Replication-Aware Query Processing in Large-Scale
Distributed Information Systems

Jie Xu
Department of Computer Science
University of Pittsburgh

Xujie@cs.pitt.edu

ABSTRACT

In this work, we address the problem of replica selectionig d
tributed query processing over the Web, in the presence ef us
preferences for Quality of Service and Quality of Data. Intipa-

lar, we propose RAQP, which stands for Replication-Aware@u
Processing. RAQP uses an initial statically-optimizeddabplan,
and then selects the execution site for each operator andseails
lects which replica to use, thus converting the logical ptaan ex-
ecutable plan. Unlike prior work, we do not perform an extigas
search for the second phase, which allows RAQP to scal€fisigni
cantly better. Extensive experiments show that our schemeio-
vide improvements in both query response time and overalitgu
of QoS and QoD as compared to random site allocation with-iter
tive improvement.

1. INTRODUCTION

Alexandros Labrinidis
Department of Computer Science
University of Pittsburgh

labrinid@cs.pitt.edu

nario, many heterogeneous systems are glued togethditatatgy
the discovery and flow of critical information as a respomsader
requests.

To improve reliability, expedite data discovery, and irase per-
formance, replication is expected to play a major role igdascale
distributed information systems, like the one we are expgpfor
Secure-CITI. By replicating information across multipiees, cru-
cial information can be accessed even in cases of discdonect
failure, which is common during disaster response (and erogt
ronments that are exposed to nature). Replication alswsiifor
looser synchronization across multiple sites, which isessary if
the system spans different administrative or jurisdiciatomains,
which is typical in disaster management. In addition to daal-
ability, replication allows for easier discovery of infoation, es-
pecially when catalogs are not present or not well mainthine.,
the equivalent of unstructured overlay networks). Finatyplica-
tion is expected to drastically improve the overall perfance of

The Web has become the de-facto user interface and intercon-the system by reducing communication latency when reqaests

nection platform of modern life. Almost all collaborativdata-
intensive applications are built for the Web or face obsgukilany
data-intensive applications are fueled by data from thesigay
world, thanks to the proliferation of (wireless) sensohtealogies
which are giving an unprecedented level of access and titera
with the real world.

In our Secure-CITI project (http://www.cs.pitt.edu/si#gi we

served locally or from close-by nodes. As such, we expeatibst
“valuable” data to be highly replicated across the entirgteay.
Although replication increases data availability and ioyas per-
formance (i.e., Quality of Service, or QoS), it may have ainen-
tal effect to the Quality of the Data (QoD) that are being me¢al
to the users. Getting results fast is crucial of course, busally a
limit to the degree of “staleness”is needed to make the tessk-

envision a Web-based platform to be used to coordinate humanful. Approaches for measuring QoD are traditionally grodipgo

response to disaster management. There is a pre-disasippeo
nent where different types of sensors are deployed in a mkédo
fashion and are used to detect disasters (e.g., gas anduwsaige
suddenly increase dramatically which could indicate adidd in
that area). There is also a critical component during thereme
gency, where in addition to sensor information, the sameéegys
is expected to be used to provide additional informatiog.(day
providing real-time information about the capacity of atespi-
tals) and to coordinate human response (e.g., by idergjifiimat is
needed to perform a particular task and dynamically fornéagns
with the appropriate expertise to respond to it [2]). In sacdte-

*Funded in part by NSF ITR Medium Award (ANI 0325353).

Copyrightis held by the author/owner.
Ninth International Workshop on the Web and Databases (\Beb@D6),
June 30, 2006, Chicago, lllinois.

three categoriesime-basedwhere the time of last update is used),
divergence-base@vhere the difference in value is used), dag-
based(where the number of unapplied updates is used) [9]. We
concentrate on time-based measures of QoD, because weebelie
them to be the most general and the best fit for our case.

