduce our two-level
scheduling algorithm in Section 4 and present the results
of our experimental study in Section 5. Finally, we briefly
present related work in Section 6 and conclude in Section 7.

2 System Model

We believe that a main-memory database system is the
most suitable type for the applications that we are inter-
ested in this work, i.e., highly scalable information por-
tals with read-only queries and write-only updates. The
memory-residency of such systems eliminates the problems
with complex buffer management and I/O scheduling that
are crucial on traditional, disk-based database systems. In-
stead, in our system, CPU scheduling is the primary means
of improving performance. Beyond CPU scheduling, con-
currency control is also expected to play an important role
in determining performance, as is the case with traditional
database systems, however, developing new concurrency
control schemes for such a system is outside the scope of
this paper. In the next paragraphs, we describe the other
assumptions and details of our system.

Data Model Our database D consists of Nd data items
which are hash-based accessed. Data items are updated ape-
riodically by external sources, responsible for maintaining
the master copy and the whole history of updates on each
data item. For example, in the stock information server
case, our system corresponds to an information portal, with
the entire history of updates stored at the NYSE servers.
Furthermore, we assume that data items are independent of
each other and database D only needs to keep the most re-
cent update (i.e., data items are independently refreshed).

2.1 Transaction Model

There are two kinds of transactions in our system: read-
only user query transactions (or simply queries) and write-
only update transactions (or simply updates).

Queries: Queries in our system can be selection, projec-
tion, join, or aggregation queries on multiple data items.
Each query has user preferences attached to it in the form
of a quality contract, which we describe in Section 2.2.

Symbol Description

rtmax maximum response time
uumax maximum number of unapplied updates
qosmax maximum QoS profit
qodmax maximum QoD profit

QOSmax
P

qosmax, ∀ queries
QODmax

P
qodmax, ∀ queries

Qmax QOSmax + QODmax

QOSmax% QOSmax / Qmax

QODmax% QODmax / Qmax

QOS total gained QoS profit for all queries
QOD total gained QoD profit for all queries
Q QOS + QOD

Table 1. Symbol Table

Updates: Updates in our system are assumed to be
“blind”, since the update stream is coming directly from ex-
ternal sources. Each update refreshes one data item. Users
are only interested in the most recent value, thus, we do not
need to process all updates. The arrival of a new update au-
tomatically invalidates any pending update on the same data
item. This is done by maintaining an update register table
where each entry has hash-based access on the data item and
an update identifier. Invalidated updates are simply dropped
from the system without violating data consistency.

Staleness Metrics: Data will easily get stale if updates
are not applied on time. In general, staleness can be mea-
sured by the number of unapplied updates (#uu), as well as
the time differential (td) or value distance (vd) between the
current and the most up-to-date data items. Although both
#uu and td can be used in our system, we believe #uu is
more appropriate for systems that push all updates to repli-
cas as soon as the main replica changes.

Concurrency Control: With the assumption of read-only
queries and blind updates, most canonical concurrency
problems [16] disappear. For example, the lost-update
problem, which usually happens for two incremental up-
dates, will not appear with blind updates. However, if a
query needs to read a data item repeatedly, we must guaran-
tee that the data item is consistent (unchanged) during the
query’s execution.
In this paper, we use Two Phase Locking - High Prior-

ity (2PL-HP) [2] concurrency control. With 2PL-HP, when
there is a read-write conflict, the lower priority transaction
will restart and release the lock to the higher priority trans-
action. On the other hand, for a write-write conflict, the
older update will be dropped from the system, since only
the most up-to-date update is needed.

2.2 Quality Contracts (QC)

We propose Quality Contracts (QCs) as a unifying
framework for specifying QoS and QoD preferences. In the
general case of Quality Contracts, users specify a number
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Figure 2. Quality Contracts Example - Step Function
(qosmax = $1, rtmax = 50ms, qodmax = $2, uumax = 1)

of non-increasing functions over the QoS/QoD metrics of
interest, along with the amount of “worth” to them, for the
query to have a certain QoS or QoD when it finishes. In this
way, users can specify the relative importance of QoS over
QoD as well as the relative importance among their differ-
ent queries. Although QCs can be defined with any non-
increasing functions, we look into two types in this work:
(a) step functions and (b) linear functions.
Figure 2 has an example of QCs with step functions

