
Replication-Aware Query Processing in Large-Scale
Distributed Information Systems ∗

Jie Xu
Department of Computer Science

University of Pittsburgh

xujie@cs.pitt.edu

Alexandros Labrinidis
Department of Computer Science

University of Pittsburgh

labrinid@cs.pitt.edu

ABSTRACT
In this work, we address the problem of replica selection in dis-
tributed query processing over the Web, in the presence of user
preferences for Quality of Service and Quality of Data. In particu-
lar, we propose RAQP, which stands for Replication-Aware Query
Processing. RAQP uses an initial statically-optimized logical plan,
and then selects the execution site for each operator and also se-
lects which replica to use, thus converting the logical planto an ex-
ecutable plan. Unlike prior work, we do not perform an exhaustive
search for the second phase, which allows RAQP to scale signifi-
cantly better. Extensive experiments show that our scheme can pro-
vide improvements in both query response time and overall quality
of QoS and QoD as compared to random site allocation with itera-
tive improvement.

1. INTRODUCTION
The Web has become the de-facto user interface and intercon-

nection platform of modern life. Almost all collaborative,data-
intensive applications are built for the Web or face obscurity. Many
data-intensive applications are fueled by data from the physical
world, thanks to the proliferation of (wireless) sensor technologies
which are giving an unprecedented level of access and interaction
with the real world.

In our Secure-CITI project (http://www.cs.pitt.edu/s-citi/), we
envision a Web-based platform to be used to coordinate human
response to disaster management. There is a pre-disaster compo-
nent where different types of sensors are deployed in a networked
fashion and are used to detect disasters (e.g., gas and waterusage
suddenly increase dramatically which could indicate a landslide in
that area). There is also a critical component during the emer-
gency, where in addition to sensor information, the same system
is expected to be used to provide additional information (e.g., by
providing real-time information about the capacity of areahospi-
tals) and to coordinate human response (e.g., by identifying what is
needed to perform a particular task and dynamically formingteams
with the appropriate expertise to respond to it [2]). In sucha sce-

∗Funded in part by NSF ITR Medium Award (ANI 0325353).

Copyright is held by the author/owner.
Ninth International Workshop on the Web and Databases (WebDB 2006),
June 30, 2006, Chicago, Illinois.

nario, many heterogeneous systems are glued together, facilitating
the discovery and flow of critical information as a response to user
requests.

To improve reliability, expedite data discovery, and increase per-
formance, replication is expected to play a major role in large-scale
distributed information systems, like the one we are exploring for
Secure-CITI. By replicating information across multiple sites, cru-
cial information can be accessed even in cases of disconnection or
failure, which is common during disaster response (and mostenvi-
ronments that are exposed to nature). Replication also allows for
looser synchronization across multiple sites, which is necessary if
the system spans different administrative or jurisdictional domains,
which is typical in disaster management. In addition to dataavail-
ability, replication allows for easier discovery of information, es-
pecially when catalogs are not present or not well maintained (i.e.,
the equivalent of unstructured overlay networks). Finally, replica-
tion is expected to drastically improve the overall performance of
the system by reducing communication latency when requestsare
served locally or from close-by nodes. As such, we expect themost
“valuable” data to be highly replicated across the entire system.

Although replication increases data availability and improves per-
formance (i.e., Quality of Service, or QoS), it may have a detrimen-
tal effect to the Quality of the Data (QoD) that are being returned
to the users. Getting results fast is crucial of course, but usually a
limit to the degree of “staleness” is needed to make the results use-
ful. Approaches for measuring QoD are traditionally grouped into
three categories:time-based(where the time of last update is used),
divergence-based(where the difference in value is used), andlag-
based(where the number of unapplied updates is used) [9]. We
concentrate on time-based measures of QoD, because we believe
them to be the most general and the best fit for our case.