In this paper, we advocate going beyond simply measuring QoS
and QoD. We introduc®uality Contracts(QC) as a novel way
of specifying user preferences (with respectto QoS and Qoid)
evaluating the system’s adherence to them. The QC frameutiark
lizes a market-based mechanism, which has been used inghie pa
solve resource allocation problems in distributed systdrif As
such, it provides a natural and integrated way to guide tiséeay
towards efficient decisions that increase the overall usésfac-
tion. The QC framework also enables users to describe théve|
importance of different queries and also the relative irtgoare of
the different quality metrics (e.g., preference for fastvaers that
are slightly stale). This results in "socially” optimal stibns for
the entire system.

Using the QC framework, we propos®aplication-Aware Query
ProcessingRAQP) scheme that optimizes query execution plans
for distributed queries with Quality Contracts, in the mnese of
multiple replicas for each data source. Our scheme folldves t

classic two-step query optimization [12, 7, 8]: we starinira
statically-optimized logical execution plan and then g@pyreedy
algorithm to select an execution site for each operator dsal a
which replica to use. The overall optimization goal is exgse in
terms of "profit” under the QC framework (i.e., the approaelt b
ances the trade-off between QoS and QoD), and as a spedal cas
in terms of the traditional response time metric.

Worth
to user
$75

Worth
to user

$25

S0

Staleness
Degree (min)

Response
Time (min)

120 720
i $-25

We provide the assumed system architecture and the QC frame-

work in the next section. Section 3 contains the details 0RAQP
scheme. We present extensive experimental results inoBetti
Section 5 describes related work. We conclude in Section 6.

2. SYSTEM OVERVIEW
2.1 System Architecture

We envision a large-scale distributed information systehere
heterogeneity in all aspects is the norm. Such a system ecégp
to bring together (1) a myriad oéceptors that are sensing the en-
vironment (e.g., RFID readers or sensors), contributinguadmi
of information, (2) a high number afore nodeghat are providing
a stable communications, storage, and query processirsirate)
and, a plethora oénd-user access devicgs.g., mobile PDAS or
light-weight desktop machines) that are enabling theiraigecol-
laborate, contribute data and knowledge and cooperativehk
towards a common goal (e.g., disaster response).

We assume that each data item is "owned” by a specific node,

but there is rampant replication in the system for avaitgbind
performance reasons. To facilitate data discovery, welaiiting
indexes[4] to direct the queries towards the nodes thatgrected
to hold relevant data. Each node maintains a local indexnsaim
rizing its local content. Core nodes maintain second-ledsxes,
that summarize index information from all nodes that conmec
them, akin to a hybrid, unstructured P2P overlay networ§.(e.
Gnutella2). Core nodes can also exchange information arthemg,
building merged indexes to summarize information on othach-
able core nodes within a predefined horizon.

(a) QoS graph (b) QoD graph

Figure 1: QC example: combination of QoS and QoD require-
ments for one ad-hoc query

essentially specifies how much money the user is willing ¥ptpa

get their queries executed (according to their specifinatior QoS

and QoD). The amount of money paid to the server depends on how
well the query is fulfilled, based on the user’s preferences.

We model Quality Contracts as a collection of graphs. Each
graph represents a QoS/QoD requirement from the user. The X-
axis corresponds to an attribute that the users want to useelér
to measure the quality of the results, for example, resptimese
The Y-axis corresponds to the virtual money the user iswgllio
pay the server in order to execute his/her query. The QC gsaph
simply a function that maps quality (i.e., the user’s speatfon) to
virtual money (i.e., the server's reward). More than ong@bsxcan
be combined in a single QC, allowing for a user to considermul
tiple dimensions of quality of results, for example both Cafl
QoD. The benefit of such approach is that users can easilyfgpec
the relative importance of the different quality metricer Exam-
ple, 75% of the “budget” of a given query can be allocated t&Qo
with the remaining 25% given to QoD; in this scenario, thetesys
will give more attention to QoS instead of QoD (which will alse
considered though). A server is expected to get "paid” dygtal