(or step QCs for short), with only two functions specified:
one for QoS, using response time, and one for QoD, using
staleness (i.e., the number of unapplied updates). We can
uniquely identify such QCs using four parameters:

• qosmax, is the maximum QoS profit that the server
can possibly get from executing this query,

• rtmax, is the maximum response time (i.e., the rela-
tive deadline) that the query can have for the server to
get any (QoS) profit from executing this query,

• qodmax, is the maximum QoD profit that the server
can possibly get from executing this query,

• uumax, is the maximum number of unapplied up-
dates that the query can have for the server to get any
(QoD) profit from executing this query.

Figure 3 has an example of QCs with linear functions (or
linear QCs for short), with the same setup as in Figure 2. In
this paper, we consider both step QCs and linear QCs.
Having described the individual profit functions for QoS

and QoD, the question remains on how to combine these
into a single overall profit for the system. There are two
practical ways to do this for our target environment:

• QoS-Dependent: any QoD profit is considered only if
the QoS profit is more than zero (i.e., the query com-
mits within the maximum response time), and

• QoS-Independent: QoD profit is considered regard-
less of QoS profit, but the query still has to be com-
pleted by a maximum lifetime deadline (to avoid keep-
ing queries in the system forever).

In both cases, the overall profit is computed by adding the
individual QoS and QoD profits when allowed. In this pa-
per, we consider QoS-Independent QCs.

Figure 3. Quality Contracts Example - Linear Function
(qosmax = $2, rtmax = 50ms, qodmax = $1, uumax = 2)

Usability of Quality Contracts We envision that a sys-
tem which supports Quality Contracts will provide a wide
assortment of possible types of QoS/QoD metrics to the
users. Making QCs easy to configure is fundamental to their
acceptance by the user community. Towards this we expect
service providers to support parameterized versions of QC
graphs that the users can easily instantiate. In fact, a sim-
pler scheme is one where the service provider has already
identified a certain class of QCs for each type of user (such
as a pre-determined cell phone plan) and a user will simply
have to turn a “knob” on whether she prefers higher QoS or
higher QoD (a local plan with more minutes or a national
plan with fewer minutes under the same budget). In this
way, using QCs service providers can better provision their
systems, provide different classes of service, and allow end
users to specify their preferences with minimal effort.

3 Baseline Algorithms

As we have shown with the three naive algorithms in the
introduction, there are two basic ways [3] to schedule up-
dates and queries: single priority queue (e.g., FIFO) and
dual priority queue (e.g., FIFO-UH and FIFO-QH). Let’s
look at these two categories respectively.

3.1 Single Priority Queue

With a single priority queue, the simplest scheduling pol-
icy is FIFO. However, since each user query has a prefer-
ence on QoS and QoD (with corresponding profit functions)
and our optimization goal is to maximize the system profit,
the question is whether we can do better than FIFO.

Query Priority: QoS functions in quality contracts are
similar to utility functions, or soft/firm deadlines and re-
wards, which have been studied extensively in real time sys-
tems [4, 7, 13, 6]. The idea is to consider both dimensions
(time constraints and profit) of the QoS functions. However,
deadline and profit pressure are only helpful to prioritize
queries and maximize the profit from QoS functions.

Update Priority: Updates determine data freshness.
Thus they have an indirect impact on query freshness and
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therefore on QoD profit. Suppose we let updates inherit the
QoD functions associated with the corresponding queries,
then the update priority should consider both dimensions
(staleness constraints and profit) of the QoD functions.

Combining Query and Update Priority: Now the prob-
lem is that the query priority (based on time and profit) is
not really comparable to the update priority (based on stal-
eness and profit) because staleness (measured in number
of unapplied updates1) is not comparable to response time.
On the other hand, if we only consider the profit, which is
commonly expressed across all metrics, we lose the time in-
formation for queries and the staleness information for up-
dates. Thus, it is impossible to have a global priority scheme
that considers all the information provided by the QCs. In
other words, query and update priorities are not directly
comparable under the QC framework, or any other frame-
work that combines user preferences on QoS and QoD.Our
baseline algorithm for a single priority remains FIFO:

• First In First Out (FIFO) orders transactions accord-
ing to their arrival time. FIFO may perform poorly on
QoS profit, because of its ignorance of the QC informa-
tion. However, because of the random arrival and in-
terleaving of queries and updates, the QoD profit under
FIFO should be fair.