In this paper, we advocate going beyond simply measuring QoS
and QoD. We introduceQuality Contracts(QC) as a novel way
of specifying user preferences (with respect to QoS and QoD)and
evaluating the system’s adherence to them. The QC frameworkuti-
lizes a market-based mechanism, which has been used in the past to
solve resource allocation problems in distributed systems[11]. As
such, it provides a natural and integrated way to guide the system
towards efficient decisions that increase the overall user satisfac-
tion. The QC framework also enables users to describe the relative
importance of different queries and also the relative importance of
the different quality metrics (e.g., preference for fast answers that
are slightly stale). This results in ”socially” optimal solutions for
the entire system.

Using the QC framework, we propose aReplication-Aware Query
Processing(RAQP) scheme that optimizes query execution plans
for distributed queries with Quality Contracts, in the presence of
multiple replicas for each data source. Our scheme follows the

classic two-step query optimization [12, 7, 8]: we start from a
statically-optimized logical execution plan and then apply a greedy
algorithm to select an execution site for each operator and also
which replica to use. The overall optimization goal is expressed in
terms of ”profit” under the QC framework (i.e., the approach bal-
ances the trade-off between QoS and QoD), and as a special case,
in terms of the traditional response time metric.

We provide the assumed system architecture and the QC frame-
work in the next section. Section 3 contains the details of our RAQP
scheme. We present extensive experimental results in Section 4.
Section 5 describes related work. We conclude in Section 6.

2. SYSTEM OVERVIEW

2.1 System Architecture
We envision a large-scale distributed information system,where

heterogeneity in all aspects is the norm. Such a system is expected
to bring together (1) a myriad ofreceptors, that are sensing the en-
vironment (e.g., RFID readers or sensors), contributing a tsunami
of information, (2) a high number ofcore nodesthat are providing
a stable communications, storage, and query processing substrate,
and, a plethora ofend-user access devices(e.g., mobile PDAs or
light-weight desktop machines) that are enabling their users to col-
laborate, contribute data and knowledge and cooperativelywork
towards a common goal (e.g., disaster response).

We assume that each data item is ”owned” by a specific node,
but there is rampant replication in the system for availability and
performance reasons. To facilitate data discovery, we build routing
indexes[4] to direct the queries towards the nodes that are expected
to hold relevant data. Each node maintains a local index, summa-
rizing its local content. Core nodes maintain second-levelindexes,
that summarize index information from all nodes that connect to
them, akin to a hybrid, unstructured P2P overlay network (e.g.,
Gnutella2). Core nodes can also exchange information amongthem,
building merged indexes to summarize information on other reach-
able core nodes within a predefined horizon.

Query processing in our system is performed at core nodes. An
end-user will send out a query message request along with a Quality
Contract (QC) and a Time-To-Live (TTL) that controls the max-
imum number of hops the query could be routed in the network.
After receiving a query message, a core node first checks its local
index (in case it can answer the query), and then checks its merged
index (in case a neighbor code node can answer the query). If there
is a match (while abiding with the specified QC) an acknowledg-
ment is sent back to the originator node which builds a query plan
along with all the possible options for replicas. If there isno match,
the query message is propagated further, until the TTL is reached.

2.2 Quality Contracts
In this work, we introduceQuality Contracts(QC) as a novel

way of specifying user preferences (with respect to QoS and QoD)
and evaluating the system’s adherence to them. The QC framework
utilizes a market-based mechanism, which has been used in the past
to solve resource allocation problems in distributed systems [11].
In our framework, users are allocated virtual money, which they
“spend” to execute their queries according to their specifications for
QoS (i.e., how fast they should get their results) and QoD (i.e., how
fresh the results should be). Query servers (core nodes) execute
queries and get virtual money in return for their services. The QC
framework is general enough to also allow forrefunds: servers pay
virtual money back to the users if their queries were answered in
an unsatisfying manner. In order to execute a query, both theuser
and the server must agree on a Quality Contract (QC). The QC

Worth

to user

$0

$75

$-75

 Response

Time (min)

2010

(a) QoS graph

Worth

to user

$0

$25

$-25
 Staleness

Degree (min)

2010

(b) QoD graph

Figure 1: QC example: combination of QoS and QoD require-
ments for one ad-hoc query

essentially specifies how much money the user is willing to pay to
get their queries executed (according to their specifications for QoS
and QoD). The amount of money paid to the server depends on how
well the query is fulfilled, based on the user’s preferences.