Query processing in our system is performed at core nodes. Anthe sum of all the virtual money from the different QC graphs.

end-userwill send out a query message request along witlaityu
Contract (QC) and a Time-To-Live (TTL) that controls the max
imum number of hops the query could be routed in the network.
After receiving a query message, a core node first checksdtd |
index (in case it can answer the query), and then checks itgade
index (in case a neighbor code node can answer the querkiert t

is a match (while abiding with the specified QC) an acknowdedg
ment is sent back to the originator node which builds a quiny p
along with all the possible options for replicas. If thera@gmatch,

the query message is propagated further, until the TTL ishred.

2.2 Quality Contracts

In this work, we introduceQuality Contracts(QC) as a novel
way of specifying user preferences (with respect to QoS asid)Q
and evaluating the system’s adherence to them. The QC frarkew
utilizes a market-based mechanism, which has been useel ratt
to solve resource allocation problems in distributed systgl1].
In our framework, users are allocated virtual money, whiodyt
“spend”to execute their queries according to their speatifiois for
QoS (i.e., how fast they should get their results) and Qab, (how
fresh the results should be). Query servers (core nodes)itxe
queries and get virtual money in return for their servicelse QC
framework is general enough to also allow fefunds servers pay
virtual money back to the users if their queries were anstvere
an unsatisfying manner. In order to execute a query, botlsee

In this work, we use linear functions for QCs; this can ealsdy
extended to any monotonically decreasing function. Eachi€QC
composed of two quality metrics: response time (QoS) ard-sta
ness degree, measured as time elapsed since the last updBde (
An example of two such QC graphsis given in Figure 1a and 1b. In
this example, the user has allocated $75 for optimal QoS$abd
for optimal QoD.

2.3 Query Execution Plan

As in previous work [5], we assume that statistics regardirey
cardinalities of the relations and the selectivities of tperators
are available to the optimizer. We also assume that we canagst
the transmission cost between nodes and that it is relatstable,
so that the query optimizer can approximate the transnrssist
incurred in transferring data. To estimate the latency betwwo
arbitrary Internet end hosts, we utilize approaches froenrtat-
working community such as IDMaps[6] .

In this work, we extend traditional query execution planshwi
a transmission operatowhich will allow us to incorporate trans-
mission costs in the query optimization process in a natamnal
integrated way. Transmission operators simulating tragsion
cost are simply incorporated between each pair of procg%gin
erators in the query execution plan. In this paper, we cemnsitl
Select-Project-Join operators, however the framework &gd-
rithms can be easily extended to handle non-relationalatpes,

and the server must agree on a Quality Contract (QC). The QC e.g., for querying XML documents (XQuery).

Processing
Operator

Transmission
Operator

Candiﬁate
Sites

Figure 2: A query execution plan example

We present a QEP example in Figure 2. Processing operators

and transmission operators are depicted as circles. Catedides
(with replicas) are depicted as boxes. To generate an exgeut
QEP, we need to select one site for each processing operator.

3. RAQP ALGORITHM

Our Replication-Aware Query Processing (RAQP) scheme fol-
lows the traditional two-step query optimization schenh@[Bich
has been extensively used in distributed database systems (
XPRS[7] and Mariposa[12]). In the first phase, RAQP runs as if
in a centralized system, generating the best query planéretatic
point of view. In the second phase, RAQP dynamically chooses
a replica for each data item and the execution site for eaehyqu
operator, thus creating the final execution plan.

3.1 First Phase

In the first phase, we adoptthe classic dynamic programnting a
gorithm which has been proposed in system R[10]. However, we
have lifted the constraint of left-deep trees from the sysRopti-
mizer and we are also looking at bushy trees, which is morecapp
priate in distributed systems, since they increase thdlpksen.

