
SenseSwarm: A Perimeter-based Data Acquisition
Framework for Mobile Sensor Networks

Demetrios Zeinalipour-Yazti, Panayiotis Andreou‡, Panos K. Chrysanthis⋆, George Samaras‡,

Open University of Cyprus, P.O. Box 24801, 1304 Nicosia, Cyprus
‡ University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

⋆ University of Pittsburgh, Pittsburgh, PA 15260, USA
zeinalipour@ouc.ac.cy, cs98ap1@ucy.ac.cy, panos@cs.pitt.edu, cssamara@ucy.ac.cy

ABSTRACT
This paper assumes a set of n mobile sensors that move in
the Euclidean plane as a swarm1. Our objectives are to ex-
plore a given geographic region by detecting and aggregating
spatio-temporal events of interest and to store these events
in the network until the user requests them. Such a setting
finds applications in environments where the user (i.e., the
sink) is infrequently within communication range from the
field deployment. Our framework, coined SenseSwarm, dy-
namically partitions the sensing devices into perimeter and
core nodes. Data acquisition is scheduled at the perimeter
in order to minimize energy consumption while storage and
replication takes place at the core nodes which are physically
and logically shielded to threats and obstacles. To efficiently
identify the perimeter of the swarm we devise the Perimeter
Algorithm (PA), an efficient distributed algorithm with a
message complexity of O(p + n), where p denotes the num-
ber of nodes on the perimeter and n the overall number
of nodes. For storage and replication we devise a spatio-
temporal in-network aggregation scheme based on minimum
bounding rectangles and minimum bounding cuboids. Our
trace-driven experimentation shows that our framework can
offer significant energy reductions while maintaining high
data availability rates.

1. INTRODUCTION
Stationary sensor networks have been predominantly used

in applications ranging from environmental monitoring [20,
18] to seismic and structural monitoring [5] as well as in-
dustry manufacturing [14]. Recent advances in distributed
robotics and low power embedded systems have enabled a
new class of Mobile Sensor Networks (MSNs) that can be
utilized for land [2, 6, 11], ocean [12] and air [7] exploration

1The term Swarm (or Flock) in this paper refers to a group
of objects that exhibit a polarized, non-colliding and aggre-
gate motion.

Proceedings of the 4th International Workshop on Data Management for
Sensor Networks (DMSN’07), Vienna, Austria, 2007.
Copyright is held by the author(s).

Perimeter Node

Storage Node

Figure 1: SenseSwarm: Data Acquisition takes place
at the virtual perimeter while core nodes act as stor-
age nodes for the acquired events.

and monitoring. MSNs have a similar architecture to their
stationary counterparts, thus are governed by the same en-
ergy and processing limitations, but are supplemented with
implicit or explicit mechanisms that enable these devices to
move in space (e.g., motor or sea/air current).

The main advantages of MSNs over their stationary coun-
terparts are that they can : i) control the deployment, thus
provide optimal and flexible coverage of a given region; and
ii) dynamically repair the network, thus eliminating bottle-
neck and low energy nodes. On the other hand, the absence
of a stationary network structure in MSNs makes continu-
ous data acquisition to some sink point a non-intuitive task.
In particular, the absence of an always accessible sink man-
dates that acquisition has to be succeeded by in-network
storage of the acquired events [23, 19, 16, 1], so that these
events can later be retrieved by the user.

In this paper we propose SenseSwarm, a novel framework
for the acquisition and storage of spatio-temporal events in
MSNs. In SenseSwarm, nodes have the dual role of perime-
ter and core nodes (see Figure 1). Data acquisition is sched-
uled at the perimeter, in order to minimize energy con-
sumption, while storage and replication takes place at the
core nodes. Such a setting is suited well for applications
in which new events are more prevalent at the periphery of
the swarm (e.g., water and contamination detection) rather
than for online monitoring applications (e.g., fire detection)
or for applications where new events might occur anywhere
in a given swarm. Note that the storage of the detected
events takes place at the core nodes since these nodes are
expected to feature a longer lifetime (due to their reduced
sensing activity) but are also physically shielded to threats
and obstacles that might immobilize the sensors.