We model Quality Contracts as a collection of graphs. Each
graph represents a QoS/QoD requirement from the user. The X-
axis corresponds to an attribute that the users want to use inorder
to measure the quality of the results, for example, responsetime.
The Y-axis corresponds to the virtual money the user is willing to
pay the server in order to execute his/her query. The QC graphis
simply a function that maps quality (i.e., the user’s specification) to
virtual money (i.e., the server’s reward). More than one graphs can
be combined in a single QC, allowing for a user to consider mul-
tiple dimensions of quality of results, for example both QoSand
QoD. The benefit of such approach is that users can easily specify
the relative importance of the different quality metrics. For exam-
ple, 75% of the “budget” of a given query can be allocated to QoS
with the remaining 25% given to QoD; in this scenario, the system
will give more attention to QoS instead of QoD (which will also be
considered though). A server is expected to get ”paid” equally to
the sum of all the virtual money from the different QC graphs.

In this work, we use linear functions for QCs; this can easilybe
extended to any monotonically decreasing function. Each QCis
composed of two quality metrics: response time (QoS) and stale-
ness degree, measured as time elapsed since the last update (QoD).
An example of two such QC graphs is given in Figure 1a and 1b. In
this example, the user has allocated $75 for optimal QoS, and$25
for optimal QoD.

2.3 Query Execution Plan
As in previous work [5], we assume that statistics regardingthe

cardinalities of the relations and the selectivities of theoperators
are available to the optimizer. We also assume that we can estimate
the transmission cost between nodes and that it is relatively stable,
so that the query optimizer can approximate the transmission cost
incurred in transferring data. To estimate the latency between two
arbitrary Internet end hosts, we utilize approaches from the net-
working community such as IDMaps[6] .

In this work, we extend traditional query execution plans with
a transmission operatorwhich will allow us to incorporate trans-
mission costs in the query optimization process in a naturaland
integrated way. Transmission operators simulating transmission
cost are simply incorporated between each pair of processing op-
erators in the query execution plan. In this paper, we considered
Select-Project-Join operators, however the framework andalgo-
rithms can be easily extended to handle non-relational operators,
e.g., for querying XML documents (XQuery).

0

11

01

Transmission

Operator

Processing

Operator

Candidate

Sites

Mark

3 117

11 64 2 85

5 96

115 64

Figure 2: A query execution plan example

We present a QEP example in Figure 2. Processing operators
and transmission operators are depicted as circles. Candidate sites
(with replicas) are depicted as boxes. To generate an executable
QEP, we need to select one site for each processing operator.

3. RAQP ALGORITHM
Our Replication-Aware Query Processing (RAQP) scheme fol-

lows the traditional two-step query optimization scheme[8] which
has been extensively used in distributed database systems (e.g.,
XPRS[7] and Mariposa[12]). In the first phase, RAQP runs as if
in a centralized system, generating the best query plan froma static
point of view. In the second phase, RAQP dynamically chooses
a replica for each data item and the execution site for each query
operator, thus creating the final execution plan.

3.1 First Phase
In the first phase, we adopt the classic dynamic programming al-

gorithm which has been proposed in system R[10]. However, we
have lifted the constraint of left-deep trees from the system R opti-
mizer and we are also looking at bushy trees, which is more appro-
priate in distributed systems, since they increase the parallelism.

3.2 Second Phase
In the second phase, we have two tasks to perform: replica selec-

tion (at the leaf nodes) and execution site selection (for the process-
ing operators). We take the static query execution tree created from
static planning phase as input and generate the physical execution
plan as output.