3.2 Dual Priority Queue

The benefit of a dual priority queue is that updates and
queries can have their own priority scheme and we only
need to compare the query queue and update queue instead
of individual queries and updates. We present two baseline
algorithms with dual priority queue:

• Update High (UH) UH forms a preemptive dual pri-
ority queue, where updates have higher priority than
queries. For queries, we use Value over Relative Dead-
line (VRD) [6] which, with our QC framework, equals
to the ratio of the query’s total maximal profit over its

maximal response time, or qosmax+qodmax
rtmax

. For up-
dates, we adopt FIFO for its simplicity, because the pri-
ority of updates can hardly affect the queries’ perfor-
mance with separate priority queues. UH guarantees
zero data staleness, but if a surge of updates arrives, it
will push behind all queries without distinction.

• Query High (QH) QH forms a preemptive dual prior-
ity queue, with queries having higher priorities than up-
dates. Similar to UH, VRD is used for queries and FIFO
is used for updates. QH is in favor of query execution,
thus is expected to have better QoS performance than
UH. Yet, its delayed execution of updates may accumu-

1Even if we use time since last update to measure data staleness, this
time value will still not be comparable with query response time.

late too many unapplied updates for data items, and thus
hurt query staleness.

The deficiency of UH and QH is that they have fixed
priorities between queries and updates, which leads them
to either always favor QoS or always favor QoD. However,
not all users will have the same preferences, which may also
change over time, thus making these two policies unsuitable
for the general case.

4 QUTS Scheduling

The discussion in the last section reveals that it is im-
possible to have a single priority queue for both queries and
updates because the QoS and QoD profit functions (i.e., the
metrics on time and staleness) are fundamentally incompa-
rable. On the other hand, the baseline algorithms with dual
priority queues focus exclusively on either QoS or QoD, be-
cause of the fixed priority between update queue and query
queue. Thus, we need a policy with a dual priority queue
that adapts the priority between the two queues according
to user preferences on QoS and QoD.
Specifically, we propose theQuery Update Time Sharing

(QUTS) scheduling algorithm. QUTS is a two-level scheme
that at the high level, dynamically adjusts the query and up-
date share of CPU, so as to maximize overall system profit,
and at the low level, allows queries and updates to have their
own priority queues. This means that QUTS can utilize
any priority scheme that considers both time and profit con-
straints for queries and staleness and profit constraints for
updates. Similarly to the baseline algorithms, queries are
scheduled via VRD and updates are scheduled via FIFO.
The rest of the section mainly focuses on the high level

scheduling, which is the central component of the algo-
rithm. Essentially, we want to answer the following two
questions:

• Theoretically, how much CPU allocation should we as-
sign to queries to optimize the system profit from QCs?

• Practically, how to establish the CPU allocation?

4.1 Theoretical CPU Allocation

In order to see when (or for how long) we should have
the priority of queries higher than that of updates, we must
find out the relationship between CPU allocation and the
total profit that the system can gain, and furthermore, to de-
termine the CPU allocation that maximizes the total profit.

Query CPU allocation ρ and total profit: Suppose the
total CPU to be allocated is 1, queries share ρ (0 ≤ ρ ≤ 1)
of the CPU, and updates share the rest, 1 − ρ. The goal is
to have the right ρ such that the total profit Q is maximized.
Let’s look at the QoS and QoD profits respectively.
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Total QoS profit, depends on (1) the maximum QoS
profit for each query, and (2) the response time for each
query, r. With linear QCs, higher query CPU alloca-
tion leads to better response time, thus higher QoS profit.
With step QCs, more query CPU allocation leads to higher
chances to finish within the maximum response time, thus
more QoS profit as well. In other words, the higher the ρ,
the more profit the system can gain from QOSmax. Thus,
the total gained QoS profit QOS can be approximated as:

QOS = QOSmax · ρ (1)