In order to instantiate the problem setting and motivate
our description assume the following Mars Exploration sce-
nario: Spirit was one of the two rovers deployed by NASA

13

978-159593-911-1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1286380.1286384&domain=pdf&date_stamp=2007-09-24

in 2004 in order to perform geological analysis of the red
planet. Instead of one rover, consider a design that consists
of many cheaper rovers deployed as a swarm. Such a design
avoids the peculiarities of individual rovers, is less prone to
failures and is potentially much cheaper. The swarm moves
together and attempts to detect events of interest (e.g., the
presence of water). We assume that either an explicit algo-
rithm [17] or an implicit mechanism (e.g., air current) pro-
vides the polarized behavior to the swarm. The operator (on
earth) then infrequently posts the question: “Has the swarm
identified any water and where exactly?”. Due to expensive
communications to the remote planet such a query is not
performed continuously. Thus, the swarm collects spatio-
temporal events of interest and stores them in the swarm
until the operator requests them. In order to increase the
availability of the detected answers, in the presence of un-
predictable failures, individual sensors perform replication
of detected events to neighboring nodes.

Similarly to the above description, we could draw another
example in the context of an ocean monitoring environment:
assuming n independent surface drifters floating on the sea
surface and equipped with either acoustic or radio commu-
nication capabilities, the operator seeks to answer the query:
“Has the swarm identified an area of contamination and
where exactly?”. Finally, one could utilize a swarm of car
robots, such as CotsBots [2], Robomotes [6] or Millibots [11],
to construct spatio-temporal acquisition and storage scenar-
ios for land applications.

Contributions
In this paper we make the following contributions:

• We propose a novel data acquisition framework for
MSNs that utilizes the notion of a virtual perimeter.
We additionally devise a distributed algorithm for the
efficient construction of such a perimeter in a MSN.

• We devise an in-network spatio-temporal aggregation
scheme based on Minimum Bounding Rectangles and
Minimum Bounding Cuboids which approximates com-
pactly events of interest in MSNs.

The remainder of the paper is organized as follows: Sec-
tion 2 formalizes our system model and assumptions, Sec-
tion 3 overviews the related research work. Section 4 intro-
duces the components and algorithms of the SenseSwarm
Framework. Section 5 presents our experimental study and
Section 6 concludes the paper.

2. SYSTEM MODEL AND ASSUMPTIONS
In this section we will formalize our basic terminology and

assumptions upon which we will base our description. The
main symbols and their respective definitions are summa-
rized in Table 1.

Let ℜ ×ℜ denote a two-dimensional grid of points in the
Euclidean plane that discretizes a given geographic area.
Also assume a Cartesian coordinate system to describe each
point in the grid by the tuple (x, y). Without loss of general-
ity, let us initially configure n sensing devices {s1, s2, ..., sn}

in the lower-left n
1

2 × n
1

2 sub-grid of ℜ2. For ease of expo-
sition let n be a perfect square such that each cell contains
exactly one sensor.

Each si (i ≤ n) can derive its coordinates (sx
i , s

y
i) through

absolute (e.g., dedicated Geographic Positioning System hard-
ware) or relative means (e.g., localization techniques which
enable sensing devices to derive their coordinates using the

Symbol Definition

n Number of Sensors {s1, s2, ..., sn}
m Number of Attributes at each si {a1, a2, ..., am}
si Sensor with identifier i.

(sx
i , s

y
i) X and Y coordinates of sensor si.

r Radius of communication for si.
NH(si) 1-hop (in commun. range) neighbors of si

V (si, sj) A Vector defined as (sx
j − sx

i , s
y
j − s

y
i)

Q An m-dimensional Query

Table 1: Definition of Symbols

signal strength, time difference of arrival or angle of arrival).
For instance on Mars there is no satellite coverage thus en-
gineers can opt for a relative coordinate system rather than
an absolute one. Additionally, each si can be aware of its
neighboring nodes, denoted as NH(si), using a local 1-hop
broadcast.

The sensing devices are coarsely synchronized through some
operating system mechanism (e.g., similarly to TinyOS [8])
or through the GPS and can communicate with other sen-

sors in a uniform radius r, i.e., 1 ≤ r ≪ n
1

2 .
A sensor si (i ≤ n) can acquire m physical parameters

A={a1, a2, ..., am} from its environment at every discrete
chronon t. This generates spatio-temporal tuples of the form
{t, x, y, a1, a2, ..., am} locally at each sensor. The user can
specify one or more m-dimensional Boolean queries of the
type Q={q1 ⊙ q2 ⊙ ... ⊙ qm}, where qi (i ≤ m) corresponds
to some predicate such as q1=”Temperature > 100” and
⊙ denotes some binary Boolean operator. These queries
correspond to the user-defined local events of interest and
are injected in each si either prior the deployment or during
execution.

