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ABSTRACT

Data Stream Management Systems (DSMS) typically host multiple
Continuous Queries (CQ) that process streams of data. In this pa-
per, we examine the problem of how to schedule CQs in a DSMS
to optimize for average QoS. We show that unlike standard on-line
systems, scheduling policies in DSMSs that optimize for average
response time will be different than policies that optimize for av-
erage slowdown which is more appropriate metric to use in the
presence of a heterogeneous workload. We also propose a hybrid
scheduling policy based on slowdown that strikes a fine balance be-
tween performance and fairness. We further discuss how our poli-
cies can be efficiently implemented and extended to exploit sharing
in optimized multi-query plans and multi-stream CQs. Finally, we
experimentally show using real data that our policies outperform
currently used ones.

1. INTRODUCTION

The growing need for monitoring applications has led to a new
data processing paradigm and created a new generation of data pro-
cessing systems, called Data Stream Management Systems (DSMSs)
that can support continuous queries (CQ). In such systems, each
monitoring application registers a set of CQs that continuously pro-
cess continuous data streams looking for data that represent events
of interest to the end-user.

Currently, we are developing a DSMS, called AQSIQOS, that can
help support monitoring applications such as the real-time detec-
tion of disease outbreaks, tracking the stock market, environmental
monitoring via sensor networks, and personalized and customized
Web pages. One of the main goals in the design of AQSIOS is the
development of a scheduling policy that optimizes Quality of Ser-
vice (QoS).

This goal is complicated by the fact that the scheduling policy
must take into account that the CQs are heterogeneous, i.e., they
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may have different time complexities (the amount of processing
required to find if input data represents an event), and different
productivity or selectivity (the number of events detected by the
CQ). For example, consider two CQs, GOOGLE and ANALYSI Son
streams of stock market data. GOOGLE is a simple query that asks
the DSMS to be notified when there is a stock quote for GOOGLE.
ANALYSI Sis a complex query that asks the application to provide
some specific technical analysis for any new stock price. Obvi-
ously, GOOGLE has low cost and it detects less events, whereas
ANALYSI S has high cost and it detects more events.

The mostly commonly used QoS metric in the literature is av-
erage response time. In [19], we showed that if the objective is to
optimize the response time, then the “right” strategy is to sched-
ule CQs according to their output rate. Specifically, in [19] we
presented a new scheduling policy called Highest Rate (HR). HR
generalizes the Rate-based policy (RB) [23] for scheduling opera-
tors in multiple CQs as opposed to RB that has been proposed for
scheduling operators within a single query. Under HR, the priority
of a query is set to its output rate where the output rate of the query
is the ratio between its expected selectivity and its expected cost.

However, there are some well known disadvantages to the aver-
age response time metric when the workload is heterogeneous. In
the above example, the user that issued the ANALYSI Squery likely
knows that it is a complex query, and is expecting a higher response
time than the user that issued the GOOGLE query. A metric that cap-
tures this phenomenon is average slowdown. The slowdown of a
job is the response time of the job to the ideal processing time of
the job [17]. So, for example, if each job had slowdown 1.1, then
each user would experience a 10% delay due to queuing (although
the responses could be very different).

Interestingly, in most on-line systems (e.g., Web servers), Shortest-
Remaining-Processing-Time (SRPT) is one policy that is optimal
for average response time and near optimal for average slowdown
[17]. A surprising discovery of this paper is that this is not the case
with the HR policy that optimizes average response time of CQs.
In general, HR will not optimize average slowdown because of the
“probabilistic” nature of CQs where the selectivity might not equal
to 1. In this paper, we argue that if the objective is to optimize av-
erage slowdown then the “right” scheduling strategy is to set the
priority of a query to the ratio of its selectivity over the product of
its expected cost and its ideal total processing cost.

The average slowdown provided by the DSMS captures the ave-
rage-case performance of the system. However, improving the ave-
rage-case performance usually comes at the expense of unfairness
toward certain classes of queries that might experience starvation.
Starvation is typically captured by measuring the maximum slow-
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down of the system [8]. That is, the perceived worst-case perfor-
mance.

Starvation is an unacceptable behavior in a DSMS that supports
monitoring applications where all kinds of events are equally im-
portant. Hence, it is important to balance the trade-off between the
average-case and worst-case performances of the DSMS. Toward
this, we propose a hybrid scheduling policy that optimizes the ¢
norm of slowdowns [7]. As such, it is able to strike a fine bal-
ance between the average- and worst-case performances and hence
it avoids starvation and exhibits higher degree of fairness.

In addition to new scheduling policies, we consider two special
features that are unique to CQs and should be exploited by the
query scheduler. First, we address the scheduling of multi-stream
queries with time-based sliding window join operators. We formu-
late the definition of slowdown for composite tuples produced by
join operators and extend our proposed scheduling policies to han-
dle such multi-stream queries. Second, we consider the scheduling
of multiple queries with shared operators where we show that a
proper setting of the priority of shared operators significantly im-
proves the system performance.

Contributions The contributions of this paper can be summarized
as follows:

1. We propose a policy for scheduling multiple CQs that maxi-
mizes the average-case performance of a DSMS.

2. We propose a hybrid policy that strikes a fine balance be-
tween the average- and worst-case performances.

3. We consider two issues that are very particular to DSMSs.
Namely, we propose: (1) extending our proposed policies to
handle multi-stream continuous queries; and (2) exploiting
sharing in optimizing multi-query plans.

4. To ensure that our proposed hybrid policy can be efficiently
realized in AQSIOS, we propose a low-overhead implemen-
tation which uses clustering in addition to efficient search
pruning techniques from [3, 12].

Our extensive experimental evaluation using real and synthetic
data shows the significant gains provided by our proposed poli-
cies under different QoS measures compared to existing scheduling
policies in DSMSs.

Road Map Section 2 provides the system model. Section 3 and 4
define our QoS metrics and presents our proposed scheduling poli-
cies. Section 5 focuses on multi-stream queries. In Section 6 and
7, we discuss implementation details and extend our work to con-
sider queries with shared operators. Sections 8 and 9 discusses our
simulation testbed and our experimental results. Section 10 surveys
related work.