Total QoD profit, similarly, relies on (1) the maximum
QoD of each query, and (2) the staleness for each query.
In general, higher update CPU allocation leads to lower
data staleness, but queries also have to finish in time (be-
fore the maximum query lifetime) for the system to get any
QoD profit. In other words, the possible QoD profit gains
require a fair amount of update CPU share as well as the
query CPU share. Thus, the total gained QoD profit QOD
can be approximated as:

QOD = QODmax · ρ · (1 − ρ) (2)

Total profit is, thus, modeled as:

Q ≈ QOSmax ·ρ+QODmax ·(1−ρ) ·ρ, 0 ≤ ρ ≤ 1. (3)

The optimal ρ to maximize Q can be computed by solv-
ing the above quadratic function with linear constraints,
which usually requires expensive quadratic programming to
find the optimal solution. However, since there is only one
variable ρ in the function, we can simplify it into a gradient
descent problem. The optimal solution is:

ρ = min(
QOSmax

2 · QODmax
+ 0.5, 1) (4)

Notice that since both QOSmax and QODmax are posi-
tive, the minimal value of ρ is actually 0.5, which indicates
that we should always keep more than 50% of time giving
queries higher priority than updates under this model.

Adaptively adjusting ρ: With the workload and user
preferences changing over time, ρ should be adjusted adap-
tively. QUTS tries to find the optimal ρ periodically. The
adaptation period ω decides how often ρ is adjusted. The
default value for ω is 1000 milliseconds. At the begin-
ning of each ω, ρ is computed and smoothed with an aging
scheme [8] which is similar to standard conjugate gradient
optimization:

ρnew = min(
QOSmaxk−1

2 · QODmaxk−1

+ 0.5, 1) (5)

ρk = (1 − α) · ρk−1 + α · ρnew (6)

for each adaptation period ω (Section 4.1)
Adjust ρ according to Equation 5, 6

High for each atom time period τ (Section 4.2)
Level (or the current running queue is empty)

Generate a random number ξ ∈ [0, 1]
if ξ < ρ
query queue is chosen.

else
update queue is chosen.

Low query priority queue: update priority queue:
Level VRD (Section 3.2) FIFO

Table 2. Pseudo-code for the QUTS (Query-Update Time-
Sharing) two-level Scheduling Algorithm

where Qmaxk−1 is the maximal sum of submitted QoS val-
ues during the previous adaptation period. Those QCs that
change over time (e.g., linear QCs) will incur more over-
head when Qmaxk−1 is recomputed. In general, α should
be a small value, but the exact α does not matter much.

4.2 Implementation of CPU allocation ρ

Based on the previous discussion, the probability of a
query running (or the query queue proceeding the update
queue) should be ρ within the current ω. We pick for execu-
tion the head of the query queue with probability ρ and the
head of the update queue with probability 1 − ρ.
The problem is how often we select the next queue to

execute. We can choose from as small a duration as one
CPU cycle, or as large as ω. We do no want it to be too
often, not only to avoid the overhead, but also because the
data contention can be potentially increased with more and
more unfinished transactions. On the other hand, we also
cannot afford to wait too long, especially for the queries
with stringent time constraints and high profit.
We define atom time τ to be the minimal time we keep

running queries or updates if both queues are nonempty.
Specifically, there are two possible states: if queries have
higher priority than updates in τ , we call it query state and
label it with τ · q, otherwise, we call it update state and
label it with τ · u. Each time when τ expires, the system
chooses from queries and updates for the next τ , as the ex-
ample shown in Figure 4. A state change may happen every
τ time, or if the picked queue is empty at any instant of time.

Figure 4. QUTS Scheduling

We give the pseudo-code for the QUTS two-level
scheduling algorithm in Table 2.
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Figure 5. Trace characteristics: (a) query distribution has small changes over time; (b) update distribution has downward trend
over time; (c) stocks (points) are concentrated below the diagonal (i.e., most stocks have more updates than queries).

5 Experiments

We have acquired access traces from a popular stock
market information web site which we will refer to as
Stock.com2. We combined these access traces with the
NYSE (New York Stock Exchange) update traces at the
same time period, which enabled us to accurately gener-
ate both query and update workloads for our experiments,
without having to resort to generating synthetic data.