3. BACKGROUND AND RELATED WORK
This section provides an overview of other data acquisition

frameworks and tools as well as background on the perimeter
construction problem.

Traditional data acquisition frameworks for sensor net-
works, such as TinyDB [13] and Cougar [21], perform a
combination of in-network aggregation and filtering in or-
der to reduce the energy consumption while conveying data
to the sink. The MINT View framework [22] additionally
performs in-network top-k pruning in order to further re-
duce the consumption of energy.

In data centric routing, such as directed diffusion [9], low-
latency paths are established between the sink and the sen-
sors. Contrary to our approach, all the above frameworks
have been proposed for stationary sensor networks while in
this work we consider the challenges of a mobile sensor net-
work setting.

In data centric storage [19, 16, 1] schemes, data with
the same name (e.g., humidity readings) are stored at the
same node in the network offering therefore efficient loca-
tion and retrieval. Such an approach is supplementary to
the perimeter-based data acquisition framework we propose
in this paper. Supplementary to our framework are also the
MicroHash [23] and TINX [15] local index structures, which
provide O(1) access to data stored on the local flash media
of a sensor device. Such index structures can be deployed
to speed up the retrieval of data whenever the operator per-
forms a query.

14

The notion of a virtual perimeter is a main concept in the
SenseSwarm framework as the identified core nodes can con-
serve energy by withdrawing temporarily from the acquisi-
tion (i.e., by operating in low-power mode). This is possible
because perimeter nodes physically and logically circumvent
the core nodes. Note that the perimeter construction prob-
lem we consider, is similar to the convex hull problem in
computational geometry that finds application in pattern
recognition, image processing and GIS [4]. The convex hull
problem is defined as follows: given a set of points, identify
the boundary of the smallest convex region that encloses all
the points either on the boundary or on its interior. Such a
boundary is both non-intersecting (i.e., no edge crosses any
other edge) and convex (i.e., all internal angles are less than
π). Note that there are numerous centralized algorithms for
computing the convex hull with varying complexities. Two
of the most popular convex hull algorithms are the Jarvis
March [4] (or Gift Wrapping) and the Graham’s scan [4].

The main difference between the convex hull and the perime-
ter problem we consider is that the latter defines non-convex
cases (i.e., internal angles are up to 2π). Non-convex cases
are typical for a sensor network context as convex angles
might not be feasible due to communication radius con-
straints. Additionally, convex hull algorithms are central-
ized while we develop techniques to compute the perimeter
in a distributed fashion minimizing communication and en-
ergy consumption without sacrificing correctness.

Related work in the context of sensor networks appears
in [3], where the authors present localized techniques that
enable sensors to determine whether they belong to the
boundary of some phenomenon. The underlying assump-
tion in the given work is that the edge sensors are not within
communication range while we consider the perimeter to be
continuous (which thus yields a different set of edge sensors).

4. THE SENSESWARM FRAMEWORK
In this section we describe the underlying algorithms of

the SenseSwarm Framework. For ease of exposition, we
present our framework in the following three conceptual
phases:

A. The Perimeter Construction Phase, executed every σ

chronons during which the n sensors execute our perime-
ter construction algorithm in order to conceptually di-
vide S into perimeter sensors Sp and core sensors Sc;

B. The Acquisition Phase, executed continuously by Sp

nodes which attempt to identify answers to Q and store
these answers locally; and

C. The Replication Phase, executed every σ′=α ∗ σ (α ≥
1) chronons during which Sp nodes replicate local an-
swers to their surrounding Sp and Sc nodes using an
in-network spatio-temporal aggregation scheme.

4.1 Perimeter Construction Phase
This subsection describes algorithms for the construction

of a perimeter in a sensor network. We first describe a cen-
tralized solution and then our Perimeter Algorithm.