2. SYSTEM MODEL

In a DSMS, users register continuous queries that are executed
as new data arrives. Data arrives in the form of continuous streams
from different data sources. where the arrival of new data is similar
to an insertion operation in traditional database systems. A DSMS
is typically connected to different data sources and a single stream
might feed more than one query.

A continuous query evaluation plan can be conceptualized as a
data flow tree [10, 5], where the nodes are operators that process
tuples and edges represent the flow of tuples from one operator
to another (Figure 1). An edge from operator O, to operator O,
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Figure 1: Continuous Queries Plans

means that the output of O, is an input to O,. Each operator is
associated with a queue where input tuples are buffered until they
are processed.

Multiple queries with common sub-expressions are usually merged
together to eliminate the repetition of similar operations [18]. For
example, Figure 1 shows the global plan for two queries @, and
Q2. Both queries operate on data streams M; and M2 and they
share the common sub-expression represented by operators O1, O2
and Os.

A single-stream query Q. has a single leaf operator OF and a
single root operator OF, whereas a multi-stream query has a single
root operator and more than one leaf operators. In a query plan Qy,
an operator segment E’;,y is the sequence of operators that starts at
O% and ends at OF. If the last operator on EY , is the root operator,
then we simply denote that operator segment as E*. Additionally,
EF represents an operator segment that starts at the leaf operator
OF and ends at the root operator OF. For example, in Figure 1,
El =< 01, 03,04 >, whereas E? =< 01, O3, Os >.

In a query, each operator OF (or simply O.) is associated with
two parameters:

1. Processing cost or Processing time (c.): is the amount of
time needed to process an input tuple.

2. Selectivity or Productivity (s;): is the number of tuples pro-
duced after processing one tuple for c,, time units. s, is less
than or equal to 1 for a filter operator and it could be greater
than 1 for a join operator.

Given a single-stream query @) which consists of operators
<Of,..., 0k, 0%, ...,0F > (Figure 1), we define the following char-
acterizing parameters for any operator OF (or equivalently, for any
operator segment E¥ that starts at operator OF):

e Operator Global Selectivity (S¥): is the number of tuples
produced at the root OF after processing one tuple along op-

erator segment E¥.
SﬁzsﬁXsI;x...XSf

e Operator Global Average Cost (5];): is the expected time
required to process a tuple along an operator segment E¥.

a’; = (c’;) + (c’; X 5’;) + ...+ (c],f X s x .. x sf)



If OF is a leaf operator (x = [), when a processed tuple actually

satisfies all the filters in EF, then @f represents the ideal total pro-
cessing cost or time incurred by any tuple produced or emitted by

query Q. In this case, we denote 5f as Ty:

e Tuple Processing Time (7%): is the ideal total processing
cost required to produce a tuple by query Q.

To=cl 4.+t +cf

We extend the above parameters for multi-stream queries in Sec-
tion 5.

3. AVERAGE-CASE PERFORMANCE

In this section, we focus on QoS for single-stream queries and
present our scheduling policies for optimizing these metrics. Multi-
stream queries are discussed in Section 5.

3.1 Response Time Metric

In DSMSs, the arrival of a new tuple triggers the execution of one
or more CQs. Processing a tuple by a CQ might lead to discarding
it (if it does not satisfy some filter) or it might lead to producing
one or more tuples at the output which means that the input tuple
represents an event of interest to the user who installed the CQ.
Clearly, in DSMS, it is more appropriate to define response time
from data/event perspective rather than from query perspective as
in traditional DBMSs. Hence, we define the tuple response time or
tuple latency as follows:

DEFINITION 1. Tuple response time, R;, for tuple ¢; is R; =
D; — A;, where A; is t;’s arrival time and D; is ¢;’s output time.

Accordingly, the average response time for NV tuples is: % Zf\;l R;.

Notice that tuples that are filtered out do not contribute to the metric
as they do not represent any event [22].

3.2 Slowdown Metric

Average response time is an expressive metric in a homogeneous
setting. That is, when all tuples require the same processing time.
In a heterogeneous workload, as in our system, the processing re-
quirements for different tuples may vary significantly and average
response time is not an appropriate metric since it cannot relate
the time spent by a tuple in the system to its processing require-
ments. Other on-line systems with heterogeneous workloads such
as DBMSs, OS, and Web servers have adopted average slowdown
or stretch [17] as another metric. This motivated us to consider
stretch as the metric in our system.

The definition of slowdown was initiated by the database com-
munity in [16] for measuring the performance of a DBMS execut-
ing multi-class workloads. Formally, the slowdown of a job is the
ratio between the time a job spends in the system to its processing
demands [17]. In DSMS, we define the slowdown of a tuple as
follows:

DEFINITION 2. The slowdown, H;, for tuple t; produced by
query Qg is H;, = % where R; is t;’s response time and T} is its
ideal processing time. Accordingly, the average slowdown for N
tuples is: —>°1" | Hi.

Intuitively, in a general purpose DSMS where all events are of
the same importance, a simple event (i.e., event detected by a low-
cost CQ) should be detected faster than a complex event (i.e., event
detected by a high-cost CQ) since the latter contributes more to the
load on the DSMS.
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3.3 Highest Normalized Rate Policy (HNR)

Based on the above definitions, we developed the Highest Nor-
malized Rate (HNR) policy for minimizing average slowdown.

To illustrate the intuition underlying HNR, consider two operator
segments E% and EJ starting at operators O, and O, respectively.
For each of the two operator segments, we compute its global selec-
tivity and global average cost as described above. Further, assume
that the current wait time for the tuple at the head of O%’s queue is
W and for the tuple at the head of O} s queue is W;.

In a policy A where E, is executed before E, the total slow-
down of tuples produced under this policy is:

)

where S% and S is the number of tuples produced by E% and E7
respectively, and H; and H4 ; are the slowdowns of the EZ tu-
ples and the E; tuples respectively.