3.2 Second Phase

In the second phase, we have two tasks to perform: replieasel
tion (at the leaf nodes) and execution site selection (fepttocess-
ing operators). We take the static query execution treeeddeom
static planning phase as input and generate the physicaltoe
plan as output.

Most previous work, assumed either that each data item Hgs on
one copy in the system, or that one replica has been selaitetip
query optimization[8]. In most cases, tReplica Selection Prob-
lem(RSP) has been neglected. We expect high degree of replicati
in the types of systems that we are interested in (e.g., Easter

MARK-OPT-DIR()
for each node i
doifiisaleaf
then LP(i) = Input_Size_i
else LP(i) = estimated_local_processing_i
PostOrderTraverse
//TR(%,7) : transmission amount fromito j;
for each arci — j
doW; ; = (1 —a)x LP(i) + o x TR(i,5)
for each node j
doif jisaleaf
then W;=0
else ¢ = Lchild(j); k = Rchild(j)
if (WZ] +W) > (Wk]-i-Wk)
thenW; = (WZ]+W) ():
else Wj = (Wk,j + Wg); M(5) =
return

Figure 3: Algorithm MARK-OPT-DIR

needs to be selected to form the best allocation.

- plX.)

seS

Mazx(B(alloc)

st. Vs€S, X,€{0,1} and VieD, Y X.,=1
SlieD

where B(alloc) is the sum of “profit” the processing node dets
fulfilling the quality contract.

Regarding site selection, previous work simply used extas
search to find the optimal allocation, since only one plani¢tvis
selected by the first phase) will be explored. However, when w
combine replica selection with site selection, exhaustearch is
prohibitive for this NP-hard problem.

In our algorithm, we treat RSP and site selection in an istegk
way. Our goal is to choose one site for each node in QEP, sthihat
final allocation is the best one in terms of either simply miizing
response time or maximizing the processing node’s profitkvhi
is measured by total benefit from QCs minus the money “spent”
on acquiring data. Specifically, we take query response tise
QoS and aggregated staleness for QoD. We aggregate stalgnes
selecting either the highest staleness over the top data ite the
average staleness of the top-k data items. Currently wensssu
that all replicas of a given data item have the same price laad t
same size. It is outside the scope of this work to determinetho
effectively select such prices.

3.2.1 Initial Query Allocation

Given a statically optimized query plan, we first determhmeeal-
location ordering. At each processing node, we set a flaglioate
our estimation of which subtree is more likely to be the leottck.
Next, we will allocate that subtree first.

Formally, we traverse the tree in post order, for eachiare j,
assign weight ag times the transmission cost between i and j plus

management), and as such, RSP is important. We define RSP for{1 — «) times the local processing cost at node i. For each inter-

mally as follows:

DEFINITION 1. Assume a set of data items, D{%, 2,..., n},
each of which has a set of replicas, S{;R R?,... , R}, where
i € D. Each repllcaR’ is a tuple(p, m%) Wherep is a price,
s is the site repllcaR] resides and]’ is the QoD of the replica.
The Replica Selection Problem (RSP) attempts to label egalita
as winning or losing, so as to maximize the processing nades
enue under the constraint that exactly one replica of eata dem

mediate node, we calculate the aggregate working load frach e
subtree and mark M(i) to indicate the most expensive onet If i
comes from left, M(i) = 0, otherwise M(i) = 1. This will be oupe
timization direction for future usex € (0, 1) is a dynamic tuning
factor to balance the transmission and processing cost. Sé&/e5u
in our experiment (i.e., giving equal importance). \We pdevihe
pseudo code for this MARK-OPT-DIR algorithm in Figure 3.
After the Query Execution Plan(QEP) is fully labelled, warst
allocating in a bottom-up fashion. We traverse the estithats-

TRI-ALLOC()
j = Lehild(i);
2 k= Rehild(i)
3 //BW(i,j) : bandwidth between i and j;
4 a=1/avg(C(3)), i€ S; USk
5 8=1/avg(BW(i,j)), i, j € S; US, andi # j
6 Tir = B x max(TR(j,4), TR(k,i))
7 Typ = a x min(LP(i), LP(j))
8 switch