Centralized Perimeter Algorithm (CPA): First note
that the construction and dissemination of a perimeter can
be performed in a centralized manner, i.e., a sink collects
the coordinates of all nodes in S, using an ad-hoc span-
ning tree, and then identifies the perimeter nodes (Sp) us-
ing some straightforward geometric calculations. Finally,
the sink disseminates the ordered set Sp to all nodes in S

Algorithm 1 : Perimeter Algorithm (PA)

Input: A set of sensors S = {s1, s2, · · · sn}/
Output: Disjoint sets Sp (perimeter nodes) and Sc (core nodes)
1: procedure Perimeter Algorithm(S)
2: minAngle=360◦; // Variable initialization
3: // Identify smin (node w/ minimum y-coordinate in S).
4: smin = Find Min Coordinates(S);
5: // Disseminate smin to the network S.
6: Disseminate(smin, S); // ∀si ∈ S
7: for i=1 to n do

8: if (si = smin) then

9: LeftN(si)=smin;
10: else
11: LeftN(si)=wait(); // Get token from LeftN(si).
12: end if

13: // Find neighbor with min. polar angle from si

14: for j=1 to |NH(si)| do

15: if (∡(LeftN(si), si, sj)≤minAngle) then

16: minAngle=∡(LeftN(si), si, sj));
17: RightN(si)=sj

18: end if

19: end for

20: end for
21: Send(si, RightN(si)); // Send token to RightN(si).
22: end procedure

using a spanning tree. Clearly, the first and last phase of
the CPA algorithm require the transfer of many (x, y)-pairs
between nodes. Specifically, although both phases require
O(n) messages the first phase requires the transfer of O(n2)
(x, y)-pairs (i.e., assume that the nodes are connected in a

bus topology which yields
Pn

1 (i)=n(n+1)
2

(x, y) pairs), while
the last phase requires the transfer of O(p ∗ n) (x, y)-pairs
(i.e., each edge transfers the complete perimeter of size p).

Perimeter Algorithm (PA): We shall next describe our
distributed algorithm which minimizes the transfer of (x, y)-
pairs, thus minimizing energy consumption. To simplify the
description and w.l.o.g., assume that we have no coincidents
(i.e., two points with the same (x, y) coordinates) and that
no three points are collinear (i.e., lie on the same line). Al-
though these assumptions make the discussion easier our
implementation elaborately supports them.

Algorithm 1 presents the steps of the distributed PA pro-
cess that is executed every σ chronons. In line 4, a randomly
chosen sink identifies the minimum y-coordinate (denoted
as smin). This is achieved by constructing an aggregation
tree rooted at the given sink using TAG [14]. In particu-
lar, each si identifies among its children and itself the min-
imum s

y
min value and then recursively forwards the triple

(smin, sx
min, s

y
min) to si’s parent. This step, has similarly to

CPA, a message complexity of O(n) but the overall number
of (x, y)-pairs transmitted to the sink is only O(n) rather
than O(n2) (i.e., exactly one pair per edge). This improve-
ment is due to the in-network aggregation that takes place
in our approach.

Concurrently with the operation in line 4, each si updates
its neighbor list NH(si) as such an updated list will be nec-
essary in the subsequent steps. Note that this update does
not introduce any extra cost, as si simply adds to NH(si)
the neighbors that have participated in the calculation of
smin.

In line 6, we disseminate smin to all the nodes in the
network S from the sink. This has a message complexity
of O(n) and the overall number of (x, y)-pairs transmitted
is O(n), compared to O(p ∗ n) required by CPA. The next

15

task is to identify the nodes on the perimeter. Before we
proceed, let us define the left and right neighbors of si:

Definition 1 [Left Neighbor of si (LeftN(si))]: The
predecessor of si on the perimeter. The termination condi-
tion of this recursive definition is as follows: LeftN(smin) =
smin, where s

y
min ≤ s

y
j (∀sj ∈ S, 1 ≤ j ≤ n).

Definition 2 [Right Neighbor of si (RightN(si))]: The
successor of si on the perimeter such that LeftN(si) 6=
RightN(si), if |NH(si)| > 1.