Query Traces We used real trading queries from
Stock.com for the date of April 24, 2000. Query types in-
clude, but are not limited to: (1) look-up, (2) computing
moving average of stock prices, and (3) comparison among
stocks. All queries are read-only. Each query has an arrival
time and a stock symbol set to be accessed. Query execu-
tion time (CPU occupation) ranges from 5 to 9 milliseconds.
Our source, Stock.com, is an online trading platform which
provides various types of real-time queries and data analysis
tools for stocks. The server is online 24× 7, however, most
activity is occurring during normal trading hours (9:30am
- 4:00pm). Thus, we concentrate on queries during those
hours for our experiments, when the server is challenged by
the flood of stock updates as well as the avalanche of queries
from jittery investors. The results presented in the paper are
based on a 30-minute (9:30am-10:00am) interval with over
82,000 queries on more than 4,000 different stocks. These
results are representative of other intervals during the day.

Update Traces To match our query workload, we ex-
tracted the actual trades on all securities listed on the NYSE
during 9:30am-10:00am on April 24, 2000 3. The update
trace includes the stock ticker symbol, record date, trade
time, and trade price per share. Update execution times
range from 1 to 5 milliseconds. In particular, there are over
496,000 updates on different stocks which share the same
indexing scheme with query traces, the stock ticker symbol.
Figure 5(a) and (b) show the query and update distributions
over time, respectively. The statistics are collected on each

2We cannot disclose the true identity due to a confidentiality agreement.
3The original trace was acquired fromWharton Research Data Services

of the University of Pennsylvania.

second. On average, there are more updates than queries.
Yet, the intensity of the updates reduces during the second
half of the trace. Figure 5(c) presents the number of updates
and queries over all the stocks (each point corresponds to a
stock). Notice that many of the updates occur on the stocks
with very few queries (most points are below the diagonal in
(c)). These updates could be reduced (or postponed) to save
processing time without diminishing much of QoD, espe-
cially when QCs show that QoS is more important to users.

System Parameters: τ and ω We have two parameters in
our system: (1) the atom time τ (i.e., the minimal time quan-
tum before QUTS switches the priority between the query
queue and update queue), and (2) the adaptation period (i.e.,
the minimal time before a rescheduling occurs). The default
values of τ andω are 10 and 1000milliseconds respectively.

query execution time 5 ∼ 9ms # queries 82129
update execution time 1 ∼ 5ms # updates 496892
default atom time (τ ) 10ms # stocks 4608
default adaptation period (ω) 1000ms

Table 3. Workload Information and System Parameters

5.1 Performance Comparison

We compareQUTS with three baseline algorithms FIFO,
UH, and QH under various quality contracts (QCs). We test
QCs with step functions and linear functions, and for each
type of functions, we vary one of the four characteristic pa-
rameters of QCs (qosmax, qodmax, rtmax, or uumax) each
time. Next, we present results from evaluating QUTS’ per-
formance under step QCs and linear QCs (Section 5.1.1),
and also with changing qosmax and qodmax (Section 5.1.2).

5.1.1 Step Functions vs. Linear Functions for QCs
Experiment Design (Figure 6): For both step QCs and
linear QCs we use the same four-parameter setup for QCs:
qosmax and qodmax are randomly chosen from $10 ∼ $50,
thus QOSmax% = QODmax% = 0.5, i.e., user preferences
are equally distributed over QoS and QoD, rtmax is ran-
domly chosen from 50ms ∼ 100ms, and uumax is set to 1
(i.e., QoD profit is gained only when no update is missed).
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Figure 6. Profit Percentage of four scheduling algorithms
with step and linear QC functions. QUTS takes the “best”
profit dimension of the other policies: high QoS from QH
and high QoD from UH