9 caselyr /Ty, >60: //Bandwidth — Bound
10 if S Sy, # 0
11 thens = MC(S; U Sk)
12 LG)=L(j)=L(k)=s
13 else BW(m,n) = max(BW (z,y))
14 xeSj,yeSyandx #y
15 L(j)=m; L(k)=n
16 if TR(j,i) > TR(k,7)
17 then L(i) = m
18 else L(i)=n
19 casely, /Ty, <0: //CPU— Bound
20 if LP(j) > LP(k)
21 then C(p) = max(C(s)),s € Sj; L(j) =p
22 Clg) = max(C(s)), s € {5k — p; L(k) =
23 else C(q) = max(C(s)),s € Sg; L(k) =¢q
24 C(p) = max(C(s)),s € {Sj —q}; L(j) =p
25 C(r) = max(C(s)),s € {Ssts —p—q}; L) =7
26 return

Figure 4: Algorithm TRI-ALLOC

tleneck path by starting from the root, go to left if M(i)=Ond
go to right child otherwise, until we find the leaf (as depicite
Figure 2). We consider one triangle including three nodesres
allocation unit, and we start from the leaf, then its siblargl then
their parent. Next time will be their parent, their parersikling
and their grand-parent, and so forth. In each triangle, blildren
need to be either a leaf or both its subtrees to have beeratdlbc
otherwise we allocate the subtrees first.

For each triangle, two allocation algorithms are applied. Al
the first ondRAQP-L which exhaustively explores the local search
space to decide the optimal one. Alternatives include senoibth
relations to a third node, processing there; sending thdlemna-
lation to the larger one, processing there, and assignintyrale
nodes on the same site, so that local processing is the osy co

Another algorithm is a greedy one which we RAQP-G. For
each triangle, we calculate a score to estimate if this seityqu
is CPU-bound i.e., local processing is the bottleneck, lmand-

width-bound i.e, transmission cost dominates response time. If

it is bandwidth-bound, we try to get rid of transmission byp{r
cessing operators in groups. If the candidate sets of twidrehi
have an intersection, we allocate all three nodes on the sdene
If there is no intersection, we allocate the parent to theesaite
as the slowest child in the transmission. Whenever more dnan
site satisfies the condition, we choose the site which caverst
referenced data as the winner (since it has more of a chare to
improved in a later allocation), and use the QoD as the setiend
breaker. If it is CPU-bound, we try to spread jobs to différeites
so that the computation could be done in parallel. The twiolmn
choose the most powerful site from their own candidate sdeun
the constraint that they are allocated in different onese pérent
node is allocated to the most powerful site in the union o$itb-
tree’s candidate set under the constraintthat it's diffefl@m both
its children.

We give the pseudo code of this greedy algorithm Tri-Alloc in

of site t, MC(S) is the most covered site in set S and L(i) is the
running site we allocated for node i.

3.2.2 lterative Improvement

After an initial allocation is determined, we iterativelgljast the
bottleneck path/node according to our optimization goal.

As a special case, we optimize farsponse timethe traditional
performance metric. We first locate the real bottleneck path
der the initial allocation and try to improve the bottlenexde on
this path. If the most costly node is a processing node, thsre
two cases. If more than one operator is running on the cuyrent
allocated site, we offload the heaviest job to the most ligatled
site. If there is only one job running, we move the job to aroth
more powerful site. If the most costly node is a transmisgiote,
we remove that by merging the two processing nodes into tke on
which has lighter load between the two. After each adjustmen
the response time of the new plan is recalculated. The chiange
accepted if it leads to an improvement, and then the prosass i
peated. Otherwise, the improvement step stops and thentaire
location is returned as final one.