Continuing with the description of our algorithm in lines
8-12 each si, other than smin, identifies its left neighbor.
This is achieved by waiting for a token (i.e., the identifier of
LeftN(si)) from LeftN(si). When the token arrives, the
node will execute the remaining steps of the algorithm (lines
13-21). In particular, in lines 13-19, si identifies the neigh-
bors with the minimum polar angle from its x-axis. The
x-axis of node si is defined in our context to be collinear
with the vector V (LeftN(si), si). This ensures the correct-
ness of the algorithm although we omit a formal proof due to
space limitations. In line 15 we utilize the notation ∡(a, b, c)
to denote the angle between three arbitrary points a, b, c in
the plane. Our objective in the given block (line 14-19), is to
identify the neighbor with the minimum polar angle (which
is then coined RightN(si)). Finally in line 21, si transmits
a token to RightN(si) notifying it that it is the next node
on the perimeter. The procedure between lines 13-21 con-
tinues sequentially along the network perimeter until any si

receives the token for a second time from its left neighbor.
At the end, every node receiving the token knows that it
belongs to Sp while the rest nodes continue to belong to Sc.

The identification of smin takes O(n) messages and the
token dissemination takes O(p) messages, where p the num-
ber of the nodes in the perimeter. Thus the overall message
complexity is O(p + n). In the future we plan to devise
techniques to incrementally compute the perimeter.

Example: Figure 2 illustrates the perimeter construction
for eight nodes {s1 · · · s8}. Assume that we have executed
steps 2-6 of Algorithm 1 and that we continue with the exe-
cution of the perimeter construction at node smin (i.e., s1).
smin measures the polar angle of all the nodes in NH(smin)
to its x-axis and subsequently derives RightN(smin)=2 (s3

is not within communication range from s1). Next, smin

sends a token to s2 informing it that it is the next node
on the perimeter. Upon reception of the token, s2 sets its
x-axis collinear with V (s1, s2). The same idea applies to all
nodes on the perimeter until s8 transmits the token to s1.

Left(s
min
)=1
 s
min

s1

s3

s2

s4

s5

s6

s7

s8

Right(s
min
)=2

Left(s
2
)=1

Right(s
2
)=3

Left(s
3
)=2

Right(s
3
)=4

Left(s
4
)=3

Right(s
4
)=5

Left(s
5
)=4

Right(s
5
)=6
Left(s
6
)=5

Right(s
6
)=7

Left(s
7
)=6

Right(s
7
)=8

Left(s
9
)=7

Right(s
8
)=1

Figure 2: Execution of PA: The construction starts
at smin and proceeds counterclockwise.

4.2 Acquisition Phase
Once the perimeter partitioning has been conducted, Sp

nodes start their sensing modules in order to detect an event
that satisfies the predicate of the pre-registered Boolean
query Q. The amount of time between two consecutive read-
ings σ′ is either a user-defined parameter (e.g., σ′=α ∗ σ,
α ≥ 1) or is dynamically adjusted according to the dynam-
ics of the swarm. In a sea oil-spill detection scenario σ′

can be configured to several hours as surface drifters usually
float slowly on the sea surface. Once a query answer QA

i

is detected at node si, QA
i is stored on non-volatile storage

of si using an efficient access method [23, 15]. Organizing
answers using such a local structure will enable the efficient
retrieval of records when requested by the user.

4.3 Data Replication Phase
After σ′=α∗σ (α ≥ 1) chronons of acquisition, the frame-

work proceeds to the data replication phase which ensures
that a node failure will not subvert a detected event. In
SenseSwarm we utilize a replication scheme that is based
on approximations of where the events have occurred. In
particular, we utilize 2-D and 3-D bounding rectangles and
cuboids similar to those utilized in spatial index structures.
In order to facilitate our presentation we proceed with an
example that provides the intuition behind our approach.

Figure 3 (left) illustrates a segment of a MSN that consists
of eight sensors {s1, · · · , s8}. Assume that the sensors have
been partitioned into Sp={s1, s2, s3} and Sc={s4, · · · , s8}
nodes and that each si in Sp has detected exactly one an-
swer to Q. Thus, we have the following conceptual set (hor-
izontally segmented across the Sp nodes): QA = {(t, sx

1 , s
y
1),

(t, sx
2 , s

y
2), (t, sx

3 , s
y
3)}.

If any of the Sp nodes gets corrupted then we will lose
part of QA which is not desirable. The objective of the
replication phase is to replicate QA in the network in an
energy-efficient manner while offering the capability to later
recover either an approximation of QA or the complete QA.

Replication Scenario

a
s1:
 b
s2:
 c
s3:

a
s4:

b
f

s5:
 a

s6:
 a

b
g

s7:
 c

s8:
 c

b

a

s2

s1

s3

s8

s5

s6

s4

s7

MBR Tables at chronon
t

Virtual Perimeter

Perimeter Sensor

Core Sensor

Replication Direction

Sink (randomly chosen)

h

X dimension

Figure 3: Replication Example.