Results (Figure 6): The performance with step functions
is shown in Figure 6(a) and with linear functions in Fig-
ure 6(b). On each plot, we show the gained QoS and QoD
profit percentage. The total height of each bar is the total
profit percentage gained (i.e., the sum of QoS profit percent-
age and QoD profit percentage). In Figure 6, the maximal
QoS percentage is 0.5, since QoS and QoD share the same
amount of profit in this setup.
Looking at the performancewith step QCs in (Figure 6a),

we see that QUTS gains the highest profit percentage with
both QoS and QoD profit percentage close to the maximal.
As expected, QH has low QoD profit percentage, since it
favors queries; UH has low QoS profit percentage, since it
favors updates; FIFO has the lowest total profit percentage,
with the worst QoS profit percentage among the four algo-
rithms. Essentially QUTS is able to take the “best” profit
dimension of the other policies: high QoS from QH and
high QoD from UH.
Performance with linear QCs in (b) shows similar trends

with step QCs despite a slightly lower total profit percent-
age. This is due to the fact that the maximal QoS profit
in the linear function is actually unrealistic (no transaction
can be returned in literally zero time), whereas there is no
profit degradation with step functions. Overall, the perfor-
mance difference among the compared algorithms is similar
between step functions and linear functions. Due to limited
space, we only show the results with step functions in the
rest of the experimental results.

5.1.2 Performance under different QCs
Experiment Design (Figure 7, 8): This set of experi-
ments is designed to show the performance of QUTS under
QCs, by changing the qosmax and qodmax. We prepared
nine different QC sets, which we list in Figure 4.

Results (Figure 7, 8): Figure 7 shows the profit percent-
age from the FIFO policy over the different QC setups. Fig-
ure 8 shows the profit percentages for the UH, QH, and
QUTS policies. The actual QoS and QoD profit percent-
ages are shown by bars in each plot, whereas the diago-

QODmax% 0.1 0.2 . . . 0.9
QOSmax% 0.9 0.8 . . . 0.1
qodmax $10 ∼ $19 $20 ∼ $29 . . . $90 ∼ $99
qosmax $90 ∼ $99 $80 ∼ $89 . . . $10 ∼ $19
rtmax 50ms∼ 100ms
uumax 1

Table 4. Quality Contract Setup for Figure 7, 8

nal line corresponds to the maximum QoS profit percent-
age (QOSmax%). We see in Figure 7 that FIFO gains the
worst QoS profit percentage because it ignores the time con-
straints that users specified. Thus, although FIFO has a
decent QoD profit, it still cannot avoid to have the worst
total profit percentage. In Figure 8a, the Update-High pol-
icy gains almost the maximal QoD profit percentage (the
light colored bars), but performs poorly on QoS. In Fig-
ure 8b, the Query-High policy gains almost the maximal
QoS profit percentage (the dark colored bars), but performs
relative poorly on QoD. In Figure 8c, QUTS gains almost
the maximal QoS and QoD profit percentage with all QC
sets. In fact, QUTS performs up to 101.3% better than UH
and up to 40.1% better than QH, consistently performing
better or as good as the best of the two policies. Clearly,
the main weakness of both UH and QH is their fixed prefer-
ences over queries (QoS) or updates (QoD) which are detri-
mental in a mixed-preferences workload.

5.2 Adaptability to User Preferences
Experiment Design (Figure 9): We use the same traces,
but instead of a static QC setup, we vary qosmax & qodmax

over time. Specifically, we divide the experiment period
evenly into 4 intervals, and have rtmax = 50ms ∼ 100ms,
uumax = 1, and vary the qosmax to qodmax ratio from 1:5
to 5:1 (i.e., qosmax = 5× qodmax or vice versa). We inten-
tionally create sudden changes on user preferences during
small time intervals (75 seconds) in order to test the per-
formance of QUTS in a challenging scenario. The goal is
to show how quickly QUTS can react to the changes and
adjust ρ accordingly.

Results (Figure 9): We plot the actual and maximal profit
of submitted queries over time in Figure 9a-c. As expected,
the maximal line in (b) shows the QoS profit trend along
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Figure 7. Profit percentage with various QCs for FIFO.
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Figure 8. Profit percentages for QCs as in Figure 7. QUTS performs up to 101% better than UH and up to 40% better than QH.
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Figure 9. (a-c) QUTS performs very close to the ideal maximum, under changing QCs; (d) ρ quickly adapts to changing QCs.