In general, our optimization goal is to maximize theerall “profit”
under the QCs. We need to consider both QoS and QoD in this
case. Our improvement step is divided into two substepst, Fire
locate and improve the bottleneck on responsetime in the szm
as described above. The modification will be accepted if dted t
profitis improved, otherwise we label this try as failed. @&t we
locate the bottleneck replicas in this plan based on thelesess
degree. Once found, we replace those replicas with othe thia¢
improve the overall QoD (thus satisfying more QCs). The pgsc
is repeated until neither QoS nor QoD can be further improved

| Simulation Parameter | Default Value |

Core Node Number 100
Edge Node Number 1000
Unique Data Source 1000

Unique Data Number Per Data Sourge U(10, 100)
Data Size U(20, 200Mb)

of Replicas Per Data U(10, 30)
Bandwidth between each pair of NodésU(1, 50Mbps)

Table 1: Default System Parameters in Experiments

4. EXPERIMENTAL STUDY

We evaluated our proposed replication-aware query pra@pss
algorithm experimentally by performing an extensive siatioh
study using the following algorithms:

e Exhaustive Search (ES):Explore the whole search space
exhaustively, thus guaranteeingto find the optimal aliocat

e RAQP-G: Greedy replication-aware initial allocation plus it-
erative improvement.

e RAQP-L: Bottleneck breakdown, local exhaustive search plus
iterative improvement.

e Rand(k): Random initial allocation plus k steps of iterative
improvement. In each step, the bottleneck node is identified
and a random replacement is selected, if our optimization
goalisimproved. We use it as a “sample” of the search space.

We implemented an initial prototype of our distributed syst
as described in section 2. The system parameters used incour e

Figure 4.S; is the candidate set of node i, C(t) is the CPU capacity periments are reported in Table 1.

450

——ES
400 @

. - m- RAQP-L
350 r o —A— RAQP—G
300 | N . —¥—Rand (5)
250 . - ®- Rand(1)

200 -
150
100
50

response time

N
o- .
~0---.9

10 20 30 40 50 60

replication density

Figure 5: Response time under various degree of replication

4.1 Optimizing for Response Time

In the first set of experiments, our optimization goal is tomi
imize the response time. We evaluate the different optiticina
algorithms under various circumstances. To avoid bias énréh
sults, we repeated each experiment 5 times with differemdom
seeds, and report the average values.

4.1.1 Effect of Replication Degree

We artificially varied the number of replicas per data itenthia
system. We optimize queries with 6 joining relations. Thalijy
of the resulting plans is reported in Figure 5. Clearly, oA al-
gorithms greatly outperformed Rand(5), and RAQP-L was bdtit
ter than RAQP-G. As expected, ES always finds the optimal plan
An obvious observation is that the quality of the resultitangs
is improved as the number of replicas is increased. Therenare
reasons. First, as the number of replicas increases, we @et m
nearby candidate sites (which improves response time)ori8ec
more replicas mean more candidate sites for execution,haihic
creases the search space (and improves the overall regpoage

4.1.2 Optimization Overhead

Exhaustive search can always find the optimal plan, howiser,
running time is prohibitive in large-scale systems. We fixied
number of replicas to 20 and looked at the running time o&dgfht
algorithms versus the quality of the resulting plans. Werepur
findings in Table 2(a). Clearly, ES took around 2 days to firel th
optimal plan, while our RAQP-G algorithm took around 70 ms.