The first step of the replication phase is to request from
all sensors to transmit their local readings to a randomly
identified sink that is part of S (i.e., s8 in the example).
While Sp nodes transmit their local answers towards their
parent, intermediate Sc and Sp nodes identify the region
that encloses all the answers from their children. Let us
next provide a formal definition of the enclosed area:

Definition 3 [Minimum Bounding Rectangle of S′]:
A rectangle that encloses all points in S′. The Cartesian
coordinates of the bounding box MBR(S′) are defined by

16

the following quadruple:

(min{sx
i }, min{sy

j }, max{sx
k}, max{sy

l }), [i, j, k, l ≤ n]

The MBR is an approximation for a set of detected events
S′ and might encapsulate |S′| events using only five num-
bers, i.e., (ts,MBR(S′)), as opposed to (|S′|*2 + 1) num-
bers. That makes MBRs highly compact structures, en-
abling huge energy savings during replication. This is par-
ticularly true when 5 ≪ |S′|. Finally, note that when Q

specifies some aggregate function, such as MIN, MAX, SUM
or COUNT, then the aggregate answer (aggr) can easily be
stored with the bounding box as (t, x1, y1, x2, y2, aggr).

Figure 3 (right) illustrates the MBRs developed locally
at each of the eight sensors. We observe that s1 through s3

know precisely where their events happened, thus the MBRs
a, b and c are actually point coordinates. On the contrary, s4

has an approximation of s1’s and s2’s answer (this is denoted
as MBR f). The intuition is that even if both s1 and s2 fail,
then the user will still be able to recover an approximation of
where the event has occurred (i.e., through s4 or some other
node). On the same figure, we also notice that s8 has an
MBR which encapsulates all the events that have occurred.

Although our discussion has so far assumed that aggrega-
tion takes place only in space, it is straightforward to sup-
port spatio-temporal aggregation as well (i.e., using (x, y, ts)).
In particular, we extend the definition of MBRs to Minimum
Bounding Cuboids (MBC) (i.e., rectangular boxes). A MBC
contains the coordinates of an event in space and time. Note
that the MBC structure is not fundamentally different than
the MBR structure, as it is represented again using two co-
ordinates (i.e., 3D coordinates).

When a user performs a query, we collect the MBRs (or
MBCs respectively) from all the nodes for the user-specified
interval and intersect these boxes. This allows us to derive
the coordinates of the points at which events have occurred.

5. EXPERIMENTAL EVALUATION
In this section we present our experimental evaluation of

the SenseSwarm framework.

5.1 Experimental Methodology
We adopt a trace-driven experimental methodology in which

a real dataset from n sensors is fed into our custom-built
simulator. Our methodology is as follows:

Sensing Device: We use the energy model of Crossbow’s
new generation TelosB [5] sensor device to validate our ideas.
Our performance measure is Energy(Joules) = V olts ×
Amperes×Seconds that is required at each discrete chronon
to resolve the query.

Dataset: We utilize a real dataset from Intel Berkeley
Research [10]. This dataset contains data that is collected
from 58 sensors deployed at the premises of the Intel Re-
search in Berkeley between February 28th and April 5th,
2004. The motes utilized in the deployment were equipped
with weather boards and collected time-stamped topology
information along with humidity, temperature, light and
voltage values once every 31 seconds. The dataset includes
2.3 million readings collected from these sensors.

Swarm Simulation: In order to introduce a movement
into our sensor network we have derived synthetic temporal
coordinates for the n sensors using the Craig Reynolds al-
gorithm [17], which is widely used in the computer graphics

 0

 500

 1000

 1500

 2000

 2500

 3000

50030015054

En
er

gy
 (J

)

Network Size (n)

Perimeter Construction Performance with Different Network Sizes

Centralized Perimeter Algorithm (CPA)

Perimeter Algorithm (PA)

Figure 4: Evaluating the perimeter construction.

23

...