Recall that the slowdown of a tuple is the ratio between the time
it spent in the system to its ideal processing time. Hence, H 4,; and
H 4,; are computed as follows:

HA:S; XHA,i-i-SZ X Ha,j

o+ Ty + Wi
T;

Ha,j

where T, is the amount of time EJ will spend waiting for E7, to
finish execution. By substitution in (1),
o+ Ty + Wi

T;

T+ W}

HA:S;X T

+ Si X
Similarly, under an alternative policy B, where E3 is executed be-
fore ¢, the total slowdown Hz is:

T, + W]

T;

6§+Ti+W;§

HB:SiX 7

+ 5% x

In order for H 4 to be less than H s, then the following inequality
must be satisfied:

. —i ) aj
S;><%<S;><T? )
J i

The left-hand side of Inequality 2 shows the increase in total
slowdown incurred by the tuples produced by EJ when E., is exe-
cuted first. Similarly, the right-hand side shows the increase in total
slowdown incurred by the tuples produced by E: when E{, is exe-
cuted first. The inequality implies that between the two alternative
execution orders, we should select the one that minimizes the in-
crease in the total slowdown. That is, we should select the segment
with the smallest negative impact on the other one.

Thus, in our HNR policy, each operator OF is assigned a priority
V¥ which is the weighted rate or normalized rate of the operator
segment E¥ that starts at operator OF and it is defined as:

1 Sk
_ Ss

Cy

@)

The term S*/C" is basically the global output rate (G RE) of
the operator segment starting at operator OF as defined in [23]. As
such, the priority of each operator OF is its normalized output rate,
or equivalently, the normalized output rate of the operator segment
EP starting at O%. Hence, executing O implies the pipelined exe-
cution of all the operators on E* unless it is interrupted by a higher
priority operator as we will describe in Section 6.
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Figure 2: The output of Example 1

3.4 HNRvs. HR

It is interesting to notice that if the objective is optimizing the re-
sponse time, then the ideal total processing cost 7" should be elimi-
nated from the denominators of all the above equations resulting in
setting the priority V,* of operator OF to:

Sy
I
In fact, this is the prioritizing function we use in our Highest Rate
(HR) policy for optimizing the response time [19] (as mentioned
in the Introduction). As such, HR schedules jobs in descending
order of output rate which might result in a high average slowdown
because a low cost query can be assigned a low priority since it is
not productive enough. Those few tuples produced by this query
will all experience a high slowdown, with a corresponding increase
in the average slowdown of the DSMS.

Our policy HNR, like HR, is based on output rate, however, it
also emphasizes the ideal tuple processing time in assigning prior-
ities. As such, an inexpensive operator segment with low produc-
tivity will get a higher priority under HNR than under HR.

1% = GR* @)

Example 1 To further illustrate the difference between the HR and
the HNR policies, let us consider an example where we have two
queries @1 and Q2. Each query consists of a single operator. For
Q1, the cost of the operator is 5 ms and its selectivity is 1.0. For Q2,
the cost of the operator is 2 ms and its selectivity is 0.33. Further,
assume that there are 3 pending tuples to be processed by the 2
queries and that all 3 tuples have arrived at time 0.

Under the HR policy, Q1’s priority is % = 0.2, whereas Q2’s
priority is 232 = 0.1667 (which is the output rate of each query).
Figure 2(A) shows the queries’ output under the HR policy where
Q1 is executed first and it accepted/emitted all the pending 3 tuples,
then @2 is executed and it only accepted one of the 3 pending tuples
(since its selectivity is 0.33) and say it was the middle one.

Under the HNR policy, Q1’s priority is ﬁ = 0.04, whereas
Q2’s priority is 7322 = 0.08. Hence, under HNR, Q> is sched-
uled before @1 resulting in the output shown in Figure 2(B).

Table 1 shows that HNR provides the lower average slowdown
compared to HR. The reason is that the one tuple accepted by Q-
experienced a slowdown of % = 2.0 under HNR while its slow-

down under HR is % = 9.5. This unfairness of HR toward Q-
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| | Response Time [ Slowdown |

HR 12.25 3.875
HNR 13.0 2.9

Table 1: Results of Example 1

resulted in a higher overall average slowdown compared to HNR.

3.5 HNRvs. HRvs. SRPT

It should be clear that under HR, if all the operators’ selectivi-
ties are equal to one, then Equation 4 is simply the inverse of the
processing time. Hence, in this case, HR is equivalent to SRPT.
Similarly, if all the operators’ selectivities are equal to one, then
in Equation 3, C'- is equal to 7, and O:. is executed before o) if
1/(T3)? > 1/(T;)?. By taking the square root of both sides, then
HNR is also equivalent to SRPT.

The above observation shows the effect of the selectivity param-
eter on this problem. That is, under a probabilistic workload, HR
reduces the response time, whereas, HNR reduces the slowdown.
However, as the workload becomes deterministic, both HR and
HNR converge to a single policy which is the SRPT policy.

4. AVERAGE-CASE VS.WORST-CASE PER-
FORMANCE

Here, we first define the worst-case performance and a policy
that minimizes it. Then, we introduce our scheduling policy for
balancing the trade-off between the average- and worst-case per-
formance.

4.1 \Worst-case Performance

It is expected that a scheduling policy that strives for minimiz-
ing the average-case performance might lead to a poor worst-case
performance under a relatively high load. That is, some queries (or
tuples) might starve under such a policy. Such a worst-case perfor-
mance is typically measured using maximum slowdown [8].

DEFINITION 3. The maximum slowdown for N tuples is
max(Hl, HQ, ) HN).

Intuitively, a policy that optimizes for the worst-case performance
should be pessimistic. That is, it assumes the worst-case scenario
where each processed tuple will satisfy all the filters in the corre-
sponding query. An example of such a policy is the Longest Stretch
First (LSF) [2]. Under LSF, each operator O is assigned a priority
V¥ which is computed as:

Wk
:Tk

where ¥ is the wait time of the tuple at the head of OF’s input
queue and T is the ideal processing cost for that tuple.

LSF is a greedy policy under which the priority assigned to an
operator OF is basically the current slowdown of the tuple at the
top of OF’s input queue, where the current slowdown of a tuple is
the ratio of the time the tuple has been in the system thus far to its
processing time.

4.2 Balancing the Trade-off between Average-
case and Worst-case Performance

A policy that strikes a fine balance between the average-case and
worst-case performance needs a metric that is able to capture this
trade-off. In this section, we first present such a metric, then we de-
scribe our proposed scheduling policy which optimizes that metric.

v )



4.2.1 The ¢, Norm Metric

On one hand, the average value for a QoS metric provided by
the system represents the expected QoS experienced by any tuple
in the system (i.e., the average-case performance). On the other
hand, the maximum value measures the worst QoS experienced by
some tuple in the system (i.e., the worst-case performance). It is
known that each of these metrics by itself is not enough to fully
characterize the system performance.