Most previous work, assumed either that each data item has only
one copy in the system, or that one replica has been selected prior to
query optimization[8]. In most cases, theReplica Selection Prob-
lem(RSP) has been neglected. We expect high degree of replication
in the types of systems that we are interested in (e.g., for disaster
management), and as such, RSP is important. We define RSP for-
mally as follows:

DEFINITION 1. Assume a set of data items, D ={1, 2,. . . , m},
each of which has a set of replicas, S ={R1

i , R2

i ,. . . ,Rn
i }, where

i ∈ D. Each replicaRj
i is a tuple〈pj

i , s
j
i , q

j
i 〉 wherep

j
i is a price,

s
j
i is the site replicaRj

i resides andqj
i is the QoD of the replica.

The Replica Selection Problem (RSP) attempts to label each replica
as winning or losing, so as to maximize the processing node’srev-
enue under the constraint that exactly one replica of each data item

M ARK-OPT-DIR()
1 for each node i
2 do if i is a leaf
3 then LP (i) = Input Size i
4 else LP (i) = estimated local processing i
5 PostOrderT raverse
6 //TR(i, j) : transmission amount from i to j;
7 for each arc i → j
8 do Wi,j = (1 − α) × LP (i) + α × TR(i, j)
9 for each node j

10 do if j is a leaf
11 then Wj = 0
12 else i = Lchild(j); k = Rchild(j)
13 if (Wi,j + Wi) ≥ (Wk,j + Wk)
14 then Wj = (Wi,j + Wi); M (j) = 0
15 else Wj = (Wk,j + Wk); M (j) = 1
16 return

Figure 3: Algorithm MARK-OPT-DIR

needs to be selected to form the best allocation.

Max(B(alloc) −
X

s∈S

p
j
iXs)

s.t. ∀s ∈ S, Xs ∈ {0, 1} and ∀i ∈ D,
X

S|i∈D

Xs = 1

where B(alloc) is the sum of “profit” the processing node getsfor
fulfilling the quality contract.

Regarding site selection, previous work simply used exhaustive
search to find the optimal allocation, since only one plan (which is
selected by the first phase) will be explored. However, when we
combine replica selection with site selection, exhaustivesearch is
prohibitive for this NP-hard problem.

In our algorithm, we treat RSP and site selection in an integrated
way. Our goal is to choose one site for each node in QEP, so thatthe
final allocation is the best one in terms of either simply minimizing
response time or maximizing the processing node’s profit which
is measured by total benefit from QCs minus the money “spent”
on acquiring data. Specifically, we take query response timeas
QoS and aggregated staleness for QoD. We aggregate staleness by
selecting either the highest staleness over the top data items or the
average staleness of the top-k data items. Currently we assume
that all replicas of a given data item have the same price and the
same size. It is outside the scope of this work to determine how to
effectively select such prices.

3.2.1 Initial Query Allocation
Given a statically optimized query plan, we first determine the al-

location ordering. At each processing node, we set a flag to indicate
our estimation of which subtree is more likely to be the bottleneck.
Next, we will allocate that subtree first.

Formally, we traverse the tree in post order, for each arci → j,
assign weight asα times the transmission cost between i and j plus
(1 − α) times the local processing cost at node i. For each inter-
mediate node, we calculate the aggregate working load from each
subtree and mark M(i) to indicate the most expensive one. If it
comes from left, M(i) = 0, otherwise M(i) = 1. This will be our op-
timization direction for future use.α ∈ (0, 1) is a dynamic tuning
factor to balance the transmission and processing cost. We use .5
in our experiment (i.e., giving equal importance). We provide the
pseudo code for this MARK-OPT-DIR algorithm in Figure 3.