7

6

5

4

3

2

1

0
 0 200 400 600 800 1000

En
er

gy
 (m

J)

Timestamp (t)

Acquisition Energy Cost of the SenseSwarm Framework

R R R R R R R R R

Uniform Framework
SenseSwarm Framework

Figure 5: Evaluating the SenseSwarm framework.

community. Using this algorithm we generated 100 individ-
ual scenes and during each scene a sensor obtains 100 read-
ings (i.e., σ=σ′=100). In order to simulate failures we make
the assumption that there is a 0.2 independent probability
that a node fails at any given timestamp.

5.2 Perimeter Cost Evaluation
In the first experimental series we investigate the efficiency

of our distributed PA algorithm compared to the centralized
CPA algorithm. Figure 4 presents the aggregate cost (i.e.,
for the whole network for all 10,000 timestamps) of the two
algorithms for 4 different network sizes 54, 150, 300 and 500.
These networks were derived from the initial dataset of 54
nodes using replication of the sensor readings to different
initial coordinates. We observe that the PA algorithm con-
sumes in all cases between 85%-89% less energy than the
CPA algorithm. This is attributed to the fact that dur-
ing the computation of smin, the PA algorithm intelligently
percolates only one (x, y)-pair to the sink rather than all
of them. Additionally, we observe that the performance gap
between the two algorithms grows substantially with the size
of the network. Specifically, for n=54 the total energy dif-
ference between the two algorithms was 163 Joules while for
n=500 the total energy difference was 2,208 Joules.

5.3 Acquisition Cost Evaluation
In the next experiment, we measure the cost of operating

a SenseSwarm network. As a baseline of comparison we
utilize the Uniform framework, one in which all 54 sensing

17

100
90
80
70
60
50
40
30
20
10

0
1009080706050403020100

En
er

gy
 (%

 o
f F

ul
l F

lo
od

in
g)

Timestamp (t)

Replication Cost of the SenseSwarm Framework

Full Replication
SenseSwarm (1-hop replication)
SenseSwarm (2-hop replication)

SenseSwarm (sink replication)

Figure 6: Evaluating the cost of Replication.

devices operate at any given moment. The figure shows
that the cost of the SenseSwarm framework is almost 75%
less than the energy cost of the Uniform framework. We
also observe that every σ timestamps, a reconstruction of
the perimeter is triggered in PA. This yields a non-uniform
cost equivalent to 23 mJ. Although this cost is quite high,
the average cost is still well below the overall cost of the
Uniform framework. Particularly, the SenseSwarm network
still consumes on average 1.7 ± 2.2 mJ while the Uniform
framework consumes 6.7 ± 0.3mJ.

5.4 Replication Cost Evaluation
In the final experiment, we measure the cost for replicat-

ing the identified events of a query Q. We evaluate three dif-
ferent replication strategies: i) Full replication, where each
detected event is replicated to all nodes in the network us-
ing flooding; ii) SenseSwarm k-hop replication, where each
node forwards a detected event for k hops using the spatio-
temporal aggregation scheme we described; and iii) Sens-
eSwarm sink replication, where the events are replicated to
a predetermined sink point (in essence an m-hop replication
scheme, where m is the depth of the tree rooted at the sink).

Figure 6 shows the energy cost as a percentage of full
flooding’s cost. In all the cases the replication scheme man-
ages to retain either the complete QA or an approximation
of it. We observe that SenseSwarm 1-hop and 2-hop con-
sume on average only 3% and 13% of full flooding’s energy
consumption. We also observe that in many cases the cost
is equal to zero. This is attributed to the fact that no events
occur on the given chronons, thus no replication takes place.

6. CONCLUSIONS AND FUTURE WORK
This paper introduces and formalizes a novel perimeter-

based data acquisition framework for mobile sensor net-
works, coined SenseSwarm. In the future we plan to study
other geometric shapes besides MBRs, techniques to provide
strong fault tolerance properties, investigate sink selection
strategies for optimal in-network replication and also inves-
tigate techniques to incrementally maintain the perimeter
rather than reconstructing it in every iteration.

Acknowledgements: This work was supported in part by the

US NSF under projects S-CITI (#ANI-0325353) and AQSIOS

(#IIS-0534531), the EU under the project mPower (#034707)

and the Cyprus Research Foundation under the project GEITO-

NIA (#PLYP-0506).

7. REFERENCES
[1] Aly M., Pruhs K., Chrysanthis P.K., “KDDCS: a

load-balanced in-network data-centric storage scheme for
sensor networks”, In CIKM, 2006.