To get a better understanding of the system performance, we
need to look at both metrics together or, alternatively, we can use
a single metric that captures both of these metrics. The most com-
mon way to capture the trade-off between the average-case and the
worst-case performance is to measure the £2 norm [7]. Specifically,
the £2 norm of slowdowns is defined as:

DEFINITION 4. The £ norm of slowdowns for IV tuples is equal

to /SN H2.

The definition shows how the ¢2 norm considers the average in
the sense that it takes into account all values, yet, by considering
the second norm of each value instead of the first norm, it penalizes
more severely outliers compared to the average slowdown metric.

4.2.2 A Scheduling Policy for Balancing the Perfor-
mance Trade-off

In order to balance the trade-off between the average- and worst-
case performance, we are proposing a new scheduling policy that
minimizes the ¢ norm of slowdowns. We will call this new policy
Balance Slowdown (BSD). To understand the intuition underlying
BSD, we will use the same technique from the previous section but
with the objective of minimizing the £2 norm of slowdowns.

Specifically, consider a policy A where operator segment EZ, is
executed before operator segment E; The ¢2 norm of slowdowns
of tuples produced under this policy is:

La=/Si x (Has)? + S5 x (Ha,)?

where S, Ha i, Sy, and H 4 ; are calculated as in Section 3. Sim-
ilarly, we can compute L which is the £2 norm of slowdowns of
tuples produced under policy B. In order for L4 to be less than
L, then the following inequality must be satisfied:

Sj . — Si . .
— QW) 2T+ C,) < = (2W, +27,+C))
Cy (Tj)2 Cr (TZ)2

As an approximation, we drop (27 +5;) and (2Ti+ﬁi) from the
above inequality which yields to:

S Wy
C; Tj Tj

Sy

C.T;

T

Hence, under our proposed policy BSD, each operator OF is as-
signed a priority value V,* which is the product of the operator’s
normalized rate and the current highest slowdown of its pending
tuples. That is:

Sk

- <U§Tk> (MT/:)

Notice that the term Sf/@ZTk is the normalized output rate of op-
erator OF as defined in (3), whereas the term W% /T, is the current
highest slowdown experienced by a tuple in O%’s input queue. As
such, under BSD, an operator is selected either because it has a
high weighted rate or because its pending tuples have acquired a

Vk

(6)
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high slowdown. This makes our proposed heuristic a hybrid be-
tween our previous policy for reducing the average slowdown (i.e.,
HNR) and the greedy heuristic to optimize maximum slowdown
(i.e., LSF). Comparing the priority used in BSD to that used by
HNR, we find that BSD considers the waiting time of tuples, and
gives greater emphasis to the cost.

5. MULTI-STREAM QUERIES

In this section, we extend our work to handle multi-stream queries
which contain Join operators and specifically, time-based sliding
window joins. To simplify the discussion, we assume Symmetric
Hash Join (SHJ) [25, 14] which is a non-blocking, in-memory join
processing algorithm.

To illustrate the semantics of a time-based sliding window join,
let us assume a sliding window continuous query @ that performs
a join between two streams M; and M, with a window interval
V. Each tuple that arrives at the system has a timestamp which is
either assigned by the data source or the DSMS. For such a query
Q, when a tuple ¢ arrives at stream M, it will be compared against
the tuples from M, that are within V' time units from ¢’s timestamp
[5, 10]. Out of those tuples, the ones that satisfy the join predicate
are streamed up the query plan.

To use SHJ for performing the join operation in the query de-
scribed above, hash tables H'T; and HT,. are defined over streams
M, and M., respectively. As a tuple ¢ with timestamp ¢.¢s arrives
at one of the streams (say M;), it is first hashed and inserted into
HT;, then the hash value is used to probe HT, for tuples with
matching key. Out of those matching tuples, each tuple that satis-
fies the window predicate is concatenated to the input tuple ¢ and a
new composite tuple is generated.

5.1 Metrics For Joins

Now, we extend the metrics described in Section 3 for composite
tuples generated by multi-stream queries.

5.1.1 Response Time of Joined Tuples

Definition 1 can be used directly to measure the response time of
a composite tuple as long as the arrival time is defined. This arrival
time is easily defined by considering the dependency between the
two joined tuples. That is, the composite tuple cannot be generated
until the arrival of the second one (similarly to [5]). Hence,

DEFINITION 5. The arrival time A; of a composite tuple ¢, that
is produced from concatenating two tuples ¢; and ¢, with arrival
times A; and A, respectively is equal to max(A;, A-).

Thus, the response time R; for tuple ¢; is R, = D; — A;, where
D; is the tuple output time and A; is the arrival time.

5.1.2 Slowdown of Joined Tuples

In order to measure the slowdown of a composite tuple produced
by a multi-stream query Qy, we first need to identify the ideal pro-
cessing time T}, incurred by such a tuple. For simplicity, in this sec-
tion, we drop the query identifier from our notation. To compute
Ty, let us consider a query consisting of four components (Fig-
ure 3): (1) a join operator O; (2) a left operator segment preced-
ing the join operator Er,; (3) a right operator segment preceding
the join operator E'r; and (4) a common operator segment follow-
ing the join operator down to the query root Ec. Each of these
segments might compose of one or more operators. In the simplest
case when each segment is composed of one operator, the query
plan looks like @1 or Q2 in Figure 1.

A tuple that is generated by such a query is the result of concate-
nating two tuples ¢; and ¢, received from the left and right inputs,



Figure 3: An example of a multi-stream query plan

respectively. The tuple ¢; is first processed by Er, then at O, the
hash, insert, and probe operations are performed on ¢;. Similarly,
t, is processed by Er and O,. Ultimately, the concatenated tuple
generated by the join is processed by E«. Hence,

DEFINITION 6. The ideal processing time T} of a composite
tuple processed by a multi-stream query @ composed of join op-
erator Oy, a left segment Er, a right segment E'r, and a common
segment E¢ is defined as:

T, =CL+Cr+(2xCy)+Cc

where Cr, Cr, Cjy, and C¢ are the ideal total processing costs of
the operators in Er,, Er, O, and E¢ respectively.

