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Abstract

Arising when a large percentage of queries is access-
ing data stored in few sensor nodes, query hot-spots reduce
the Quality of Data (QoD) and the lifetime of the sensor
network. All current In-Network Data-Centric Storage (IN-
DCS) schemes fail to deal with query hot-spots resulting
from skewed query loads as well as skewed sensor deploy-
ments. In this paper, we present two algorithms to locally
detect and decompose query hot-spots, namely Zone Parti-
tioning (ZP) and Zone Partial Replication (ZPR). We build
both algorithms on top of the DIM scheme, which has been
shown to exhibit the best performance among all INDCS
schemes. Experimental evaluation illustrates the efficiency
of ZP/ZPR in decomposing query hot-spots while increasing
QoD as well as energy savings by balancing energy con-
sumption among sensor nodes.

1 Introduction

Sensor networks provide us with the means of effectively
monitoring and interacting with the physical world. As
an example of the type of sensor network application that
concerns us here, consider an emergency/disaster scenario
where sensors are deployed in the area of the disaster [18].
It is the responsibility of the sensor network to sense and
store events of potential interest. An event is composed of
one or more attributes (¢.g., temperature, carbon monoxide
level, etc.), the identity of the sensor that sensed the event,
and the time when the event was sensed. As first respon-
ders move through the disaster areca with hand-held devices,
they issue queries about recent events in the network. For
example, the first responder might ask for the location of
all sensor nodes that recorded high carbon monoxide levels
in the last 15 minutes, or he might ask whether any sen-
sor node detected movement in the last minute. Queries
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are picked up by sensors in the region of the first respon-
der. The sensor network is then responsible for answering
these queries. The first responders use these query answers
to make decisions on how to manage the emergency.

The ad-hoc queries of the first responders will generally
be multi-dimensional range queries [10], that is, the queries
concern sensor readings that were sensed over a small time
window in the near past and that fall in a given range of
the attribute values. In-Network Storage (INS) is a storage
technique that has been specifically presented to efficiently
process this type of queries. INS involves storing events
locally in the sensor nodes. Storage may be in-network
because it is more efficient than shipping all the data (i.c.,
raw sensor readings), as well as the queries, out of the net-
work (for example to base stations), or simply because no
out-of-network (or in-network) storage server is available
(for example, in our application, it can be hard to imme-
diately provide powerful base stations in the disaster area).
As the query load is composed of range queries, local stor-
age, where each sensor stores the events it generates, is not
of interest as querying such type of storage schemes will re-
quire flooding every query to all sensor nodes, which incurs
a very high energy consumption overhead.

All INS schemes already presented in literature were
Data-Centric Storage (DCS) schemes [16], thus, based on
a function from events to sensors that maps each event to
an owner sensor based on the value of the attributes of that
event. The owner sensor will be responsible for storing this
event. The owner may be different than the sensor that orig-
inally generated the event. Although many INDCS schemes
have been presented to date like DHT [16] and GHT [14],
DIM has been shown to exhibit the best performance among
all proposed INDCS schemes in dealing with sensor net-
works whose query loads are basically composed of ad-hoc
queries [10].

In the DIM [10] scheme, the events-to-sensors mapping
is based on a k-d tree [4], where the leaves 'R form a parti-
tion of the coverage area, and each element of R contains
either zero or one sensor. The formation of the k-d tree



consists of rounds. Initially, R is a one element set con-
taining the whole coverage area. In each odd/even round r,
each region R € R that contains more than one sensor is
bisected horizontally/vertically. Each time that a region is
split, all the sensors in that region have a bit appended to
that address specifying which side of the split that the sen-
sor was on. Thus, the length of a sensor’s address (bit-code)
is its depth in the underlying k-d tree. When a sensor gener-
ates an event, it maps such event to a binary code based on
a repetitive fixed uniform splitting of the attributes ranges
in a round robin fashion. For our purposes, it is sufficient
for now to consider the cases where the event consists of
only one attribute, say temperature. Then, the high order
bits of the temperature are used to determine a root-to-leaf
path in the k-d tree, and if there is a sensor in the region of
the leaf, then this sensor is the owner of this event. Due to
the regularity of regions in this k-d tree, the routing of an
event from the generating sensor to the owner sensor is par-
ticularly easy using the Greedy Perimeter Stateless Routing
(GPSR) algorithm [8].