We also report the optimization time for queries with 3 and 1
joins in Table 2(b) and 2(c). We found similar trends in aliei

| | ES [RAQP-L [RAQP-G | Rand(5)] Rand(1)]
resp. time| 11.62s | 49.23s 58.11s 233.2s | 346.5s
opt. time | 1.9days| 53min 70ms 28ms 15ms
total time | 1.9days| 54min 58.18s 233.2s | 346.5s

(a) Optimization time for queries with 6 joins

| | ES] RAQP-L [RAQP-G | Rand(5)] Rand(1)]
resp. time| 16.57s 20.34s 25.14s 87.08s | 94.25s
opt. time | 9.58min | 2.61min 33ms 20ms 11ms
total time | 9.86min | 2.95min 25.17s 87.1s 94.26s

(b) Optimization time for queries with 3 joins

| | ES [RAQP-L [RAQP-G [Rand(5)] Rand(1)]
resp. time| 10.38s| 10.87s 11.28s 20.01s | 25.27s
opt. time | 40ms 23ms 5ms 2ms 1ms
totaltime | 10.42s| 10.9s 11.28s 20.01s | 25.27s

(c) Optimization time for queries with 1 joins

Table 2: Optimization time for join queries

140
120 - .’ —e—15

- M- RAQP-L
—— RAQP-G
—¥—Rand (5)
- @- Rand(1)

100
80

60

response time

10 r

20

200 300

network size (node number)

400
Figure 6: Response time under various network sizes

experiments. We did not increase the number of joins beyond 6
as we would not have been able to compare with the exhaustive
algorithm.

4.1.3 Effect of Network Size

In the second set of experiments, we varied the network size t
observe the changes in optimization quality. In order toastiee
trend clearly, we chose 100 to 400 as the network size. The re-
sults are reported in Figure 6. A jump, from 100 to 200 makes
small difference in the relative quality change. Howevdrew the
network size increased to 300, 400, the random algorithrweto
much worse performance compared to others. The reason is whe
the system enlarges, our search space becomes sparsemurNot s
prisingly, the blind random search performed much worse tha
informed heuristic search. For the above sets of expersneve
also confirmed that our algorithm scaled very well in bothning
time and the optimization quality. RAQP is also relativetglde
under various network size and data loads.

4.2 Optimizing for Profit

In this set of experiments we tune our algorithms to optinfize
the overall QC profit instead of simply response time.

One of the important features Quality Contracts hold is tisatrs
can easily specify the relative importance of each comporfehe
overall quality by allocating the query budget accordindly or-
der to observe the algorithm performance under differeniren-
ments, we classify the users’ quality requirements intoa8#s.
We have three values for QoS and QoD: high (75), low (25), same
(50) and two types of slope for the QC function: small anddarg
which produce 6 seperate classes. Each data item had 2€aepli
We report our results in Figure 7.

Since our allocation initialization algorithm was aimedrat
sponse time improvement, QoS got more improvement than QoD
in all the cases. Especially when QoS was assigned highgetud
the effect on both QoS and total profit were obvious. When QoD
was assigned higher budget, the relative improvement of gle®
increased compared to the lower budget case.

Our results clearly confirmed the functionality of Qualitpi
tracts and our RAQP algorithm. Assigning higher "budget’ato
quality dimension ends in that dimension getting bettefguerance
by our optimization algorithm. The larger the budget difece the
larger the difference in the resulting quality. This is bébais
unique to our algorithm and is an important feature to haverwh
both QoS and QoD are of concern to users.

5. RELATED WORK

Mariposa[12]is the first distributed DBMS to use economitesoes
as the underlying paradigm. Queries are submitted to the-Mar
posa system with a bid curve on delay; a broker sends out séxjue

Profit
o
2
Profit
@
3
Profit

60 60 60
EQoD g
% o
40 B QoS 40 EQoS BQos

Rand(1) Rand(5) RAQP-G RAQP-L ES Rand(1) Rand(5) RAQP-G RAQP-L ES Rand(1) Rand(5) RAQP-G RAQP-L s

(a) QoS> QoD, QCslope:Large (b) QoS = QoD, QCslope:Large (c) QoS< QoD, QCslope:Large

Profit
a
S

Profit
@
=)

Profit
a
3

EQoS
% QoS 40 w0 BQoS

[
Rand(1) Rand(5) RAQP-G RAQP-L ES Rand(1) Rand(5) RAQP-G RAQP-L ES Rand(1) Rand(5) RAQP-G RAQP-L ES