time: low-high-low-high, and the maximal line in (c) shows
the QoD profit trend along time: high-low-high-low. The
maximal line in (a) shows the total maximal profit which is
the sum of the profits from (b) and (c). The solid line in
all three figures is actual profit “gained” by QUTS, which
is closely following the maximal line (sometimes higher
due to the late completion of previously submitted queries).
Note that the figure is plotted after applying a filter with the
moving-window size of 5 seconds, to smoothen the data.
Overall, QUTS performs very close to the ideal case.
Figure 9d shows the ρ over time. ρ is the system’s prob-

ability of queries having higher priority than updates. Ac-
cording to the solution that optimizes the total actual profit
given by Figure 4, ρ should be a number between 0.5 and
1, and should “track” the total maximal QoS profit. In Fig-
ure 9d, it is very easy to observe four regions where the ρ
follows the QoS profit trend: low-high-low-high; it ranges
from around 0.6 to around 1. With ρ = 1, updates are still
executing, but only when no queries are waiting. This auto-
matic adaptation behavior agrees with the actual scenarios.

5.3 Sensitivity of QUTS to ω and τ

In this section, we evaluate the impact of two system pa-
rameters of QUTS: atom time τ and adaptation period ω.
We use the same setup with that of Section 5.2.
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Figure 10. Sensitivity of QUTS over ω and τ

Sensitivity of Adaptation Period ω (Figure 10a) The
adaptation period determines how often the top-level
rescheduling of QUTS occurs. If the adaptation period is
too small, QUTS may make wrong decisions, if it is too
large, the performance may suffer. However, as we see in
Figure 10a the overall performance varies very little for a
wide range of adaptation periods.

Sensitivity of Atom Time τ (Figure 10b) Atom time is
the minimal time unit before the system can switch between
the query queue and the update queue. Small τ values can
potentially lead to more conflicts; bigger τ values may also
hurt performance. In this set of experiments, we fix the
adaptation time to 1000ms and vary τ from 1ms to 1000ms.
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Figure 10(b) shows the total profit percentage gained by
QUTS with different τ . The best performance is gained
at around 10ms, which is close to the maximum execution
time of our queries (5ms ∼ 9ms). As such, a simple rule of
thumb for setting τ is to set it above the maximum execution
time of most of the queries in the system.

6 Related Work

We described the QC framework in more detail in [10].
To our knowledge, there is no work beside ours that com-
bines individual users’ preferences for both QoS and QoD
in database systems. However, there is related work in cap-
turing user preferences and query/update scheduling.

User Preferences There exist previous approaches that
combined user preferences on different metrics into a single
metric. For example, Borealis [1] used a utility-function-
based QoS model, assigning different weights on the multi-
ple metrics to form an aggregate metric. Our previous work
on user-centric transaction management [14] used a single
aggregate metric, User Satisfaction Metric (USM), to guide
admission control for incoming query and update transac-
tions. However, in both works, individual user preferences
over multiple metrics are not differentiated, rather, a global
weighting scheme was used.

Query Scheduling There is a lot of research in real-time
database systems that deals with transaction scheduling in
the presence of deadlines or rewards [4, 7, 13, 6], which
is similar to our query prioritization. All these schemes can
be used for our lower level query queue scheduling and thus
are orthogonal to this work.

Update Scheduling [3] discussed basic techniques (e.g.,
query first or update first) on how to apply updates in real-
time database systems, but it has not proposed a unified
metric to optimize. Our baseline algorithms are based on
similar schemes, whose fundamental flaw is to have fixed
priorities between queries and updates. In [11], we also pro-
posed a scheduling scheme for updates, however we did not
consider scheduling of queries.
We applied the QC framework for replica selection in

distributed systems in [17]. There is a lot of related work
on data replication; it is beyond the scope of this paper.

7 Conclusions

In this work we addressed the problem of scheduling
queries and updates in data-intensive web sites. We pre-
sented the concept of Quality Contracts (QCs), a pow-
erful unifying framework for specifying user preferences
over multiple quality metrics. In the presence of QCs, we
have proposed a two-level scheduling algorithm, QUTS,

that allocates CPU resources to maximize the overall sys-
tem profit (and, as such, the overall user-satisfaction). We
compared QUTS to three baseline algorithms, using real
traces collected from a popular stock market information
web site. Our extensive experimental study has shown
that QUTS outperforms all competitor algorithms under the
entire spectrum of QCs, adapts very well under changing
workloads, and has very little sensitivity to its parameters.
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