To compute the slowdown of a tuple it is important not to penal-
ize the DSMS for the dependency delay. That is, the time that the
first tuple has to spend waiting for the arrival of its matching tuple.
As such, we define the slowdown incurred by a composite tuple ¢,
produced by a multi-stream query Q. as follows:

actual ideal

Hi=1+ 7
k

where D#¢t#e! is the actual departure time of the composite tuple
which includes: 1) processing time; 2) dependency delay; and 3)
queuing delay, whereas Di%* is the ideal departure time of the
composite tuple if it were the only tuple in the system and it in-
cludes all the components in Dg<t“! except for the queuing delay.

5.2 Scheduling Multi-stream Queries

In order to solve the problem of scheduling multi-stream queries,
we follow the same technique in [23, 5] where we reduce the prob-
lem to that of scheduling individual segments. Specifically, we
view a multi-stream query as a set of disjoint virtual single-stream
queries and assign a priority value to each operator in these virtual
queries.

However, computing such priorities requires global knowledge
about the selectivity of the multi-stream query. Specifically, we
need to re-define the prioritizing parameters .S, and C. in the pres-
ence of windowed-join operators. As such, let us consider a multi-
stream query @ which contains a join operator O and operator
segments Er,, Er, and Ec as shown in Figure 3. Further, assume
that the selectivities of the operators in @) are known, hence, we
can compute the segments’ global selectivities Sy, Sr, and Sc.
Finally, assume that data arrives at the left and right streams with
mean inter-arrival times 7; and 7., respectively and that the query
performs a time-based windowed join where the window interval is
denoted by V' time units.
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For scheduling, we view the above query as two operator seg-
ments E'r.r, and Ergr Where Er;, =< FEr,Oy, Ec>and Err =<
ERr,Oy,Ec >. For simplicity, assume we are implementing a
non-preemptive scheduling policy, then it is sufficient to compute
the priority values for the leaf operators in Err, and Frgr. Let O,
be the leaf operator in Erz, then the parameters S, and C, are
defined as follows:

e Global Selectivity S, is the number of tuples produced due
to processing one tuple down segment E', 1, and is defined as
follows:

Sy = Su x Sy x (S x L) x Se
TR
where (Sg X %) estimates the number of tuples present in
hash table H'T'. at any point of time (as in [14, 5]).

e Global Average Cost C, is the expected time required to
process an input tuple along segment E'r, and is defined as:

Cz:CL-‘r(SL XCJ)+(SL X S; X Sgp X 1 XCc)
TR

where the first two terms define the cost for processing the

input tuple, and the third term is the cost for processing all

the tuples generated by concatenating the input tuple with the

matching tuples in HT;..

Using the above parameters as well as the total processing time
parameter computed in Definition 6, we set the priority of each
operator according to the used scheduling policy as in Sections 3
and 4. For multi-stream queries with multiple join operators, the
above parameters are defined recursively.

6. IMPLEMENTATION ISSUES

At each scheduling point, our scheduler is invoked to decide
which operator to execute next. The definition of a scheduling point
depends on the scheduling level as follows:

e Query-level Scheduling: where the scheduling point is reached
when a query finishes processing a tuple (i.e., non-preemptive)

e Operator-level Scheduling: where the scheduling point is
reached when an operator finishes processing a tuple (i.e.,
preemptive).

6.1 Priority Dynamics under HNR

Under HNR, the priority given to each operator is static over
time. Thus, the scheduler simply keeps a sorted list of pointers
to operators. At each scheduling point, the scheduler traverses the
list in order and selects for execution the first operator with pending
tuples.

In the query-level scheduling, it is sufficient to only keep a list of
the priorities of leaf operators where the priority of a leaf operator
O, is basically the normalized output rate of segment E;.

In the operator-level scheduling, the scheduler might decide to
proceed with the next operator O, on the currently executing query
or to execute a leaf operator in another query for which new tuples
have arrived. As such, it is required to keep a list of the priorities of
all operators, where the priority of operator O, is computed as the
normalized output rate of the segment of operators starting at O,
and ending at the root as shown in Section 3.



6.2 Priority Dynamics under BSD

Recall, the priority of an operator O, under BSD depends on its
static normalized output rate and the current slowdown of its pend-
ing tuple where the latter increases with time. The increase in the
current slowdown for different tuples happens at different rates ac-
cording to each tuple’s current wait time (177) and ideal processing
cost (7). As such, the priority of each operator under BSD should
be re-computed at any instant of time. However, such an imple-
mentation renders BSD very impractical. An obvious way to reduce
such an overhead is to implement BSD using a query-level sched-
uler; this approximation will reduce the frequency of scheduling
points, however it is not enough. For instance, if there are ¢ in-
stalled CQs, then at each scheduling point the scheduler will have
to compute the priorities for ¢ leaf operators. Next, we describe
techniques for an efficient implementation of BSD.

6.2.1 Search Space Reduction

Notice that the priority of an operator under the non-preemptive
implementation of BSD can be expressed by the product of two

components: WX and S_’;/(U}; x T#) where the former is dynamic,
while the latter is static which we will denote as ®,.

To reduce the search space, we divide the domain of priorities
into clusters where each cluster covers a certain range in the priority
spectrum. An operator belongs to a cluster if its priority falls within
the range covered by the cluster. Then each cluster is assigned a
new priority and all operators within a cluster inherit that priority.

Using clustering is a well know technique to reduce the search
space for dynamic schedulers. In the particular context of DSMSs,
Aurora uses a uniform clustering method for its QoS-aware sched-
uler. However, uniform clustering has the drawback of grouping
together operators with large differences in their priorities. For
example, if the priority domain is [1, 100] and we want to divide
it into 2 clusters, then we will end up with clusters covering the
ranges [1,50] and [50,100]. Notice how the ratio between the high-
est and lowest priority in the second cluster is only 2, whereas that
ratio in the first cluster goes up to 50.