After the Query Execution Plan(QEP) is fully labelled, we start
allocating in a bottom-up fashion. We traverse the estimated bot-

TRI-ALLOC()
1 j = Lchild(i);
2 k = Rchild(i)
3 //BW (i, j) : bandwidth between i and j;
4 α = 1/avg(C(i)), i ∈ Sj

S

Sk

5 β = 1/avg(BW (i, j)), i, j ∈ Sj

S

Sk and i 6= j
6 Ttr = β × max(TR(j, i), TR(k, i))
7 Tlp = α × min(LP (i), LP (j))
8 switch
9 caseTtr/Tlp ≥ θ : //Bandwidth− Bound

10 if Sj

T

Sk 6= ∅
11 then s = MC(Sj

S

Sk)
12 L(i) = L(j) = L(k) = s
13 else BW (m,n) = max(BW (x,y))
14 x ∈ Sj , y ∈ Sk and x 6= y
15 L(j) = m; L(k) = n
16 if TR(j, i) > TR(k, i)
17 then L(i) = m
18 else L(i) = n
19 caseTtr/Tlp < θ : //CPU − Bound
20 if LP (j) ≥ LP (k)
21 then C(p) = max(C(s)), s ∈ Sj ; L(j) = p
22 C(q) = max(C(s)), s ∈ {Sk − p}; L(k) = q
23 else C(q) = max(C(s)), s ∈ Sk ; L(k) = q
24 C(p) = max(C(s)), s ∈ {Sj − q}; L(j) = p
25 C(r) = max(C(s)), s ∈ {Sst i − p − q}; L(i) = r
26 return

Figure 4: Algorithm TRI-ALLOC

tleneck path by starting from the root, go to left if M(i)=0, and
go to right child otherwise, until we find the leaf (as depicted in
Figure 2). We consider one triangle including three nodes asone
allocation unit, and we start from the leaf, then its siblingand then
their parent. Next time will be their parent, their parent’ssibling
and their grand-parent, and so forth. In each triangle, bothchildren
need to be either a leaf or both its subtrees to have been allocated,
otherwise we allocate the subtrees first.

For each triangle, two allocation algorithms are applied. We call
the first oneRAQP-L which exhaustively explores the local search
space to decide the optimal one. Alternatives include sending both
relations to a third node, processing there; sending the smaller re-
lation to the larger one, processing there, and assigning all three
nodes on the same site, so that local processing is the only cost.

Another algorithm is a greedy one which we callRAQP-G. For
each triangle, we calculate a score to estimate if this subquery
is CPU-bound, i.e., local processing is the bottleneck, orband-
width-bound, i.e, transmission cost dominates response time. If
it is bandwidth-bound, we try to get rid of transmission by pro-
cessing operators in groups. If the candidate sets of two children
have an intersection, we allocate all three nodes on the samesite.
If there is no intersection, we allocate the parent to the same site
as the slowest child in the transmission. Whenever more thanone
site satisfies the condition, we choose the site which coversmost
referenced data as the winner (since it has more of a chance tobe
improved in a later allocation), and use the QoD as the secondtie
breaker. If it is CPU-bound, we try to spread jobs to different sites
so that the computation could be done in parallel. The two children
choose the most powerful site from their own candidate set under
the constraint that they are allocated in different ones. The parent
node is allocated to the most powerful site in the union of itssub-
tree’s candidate set under the constraint that it’s different from both
its children.

We give the pseudo code of this greedy algorithm Tri-Alloc in
Figure 4.Si is the candidate set of node i, C(t) is the CPU capacity

of site t, MC(S) is the most covered site in set S and L(i) is the
running site we allocated for node i.

3.2.2 Iterative Improvement
After an initial allocation is determined, we iteratively adjust the

bottleneck path/node according to our optimization goal.
As a special case, we optimize forresponse time, the traditional

performance metric. We first locate the real bottleneck pathun-
der the initial allocation and try to improve the bottlenecknode on
this path. If the most costly node is a processing node, thereare
two cases. If more than one operator is running on the currently
allocated site, we offload the heaviest job to the most light-loaded
site. If there is only one job running, we move the job to another
more powerful site. If the most costly node is a transmissionnode,
we remove that by merging the two processing nodes into the one
which has lighter load between the two. After each adjustment,
the response time of the new plan is recalculated. The changeis
accepted if it leads to an improvement, and then the process is re-
peated. Otherwise, the improvement step stops and the current al-
location is returned as final one.