(d) QoS> QoD, QCslope:Small (e) QoS = QoD, QCslope:Small (f) QoS < QoD, QCslope:Small

Figure 7: Total profit of the algorithms under different classes

collects bids and decides on the best plan; bidders aredised First International Workshop on Databases in Virtual

through name servers. The main difference from our workas th Organizations (DIVO 2004)une 2004. (held in conjunction

we addressed QoD as another quality measure. Second, viecappl with SIGMOD 2004).

different query processing schemes in our system. Thirdaweda [3] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, SelLe

the cost of building and maintaining name servers in ouresyst G. Seidman, M. Stonebraker, N. Tatbul, and S. B. Zdonik.
Another system close to ours is Borealis[1], a distributieelzen “Monitoring Streams - A New Class of Data Management

processing engine, which inherits stream processing ifumaltty Applications.”. In2002 VLDB conference

from Aurora[3]. Aurora adopted a utility-function based®model [4] A. Crespo and H. Garcia-Molina. “Routing Indices For

on the processing delay of output tuples. Borealis also onsais- Peer-to-Peer Systems”. 8002 ICDCS conference

dimensional quality metrics which could include resporiseet [5] A. Deshpande and J. M. Hellerstein. “Decoupled Query

quality of data and etc. The difference from our work (QCiatt
Borealis simply measures the overall quality by calcutatim ag-
gregated value from a global weight function, and the wefght

Optimization for Federated Database Systems2002
ICDE conference

Y A [6] P.Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt an
each quality dimension is fixed. In our work, each user carcate L. Zhang. “IDMaps: a global internet host distance
these weights and differentiate among queries and quaétyics. estimation servicelEEE/ACM Trans. Netw9(5):525-540

There is a lot of work on distributed query optimization, but 2001. '
g}erebpel;taoéglgrcggr?vfneggedlﬁﬁsrgut;‘;::trzétso address the qarobl [7] W. Hong and M. Stonebraker. “Optimization of Parallel

: Query Execution Plans in XPRS”. PDIS 1991, December,
1991, pages 218-225. IEEE Computer Society.

6. CONCLUSIONS AND FUTURE WORK [8] D. Kossmann. “The state of the art in distributed query

In this paper, we introduced Quality Contracts (QC) as ayinmf processing”ACM Comput. Sury32(4):422-469, 2000.
framework to enable users to specify their QoS and QoD requir [9] A. Labrinidis and N. Roussopoulos. “Exploring the traffe
ments and their relative importance. Additionally, we preed a between performance and data freshness in database-driven
replica-aware query processing scheme and demonstraaédt th Web servers”VLDB J, 13(3):240-255, 2004.

works fairly well for both optimization goals, response ¢irand [10] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
total profit from multi-dimensional quality requirementi this Lorie, and T. G. Price. “Access path selection in a relationa

paper, we focused on SPJ queries, however, we believe the pro database management system”18vY9 SIGMOD

posed framework and algorithms can be easily extended tercov conference

XML data and XQuery. [11] J. Shneidman, C. Ng, D. C. Parkes, A. AuYoung, et al. “Why

Markets Could (But Don’t Currently) Solve Resource
7. REFERENCES Allocation Problems in Systems”. IHotOS X June 2005.
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, et al [12] \I;/I.g;ome%raé;ar, :D M. "2‘10:"\\(/\/' ,|j|\'/|t\N'r.1’ A. I?’feffe_(rj, A. Sah

“The Design of the Borealis Stream Processing Engine”. In d.' tl'bet, d'd tag In, an ‘ .nTE. Vljggo‘]sa' aV‘I" €-area
2005 CIDR conferengdanuary 2005. IStributed database systenihe ourng

[2] A. Berfield, P. K. Chrysanthis, and A. Labrinidis. 5(1):048-063, 1996.

“Automated Service Integration for Crisis Management”. In