In this paper, we propose to logarithmically divide the domain
of priorities into clusters, where the priorities of the operators that
belong to the same cluster are within a maximum value € from each
other. Specifically, the first cluster will cover the priority range
[, €'], the second covers [¢", €] etc.. In general, a cluster i will
cover the priority range [e €71 where a cluster i is assigned a
pseudo priority equal to ¢* and an operator O, will belong to cluster
iifel < P, < €L,

The number of resulting clusters depends on ¢ and A, where
A is the ratio between the highest and the lowest priorities in the
priority domain. Hence, the number of clusters m is: m = lzii;(é))-
For example, if the priority domain is [1,100], then at e = 10,
the number of clusters is equal to 2 where the first cluster covers
the priorities [1,10] and the second covers [10,100]. As one can see
from this example, the ratio between the highest and lowest priority
in each cluster is equal to € (i.e., 10) as opposed to 2 and 50 when
using uniform clustering.

Given such a clustering method, when a new tuple arrives, in-
stead of routing it to the input queue of a leaf operator OF, it is
routed to the input queue of the cluster that contains OF. Then at
each scheduling point, the priority of each cluster is computed us-
ing the W of the oldest tuple in the cluster’s input queue and the
cluster’s pseudo priority.

6.2.2 Search Space Pruning
The clustering method reduces the complexity of the scheduler
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from O(q) to O(m), however, we can do even better by pruning
the search space. Towards this, we use the same method used in
the RXW policy [3] and later generalized by Fagin’s Algorithm (FA)
which quickly finds the exact answer for top k queries [12].

FA quickly finds the exact answer for top k queries in a database
where each object has g grades, one for each of its g attributes, and
some aggregation function that combines the grades into an overall
grade. FA requires that for each attribute there is a sorted list which
lists each object and its grade under that attribute in descending
order. In this paper, we do not present the details of FA, but we
show how to map our search space to that required by FA.

As mentioned above, under BSD, our function for computing the
priority of an operator cluster is the product of W and its pseudo
priority. Hence, the system can keep a list of all clusters sorted in
descending order of pseudo priority. Additionally, the system’s in-
put queue is already sorted by the tuples’ arrival time, which makes
it automatically sorted in descending order of wait time with each
tuple pointing to its corresponding cluster in the cluster list. At a
scheduling point, the two lists are traversed according to FA with
k = 1 (i.e., find the top 1 answer). The answer returned by FA is
the cluster with the highest priority which is selected for execution.
Note that FA will provide the same answer as the one returned by a
linear traversal of the list. Hence, the only approximation so far is
due to using the clustering method.

6.2.3 Clustered Processing

Once a cluster is selected for execution, then the tuple at the top
of the cluster’s input queue is processed by its corresponding query
until emitted or discarded (i.e., pipelined and non-preemptive). How-
ever, it is often the case that the same tuple is to be processed by
more than one query in the system. As such, once a cluster is se-
lected by the scheduler, we execute a complete set of queries Q.
which belongs to the selected cluster and they all operate on the
head-of-the-queue tuple.

This idea of clustered processing is kind of similar to the train
processing in Aurora [9] where once a query is selected for execu-
tion, it will process a batch of pending tuples. However, each tuple
in the same queue will have a different wait time, but in our case, all
the queries in the same cluster will have the same pseudo priority
which reduces the inaccuracy in the scheduling decision.

7. OPERATOR SHARING

Operator sharing eliminates the repetition of similar operations
in different queries. Hence, a multi-query scheduler should exploit
those shared operators for further optimizations. In this section
we show how to set the priority of a shared operator under our
proposed policies.

First, let us consider a set of operator segments SE, in which
operator O, is shared among multiple operator segments E2, E2,

., E™ (Figure 4) where for each segment E¢, we can compute:

selectivity S and average cost C.,.

Further, assume that cost of the shared operator O, is ¢, and
'SC, is the average cost of executing the set of segments SE.. In-
tuitively, SC.,. is equal to the total average cost of executing the
N segments with the cost of the shared operator O, counted only
once. Formally, the average cost SC, of N paths sharing an oper-
ator Oy is

i

where Ui is the average cost of segment Ei and ¢ is the cost of
the shared operator O,,.

i M



Figure 4: Multiple CQs plans sharing operator O,

7.1 HNR with Operator Sharing

In this section, we will describe the general method for setting
the priority of a shared operator under HNR. In the next section,
we will describe the particular details of this method. Note that the
BSD can also be extended in the same way, however the details are
eliminated for brevity.

To set the priority of a shared operator under the HNR policy,
consider two sets of operator segments SE, and SE,, where SE, =
{E}, ..., B} sharing operator O, and SE, = {E}, ..., E}"} shar-
ing operator O,. For now, assume that if a set of segments is sched-
uled, then all the segments within that set are executed.

To measure the impact of executing one set on the other, we will
use the same concept from Inequality 2. Basically, we will measure
the increase in slowdown incurred by the tuples produced from one
set if the other set is scheduled for execution first. Hence, if the set
of segments SE, is executed first, then the increase in slowdown
incurred by tuples from SE, is computed as follows:

1SCy | 28C) m SCyp

Hy=S
! ! Ty ! Ty m

+..+5

where SC,, is the amount of time that set SE, will spend waiting
for set SE,, to finish execution and Ty,; is the ideal total processing
time for the tuples processed by E}I

Similarly, we can compute H,, which is the increase in slowdown
incurred by tuples from SE,. In order for H, to be less than H,,
then the following inequality must be satisfied:

M

50,3
i=1

Hence, the priority of a set of operator segments S E,, that consists
of N segments sharing a common operator O, is:

X e
SC,
7.2 Priority-Defining Tree (PDT)

Setting the priority of a shared operator using all the V segments
in a set is only beneficial if it maximizes the value of Equation 7.
However, that is not always the case because Equation 7 is non-
monotonically increasing. That is, adding a new segment to the
equation might increase or decrease its value.

We definitely need to boost the priority of a shared operator,
however, we do not want segments with low normalized rate to
hurt those with high normalized rate by bringing down the overall
priority of the shared operator. As such, we need to select from
each set what we call a Priority-Defining Tree (PDT) which is the

i N

Si <= b
T < chz T

" i=1

Vo = )
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subset of segments that maximizes the aggregated value of the pri-
ority function. Hence, the priority of a shared operator is basically
the priority of that PDT and once a shared operator is scheduled,
the segments in the PDT are executed as one unit (unless it is pre-
empted).