In general, our optimization goal is to maximize theoverall “profit”
under the QCs. We need to consider both QoS and QoD in this
case. Our improvement step is divided into two substeps. First, we
locate and improve the bottleneck on response time in the same way
as described above. The modification will be accepted if the total
profit is improved, otherwise we label this try as failed. Second, we
locate the bottleneck replicas in this plan based on their staleness
degree. Once found, we replace those replicas with other ones that
improve the overall QoD (thus satisfying more QCs). The process
is repeated until neither QoS nor QoD can be further improved.

Simulation Parameter Default Value
Core Node Number 100
Edge Node Number 1000
Unique Data Source 1000

Unique Data Number Per Data Source U(10, 100)
Data Size U(20, 200Mb)

of Replicas Per Data U(10, 30)
Bandwidth between each pair of NodesU(1, 50Mbps)

Table 1: Default System Parameters in Experiments

4. EXPERIMENTAL STUDY
We evaluated our proposed replication-aware query processing

algorithm experimentally by performing an extensive simulation
study using the following algorithms:

• Exhaustive Search (ES):Explore the whole search space
exhaustively, thus guaranteeing to find the optimal allocation.

• RAQP-G: Greedy replication-aware initial allocation plus it-
erative improvement.

• RAQP-L: Bottleneck breakdown, local exhaustive search plus
iterative improvement.

• Rand(k): Random initial allocation plus k steps of iterative
improvement. In each step, the bottleneck node is identified
and a random replacement is selected, if our optimization
goal is improved. We use it as a “sample” of the search space.

We implemented an initial prototype of our distributed system,
as described in section 2. The system parameters used in our ex-
periments are reported in Table 1.

0

50

100

150

200

250

300

350

400

450

10 20 30 40 50 60

replication density

r
e
s
p
o
n
s
e

t
i
m
e

ES

RAQP-L

RAQP-G

Rand(5)

Rand(1)

Figure 5: Response time under various degree of replication

4.1 Optimizing for Response Time
In the first set of experiments, our optimization goal is to min-

imize the response time. We evaluate the different optimization
algorithms under various circumstances. To avoid bias in the re-
sults, we repeated each experiment 5 times with different random
seeds, and report the average values.

4.1.1 Effect of Replication Degree
We artificially varied the number of replicas per data item inthe

system. We optimize queries with 6 joining relations. The quality
of the resulting plans is reported in Figure 5. Clearly, our RAQP al-
gorithms greatly outperformed Rand(5), and RAQP-L was a bitbet-
ter than RAQP-G. As expected, ES always finds the optimal plan.

An obvious observation is that the quality of the resulting plans
is improved as the number of replicas is increased. There aretwo
reasons. First, as the number of replicas increases, we get more
nearby candidate sites (which improves response time). Second,
more replicas mean more candidate sites for execution, which in-
creases the search space (and improves the overall responsetime).

4.1.2 Optimization Overhead
Exhaustive search can always find the optimal plan, however,its

running time is prohibitive in large-scale systems. We fixedthe
number of replicas to 20 and looked at the running time of different
algorithms versus the quality of the resulting plans. We report our
findings in Table 2(a). Clearly, ES took around 2 days to find the
optimal plan, while our RAQP-G algorithm took around 70 ms.