[2] Bergbreiter, S.; Pister, K.S.J., “CotsBots: An
Off-the-Shelf Platform for Distributed Robotics,”, In
IROS, Las Vegas, NV, 2003.

[3] Chintalapudi K. and Govindan R., “Localized Edge
Detection In Sensor Fields”, Ad-hoc Networks, 2003.

[4] Cormen T.H., Leiserson C.E., Rivest R.L., and Stein C.,
“Introduction to Algorithms”, second edition. The MIT
Press and McGraw-Hill, 2001.

[5] Crossbow Technology Inc. http://www.xbow.com/
[6] Dantu K., Rahimi M.H., Shah H., Babel S., Dhariwal A.,

and Sukhatme G.S., “Robomote: Enabling mobility in
sensor networks”, In IPSN-SPOTS, 2005.

[7] Hasan A., Pisano W., Panichsakul S., Gray P., Huang
J-H., Han R., Lawrence D. and Mohseni K., “SensorFlock:
A Mobile System of Networked Micro-Air Vehicles”,
TR-CU-CS-1018-06, U. of Colorado at Boulder, 2006

[8] Hill J., Szewczyk R., Woo A., Hollar S., Culler D., Pister
K., “System Architecture Directions for Networked
Sensors”, In SIGOPS Operating Systems Review, Vol.34,
No.5, pp.93-104, 2000.

[9] Intanagonwiwat C., Govindan R. Estrin D., “Directed
diffusion: A scalable and robust communication paradigm
for sensor networks”, In MOBICOM, 2000.

[10] Intel Lab Data
http://db.csail.mit.edu/labdata/labdata.html

[11] Navarro-Serment, L.E., Grabowski, R., Paredis, C.J.J.,
and Khosla, P.K. “Millibots: The Development of a
Framework and Algorithms for a Distributed
Heterogeneous Robot Team,”, IEEE Robotics and
Automation Magazine, Vol. 9, No. 4, December 2002.

[12] Nittel S., Trigoni N., Ferentinos K., Neville F., Nural A.,
Pettigrew N., “A drift-tolerant model for data
management in ocean sensor networks”, In MobiDE, 2007.

[13] Madden S.R., Franklin M.J., Hellerstein J.M., Hong W.,
“The Design of an Acquisitional Query Processor for
Sensor Networks”, In SIGMOD, 2003.

[14] Madden S.R., Franklin M.J., Hellerstein J.M., Hong W.,
“TAG: a Tiny AGgregation Service for Ad-Hoc Sensor
Networks”, In OSDI, Vol.36, pp.131-146, 2002.

[15] Mani A., Rajashekhar M., Levis P. “TINX: a tiny index
design for flash memory on wireless sensor devices”, In
Sensys, 2006.

[16] Ratnasamy S., Karp B., Shenker S. Estrin D., Govindan
R., Yin L., Yu F., “Data centric storage in sensornets
with GHT, a geographic hash table”, In MONET, Vol. 8,
Iss. 4, pp. 427-442, 2003.

[17] Reynolds, C. W., “Flocks, Herds, and Schools: A
Distributed Behavioral Model”, In SIGGRAPH, 1987.

[18] Sadler C., Zhang P., Martonosi M., Lyon S., “Hardware
Design Experiences in ZebraNet”, In SenSys, 2004.

[19] Shenker S., Ratnasamy S., Karp B., Govindan R., Estrin
D., “Data-centric storage in sensornets”, In SIGCOMM
Computer Communication Review, Vol. 33 , Iss. 1,
pp.137-142, 2003.

[20] Szewczyk R., Mainwaring A., Polastre J., Anderson J.,
Culler D., “An Analysis of a Large Scale Habitat
Monitoring Application”, In SenSys, 2004.

[21] Yao Y., Gehrke J.E., “The cougar approach to in-network
query processing in sensor networks”, In SIGMOD
Record, Vol.32, No.3, pp.9-18, 2002.

[22] Zeinalipour-Yazti D., Andreou P., Chrysanthis P. and
Samaras G., “MINT Views: Materialized In-Network
Top-k Views in Sensor Networks”, In MDM, 2007.

[23] Zeinalipour-Yazti D., Lin S., Kalogeraki V., Gunopulos

D., Najjar W., “MicroHash: An Efficient Index Structure

for Flash-Based Sensor Devices”, In FAST, 2005.

18