Accordingly, to compute the priority value V,, for operator O,,
we sort the segments according to their priority. Then, we visit the
segments in descending order of priority, and only add a segment to
the priority defining tree of O, (P DT%) if it increases the aggregate
priority value, otherwise we stop and the shared operator O, is
assigned that aggregate priority value. Hence, for an operator O,
shared between N segments, with a P DT, that is composed of m
segments where m < N, the priority of O, under the HNR policy
is defined as:

S
i=1 T, ;
m At m—1
i=1 Cr —

i=1 Ca
If m = N, that is, if the PDT consists of all the segments sharing
O., then V,, is equal to the global normalized rate as defined in
Equation 7.

For any operator segment E: that does not belong to PDT,
such segment can be viewed as two component: O, and L (as
shown in Figure 4). Executing PDT, will naturally lead to ex-
ecuting the O, component of E%. Scheduling L% for execution
depends on its priority which is computed in the normal way us-
ing its normalized rate as in Section 3. Hence, for example, in a
query-level implementation of the HNR scheduler, the priority list
will contain all the leaf operators in addition to the first operator in
each segment that does not belong to any PDT.

Va

8. EVALUATION TESTBED

To evaluate the performance of the algorithms proposed in this
paper, we created a DSMS simulator with the following properties.

Queries: We simulated a DSMS with 500 registered continuous
queries. The structure of the query is the same as in [11, 15] where
each query consists of three operators: select, join and project. For
the experiments on single-stream queries, we assume a join with
a stored relation; for multi-stream queries we use window join be-
tween data streams.

Streams: We used the LBL-PKT-4 trace from the Internet Traffic
Archive [1] as our input stream. The trace contains an hour’s worth
of wide-area traffic between the Lawrence Berkeley Laboratory and
the rest of the world. This trace gives us a realistic data arrival
pattern with On/Off traffic which is typical of many applications.

Selectivities: In order to control the selectivity, we added an ex-
tra attribute to each packet in the trace and assigned it a uniform
value in the range [1,100]. Then the selectivity of the select and
join operators is uniformly assigned in the range [0.1,1.0] by using
predicates defined on the new attribute. Since the performance of a
policy depends on its behavior toward different classes of queries,
where a query class is defined by its global selectivity and cost,
we chose to use the same selectivity for operators that belong to
the same query. This enables us to control the creation of classes
in a uniform distribution to better understand the behavior of each
policy (e.g., Figure 11).

Costs:  Similar to selectivity, operators that belong to the same
query have the same cost, which is uniformly selected from five
possible classes of costs. The cost of an operator in class 4 is equal
to: K x 2° time units, where i € [0,4] and K is a scaling factor
that is used to scale the costs of operators to meet the simulated
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utilization (or load). Specifically, we measure the average inter-
arrival time of the data trace, then we set K so that the ratio between
the total expected costs of queries and the inter-arrival time is equal
to the simulated utilization.

Policies: We compared the performance of our proposed policies
to the two-level scheduling scheme from Aurora where RR is used
to schedule queries and RB is used to schedule operators within the
query. Collectively, we refer to the Aurora scheme in our experi-
ments as RR. In addition, we considered FCFS, SRPT, and our HR

policy.

9. EXPERIMENTS

In this section, we present the performance of our proposed poli-
cies under the different QoS metrics. We also present results on the
implementation of the BSD policy as well as the performance of
the PDT strategy for scheduling shared operators.

9.1 Performance under Different Metrics

In this section, we present the performance of our proposed poli-
cies under the different QoS metrics.

9.1.1 Average Slowdown

Figure 5 shows how average slowdown increases with utilization.
Clearly, HNR provides the lowest slowdown followed by HR. For
instance at 0.7 utilization, the slowdown provided by HNR is 74%
lower than that of RR, 51% lower than SRPT, and 18% lower than
HR. At 0.97 utilization, HNR is 75% lower than RR, 53% lower
than SRPT, and 20% lower than HR.
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Figure 7: Max. slowdown vs. system load

9.1.2 Average Response Time

As expected, this improvement in slowdown by HNR would lead
to an increase in response time compared to HR as shown in Fig-
ure 6. For instance, at 0.7 utilization, HNR’s response time is 4%
higher than HR and it is 7% higher at 0.97 utilization.

9.1.3 Maximum Slowdown

In terms of worst-case performance (i.e., maximum slowdown),
Figure 7 shows that LSF reduces the maximum slowdown by 80%
compared to HNR. However, that improvement comes at the ex-
pense of poor average-case performance as shown in (Figure 9).
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9.1.4 Trade-off in Slowdown

Figures 8 and 9 show that BSD can strike the fine balance be-
tween average slowdown and maximum slowdown. For instance,
as shown in Figure 8, at 0.95 utilization, BSD decreases the max-
imum slowdown by 44% compared to HNR while Figure 9 shows
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that BSD decreases the average slowdown by 80% compared to LSF
under the same utilization.

9.1.5 ¢, norm of Slowdowns

As mentioned above, the trade-off between average and maxi-
mum slowdowns is easily captured using the £ metric. Figure 10
shows the ¢> norm of slowdowns as the utilization of the system
increases. The figure shows that BSD reduces the ¢2 by up to 57%
compared to LSF and by 24% compared to HNR.

9.1.6 Slowdown per Class

To get better insight into the behavior of the different policies to-
ward different classes of queries, we split the workload into distinct
classes (as suggested in [2]). Tuples belong to the same class if they
were processed by operators with similar costs and selectivities. In
Figure 11, we show the slowdown of tuples processed by the class
of low-cost queries (i.e., queries where an operator cost is K x 2°)
and different selectivities. The figure shows how HR is unfair to-
ward the low-selectivity queries which leads to significant increase
in the slowdown of the tuples processed by those queries. HNR is
still biased toward high-selectivity queries, yet less than HR. Sim-
ilarly, BSD is less biased than HNR. That balance allowed BSD to
provide the best £ norm of slowdowns as shown in Fig. 10.
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Figure 11: Slowdown per class for low-cost queries

9.1.7 ¢, norm for Multi-stream Queries

BSD also provides the lowest ¢ norm of slowdowns for multi-
stream queries as shown in Figure 12. In this experimental setting,
we generated a workload where queries receive input tuples from 2
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data streams, generated following Poisson arrival. In this workload,
the costs and selectivities of the operators are assigned uniformly
as before and the windows are in the range of 1 to 10 secs. Fig-
ure 12 shows that BSD improves the ¢2 by up to 14% compared
to HNR. It is also interesting to notice the large improvement of-
fered by BSD over policies like RR and FCFS. For instance, at 0.9
utilization, BSD improves the performance 17 times compared to
RR, and by 15 times compared to FCFS. The reason is that RR and
FCFS do not exploit selectivity which plays a more significant role
in the case of multi-stream queries where the selectivity of the join
operator often exceeds 1.0.