We also report the optimization time for queries with 3 and 1
joins in Table 2(b) and 2(c). We found similar trends in all three

ES RAQP-L RAQP-G Rand(5) Rand(1)
resp. time 11.62s 49.23s 58.11s 233.2s 346.5s
opt. time 1.9days 53min 70ms 28ms 15ms
total time 1.9days 54min 58.18s 233.2s 346.5s

(a) Optimization time for queries with 6 joins

ES RAQP-L RAQP-G Rand(5) Rand(1)

resp. time 16.57s 20.34s 25.14s 87.08s 94.25s
opt. time 9.58min 2.61min 33ms 20ms 11ms
total time 9.86min 2.95min 25.17s 87.1s 94.26s

(b) Optimization time for queries with 3 joins

ES RAQP-L RAQP-G Rand(5) Rand(1)
resp. time 10.38s 10.87s 11.28s 20.01s 25.27s
opt. time 40ms 23ms 5ms 2ms 1ms
total time 10.42s 10.9s 11.28s 20.01s 25.27s

(c) Optimization time for queries with 1 joins

Table 2: Optimization time for join queries

0

20

40

60

80

100

120

140

100 200 300 400

network size (node number)

r
e
s
p
o
n
s
e

t
i
m
e

ES

RAQP-L

RAQP-G

Rand(5)

Rand(1)

Figure 6: Response time under various network sizes

experiments. We did not increase the number of joins beyond 6
as we would not have been able to compare with the exhaustive
algorithm.

4.1.3 Effect of Network Size
In the second set of experiments, we varied the network size to

observe the changes in optimization quality. In order to show the
trend clearly, we chose 100 to 400 as the network size. The re-
sults are reported in Figure 6. A jump, from 100 to 200 makes
small difference in the relative quality change. However, when the
network size increased to 300, 400, the random algorithm showed
much worse performance compared to others. The reason is when
the system enlarges, our search space becomes sparser. Not sur-
prisingly, the blind random search performed much worse than our
informed heuristic search. For the above sets of experiments, we
also confirmed that our algorithm scaled very well in both running
time and the optimization quality. RAQP is also relatively stable
under various network size and data loads.

4.2 Optimizing for Profit
In this set of experiments we tune our algorithms to optimizefor

the overall QC profit instead of simply response time.
One of the important features Quality Contracts hold is thatusers

can easily specify the relative importance of each component of the
overall quality by allocating the query budget accordingly. In or-
der to observe the algorithm performance under different environ-
ments, we classify the users’ quality requirements into 6 classes.
We have three values for QoS and QoD: high (75), low (25), same
(50) and two types of slope for the QC function: small and large,
which produce 6 seperate classes. Each data item had 20 replicas.
We report our results in Figure 7.

Since our allocation initialization algorithm was aimed atre-
sponse time improvement, QoS got more improvement than QoD
in all the cases. Especially when QoS was assigned higher budget,
the effect on both QoS and total profit were obvious. When QoD
was assigned higher budget, the relative improvement of QoDalso
increased compared to the lower budget case.

Our results clearly confirmed the functionality of Quality Con-
tracts and our RAQP algorithm. Assigning higher ”budget” toa
quality dimension ends in that dimension getting better performance
by our optimization algorithm. The larger the budget difference the
larger the difference in the resulting quality. This is behavior is
unique to our algorithm and is an important feature to have when
both QoS and QoD are of concern to users.

5. RELATED WORK
Mariposa[12] is the first distributed DBMS to use economic schemes

as the underlying paradigm. Queries are submitted to the Mari-
posa system with a bid curve on delay; a broker sends out requests,

0

10

20

30

40

50

60

70

80

90

100

P
ro
fi
t

Rand(1) Rand(5) RAQP-G RAQP-L ES

QoD

QoS

(a) QoS≫ QoD, QCslope:Large

0

10

20

30

40

50

60

70

80

90

100

P
ro
fi
t

Rand(1) Rand(5) RAQP-G RAQP-L ES

QoD

QoS

(b) QoS = QoD, QCslope:Large

0

10

20

30

40

50

60

70

80

90

100

P
ro
fi
t

Rand(1) Rand(5) RAQP-G RAQP-L ES

QoD

QoS

(c) QoS≪QoD, QCslope:Large

0

10

20

30

40

50

60

70

80

90

100

P
ro
fi
t

Rand(1) Rand(5) RAQP-G RAQP-L ES

QoD

QoS

(d) QoS≫ QoD, QCslope:Small

0

10

20

30

40

50

60

70

80

90

100

P
ro
fi
t

Rand(1) Rand(5) RAQP-G RAQP-L ES

QoD

QoS

(e) QoS = QoD, QCslope:Small

0

10

20

30

40

50

60

70

80

90

100

P
ro
fi
t

Rand(1) Rand(5) RAQP-G RAQP-L ES

QoD

QoS

(f) QoS≪ QoD, QCslope:Small

Figure 7: Total profit of the algorithms under different classes

collects bids and decides on the best plan; bidders are discovered
through name servers. The main difference from our work is that
we addressed QoD as another quality measure. Second, we applied
different query processing schemes in our system. Third, weavoid
the cost of building and maintaining name servers in our system.

Another system close to ours is Borealis[1], a distributed stream
processing engine, which inherits stream processing functionality
from Aurora[3]. Aurora adopted a utility-function based QoS model
on the processing delay of output tuples. Borealis also usesmulti-
dimensional quality metrics which could include response time,
quality of data and etc. The difference from our work (QC) is that
Borealis simply measures the overall quality by calculating an ag-
gregated value from a global weight function, and the weightfor
each quality dimension is fixed. In our work, each user can allocate
these weights and differentiate among queries and quality metrics.

There is a lot of work on distributed query optimization, butto
the best of our knowledge, we are the first to address the problem
of replica selection under quality guarantees.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced Quality Contracts (QC) as a unifying

framework to enable users to specify their QoS and QoD require-
ments and their relative importance. Additionally, we proposed a
replica-aware query processing scheme and demonstrated that it
works fairly well for both optimization goals, response time and
total profit from multi-dimensional quality requirements.In this
paper, we focused on SPJ queries, however, we believe the pro-
posed framework and algorithms can be easily extended to cover
XML data and XQuery.

7. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, et al.

“The Design of the Borealis Stream Processing Engine”. In
2005 CIDR conference, January 2005.

[2] A. Berfield, P. K. Chrysanthis, and A. Labrinidis.
“Automated Service Integration for Crisis Management”. In

First International Workshop on Databases in Virtual
Organizations (DIVO 2004), June 2004. (held in conjunction
with SIGMOD 2004).

[3] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. B. Zdonik.
“Monitoring Streams - A New Class of Data Management
Applications.”. In2002 VLDB conference.

[4] A. Crespo and H. Garcia-Molina. “Routing Indices For
Peer-to-Peer Systems”. In2002 ICDCS conference.

[5] A. Deshpande and J. M. Hellerstein. “Decoupled Query
Optimization for Federated Database Systems”. In2002
ICDE conference.

[6] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. “IDMaps: a global internet host distance
estimation service”.IEEE/ACM Trans. Netw., 9(5):525–540,
2001.

[7] W. Hong and M. Stonebraker. “Optimization of Parallel
Query Execution Plans in XPRS”. InPDIS 1991, December,
1991, pages 218–225. IEEE Computer Society.

[8] D. Kossmann. “The state of the art in distributed query
processing”.ACM Comput. Surv., 32(4):422–469, 2000.

[9] A. Labrinidis and N. Roussopoulos. “Exploring the tradeoff
between performance and data freshness in database-driven
Web servers”.VLDB J., 13(3):240–255, 2004.

[10] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. “Access path selection in a relational
database management system”. In1979 SIGMOD
conference.

[11] J. Shneidman, C. Ng, D. C. Parkes, A. AuYoung, et al. “Why
Markets Could (But Don’t Currently) Solve Resource
Allocation Problems in Systems”. InHotOS X, June 2005.

[12] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah,
J. Sidell, C. Staelin, and A. Yu. “Mariposa: a wide-area
distributed database system”.The VLDB Journal,
5(1):048–063, 1996.