9.2 Comparison of Implementation Techniques

To evaluate the impact of the implementation techniques pro-
posed in Section 6, we compared the performance of four policies:
HNR, BSD-Hypothetical, BSD-Uniform, and BSD-Logarithmic.
BSD-Hypothetical is a version of BSD where we ignore the schedul-
ing overheads. In BSD-Uniform, we use uniform clustering as in
[9], whereas in BSD-Logarithmic we use our proposed logarithmic
clustering. In both policies, we set the cost of each of the priority
computing and comparison operations to the cost of the cheapest
operator in the query plans.

Figure 13 shows the £ norm of slowdowns provided by the four
policies vs. the number of clusters (i.e., m) at 0.95 utilization. The
figure shows that for BSD-Logarithmic, when m is small (< 6),
its /2 might exceed that for HNR that is because the priority range
covered by each cluster is large which decreases the accuracy of the
scheduling. However, as we increase m, its performance gets closer
to that of BSD-Hypothetical such that at 12 clusters, its provided
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Metric Policy | Strategy for Computing Priority
Max Sum PDT

Avg. Slowdown | HNR 261.6 | 244.2 201.1

£2 norm BSD 66359 | 64066 60184

Table 2: Performance of Optimized Queries

£ is only 5% higher than BSD-Hypothetical. By increasing m
beyond 12, its /5 starts increasing again due to increasing the search
space. For BSD-Uniform, it starts at a very high ¢ and it decreases
slowly with increasing m. That is, the accuracy of the solution is
very poor when the cluster size is large. As such, BSD-Uniform
starts to provide acceptable performance (10% higher than BSD-
Hypothetical) when the cluster range is very small (notice that in
this setting A ~ 1.2e + 05).

Figure 14 shows the incremental gains provided by each of the
proposed implementation techniques when using 12 logarithmic
clusters. The figure shows that a naive implementation of BSD will
increase the £2 norm by 6470% compared to BSD-Hypothetical. By
incrementally adding each of the implementation techniques, we
achieve a performance that is only 5% higher than BSD-Hypothetical.

9.3 Operator Sharing

To measure the performance of the sharing-aware versions of
HNR and BSD, we created a workload in which queries are grouped
randomly in sets of 10 queries each where all queries within a set
share the same select operator.

Table 2 shows the two measured QoS metrics. Next to each met-
ric is the policy that optimizes it and the performance of this policy
using three variants for setting the priority. In Max, the overall pri-
ority is equal to the priority of that one segment within the group
that has the maximum priority, whereas, in Sum, the priority is the
aggregation of the priorities of all the segments in a group.

The table shows that the PDT strategy significantly improves the
performance of each scheduling policy. For example, compared to
the Max strategy, it provides 23% reduction in slowdown and 10%
reduction in £2. These improvements are due to the fact that both
Sum and Max could underestimate the priority of a shared operator.

10. RELATED WORK

Improving the response time of queries over data streams has
been the focus of many research efforts. The work in [24] proposes
rate-based query optimization as a replacement of the traditional
cost-based approach. For multiple queries, multi-query optimiza-
tion has been exploited by [11] to improve system throughput in
the Internet and by [15] for improving throughput in TelegraphCQ.

TelegraphCQ uses a query execution model that is based on ed-
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dies [4]. In that model, the execution order of operators is deter-
mined at run-time. This is particularly important when the oper-
ators’ costs and selectivities change over time. Similar to Tele-
graphCQ, our policies can work in a dynamic environment with
support for monitoring the queries’ costs and selectivities, and up-
dating the priorities whenever it is necessary.

Operator scheduling has been addressed in several research ef-
forts (e.g., [23, 9, 5, 13, 21]). The work in [23] proposes the rate-
based (RB) scheduling policy for scheduling operators within a sin-
gle query to improve response time. Aurora [9] uses a policy called
Min-Latency (ML) which is similar to the rate-based one; ML min-
imizes the average tuple latency in a single query. For multiple
queries, Aurora uses a two-level scheduling scheme where Round
Robin (RR) is used to schedule queries and ML (or RB) is used to
schedule operators within the query.

Aurora also proposes a QoS-aware scheduler which attempts to
satisfy application-specified QoS requirements. Specifically, each
query is associated with a QoS graph which defines the utility of
stale output; the scheduler then tries to maximize the average QoS.
In this paper, we focus on system QoS metrics that do not require
the user to have any prior knowledge about the query processing
requirements or to predict the appropriate QoS graph. We also con-
sidered balancing the worst- and average-case performance, which
results in a more fair system.

Multi-query scheduling has also been exploited to optimize met-
rics other than QoS. For example, Chain is a multi-query schedul-
ing policy that optimizes memory usage [5]. The work on Chain
has also been extended to balance the trade-off between memory
usage and response time [6]. Another metric to optimize is Qual-
ity of Data (QoD). In our work in [20], we propose the freshness-
aware scheduling policy for improving the QoD of data streams,
when QoD is defined as freshness.

Table 3 lists the scheduling policies discussed above. For each
policy, it states the optimization metric targeted by the policy. It
also states if the policy is used in the context of a single query or
multiple queries and whether or not the policy handles multi-stream
queries that contain join operators.

11. CONCLUSIONS

In the paper, we considered scheduling multiple heterogeneous
CQs in a DSMS for improved QoS. To quantify such QoS, we
adopted slowdown-based metrics which are better suited for het-
erogeneous applications. This led us to the development of a new
scheduling policy that optimizes the average-case performance of a
DSMS. Additionally, we proposed a hybrid policy that strikes a fine
balance between the average-case performance and the worst-case
performance. Further, we have extended the proposed policies to
exploit operator sharing in optimized multi-query plans and to han-
dle multi-stream queries. Finally, we have evaluated our proposed
policies and their implementation experimentally and showed that
our scheduling policies outperform previously proposed policies.
Our next step is to incorporate our policies in our AQSIOS DSMS
prototype.
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