A major problem in DIM is that of query hot-spots.
Query hot-spots may occur in DIM if the sensors are not
uniformly distributed. Query hot-spots may also occur in
case of a skewed query workload. In both cases, relatively
many queries are requiring data stored in a relatively small
number of the sensors, thus, a query hot-spot is formed in
the geographic area of these sensors. For example, if there
was only one sensor on one side of the first bisection, then
half of the query load would be accessing this sensor (as-
suming a uniformly distributed query workload). The pres-
ence of a query hot-spot leads to increasing the energy con-
sumption rate of overloaded sensors. More critically, the
sensors in and near the hot-spot may quickly run out of en-
ergy, due to the high query load imposed to them (in addi-
tion to event insertions). This results in a loss of the events
generated at these sensors, the events stored at these sen-
sors, and possibly a decrease in network connectivity. In-
creased death of sensors results in decreasing the coverage
area and causes the formation of coverage gaps within such
arca. This consequently decreases the QoD. Additionally,
Queries for events in a query hot-spot may be delayed due to
contention (among themselves, as well as with event inser-
tions) at the hot-spot sensors and the surrounding network
of sensors. Certainly, it is not desirable to have a storage
scheme whose performance and QoD guarantees rest on as-
suming a uniform distribution of both, sensor locations and
query load. To our knowledge, no previous solutions have
been provided in literature to cope with the query hot-spots
problem.

In this paper, we propose two algorithms locally solv-
ing the query hot-spots problem in the DIM framework:
Zone Partitioning (ZP) and Zone Partial Replication (ZPR).
ZP considers a node, having a frequently accessed zone
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Sensor nodes’ geographical locations

Figure 1. Initial network configuration

compared to its neighbors’™ zones, a good indication of a
query hot-spot. A reasonable solution for such case is to
force such node to split its owned zone with one of its
less-accessed neighbors. For the case where the access fre-
quency is not homogenecous among the subranges of the fre-
quently accessed zone, we present a second algorithm, ZPR,
to replicate the events of the highly accessed subranges in
a larger number of sensor nodes in order to reduce the total
number of queries accessing the query hot-spot location.

Experimental evaluation shows that the main advantages
of applying ZP/ZPR on top of DIM are:

e Increasing the QoD by distributing the events stored
at sensors falling in the query-hotspot among a larger
number of sensors, thus, increasing the data persis-
tence as well as its availability in the network.

e Increasing the energy savings by balancing energy
consumption among sensors in case of a query hot-
spot.

The paper is organized as follows. Section 2 provides an
overview on DIM. Section 3 and 4 describe the proposed
ZP and ZPR algorithms, respectively. Experimental results
are discussed in Section 5, while related work is presented
in Section 6. Finally, Section 7 concludes the paper.

2  Overview on DIM

In this section, we will briefly describe the components
of DIM using a simple example. We assume that the sen-
sors are arbitrarily deployed in the convex bounded region
R. We assume also that each sensor is able to determine
its geographic location (i.e., its = and y coordinates), as
well as, the boundaries of the service area K. Each node
is assumed to have a unique NodelD, like a MAC address.
Sensor nodes are assumed to have the capacity for wircless
communication, basic processing and storage, and they are
associated with the standard energy limitations.

The main components of any DCS scheme are: the
sensor-to-address mapping that gives a logical address to
each sensor, and the event-to-owner-sensor mapping that
determines which sensor will store the event. DIM imple-
ments these two mappings statically. The sensor-to-address



Figure 2. DIM k-d tree

mapping is done at the start of the network operation based
on the geographic locations of sensors. Figure 2 shows the
k-d tree that the DIM forms for the simple network given in
Figure 2. In Figure 2, the orphan zone (01) is assumed to
be delegated to node 001, which is the least loaded among
its neighbors. Periodic messages are exchanged between
sensor nodes to maintain the DIM k-d tree structure.

We now move on to the event-to-owner-sensor mapping.
The generation of the event bit-code proceeds in rounds.
As we proceed, there is a range 2, associated with each
attribute j of the event. Initially, the range R; is the full
range of possible values for attribute 5. We now describe
how a round s > 0 works. Round 4, determines the (4 + 1)**
high order bit in the code. Round ¢ depends on attribute j =
1 mod k of the event, where & is the number of attributes in
the event. Assume that the current value of R; is [, ], and
let b = (a + ¢)/2 be the midpoint of the range R;. If the
value of attribute 7 is in the lower half of the range 75, that
is in [a, b], then the 4** bit is 0, and R is set to be the lower
half of E;. If the value of attribute 7 is in the upper half of
the range R;, that is in [b, ¢], then the " bit is 1, and R; is
set to be the upper half of F;.

Now that we have described our underlying environ-
ment, we start presenting the query hot-spots decomposition
algorithms that we propose in this paper.

3 Zone Partitioning (ZP)

In this section, we describe ZP, which is the first algo-
rithm we present for decomposing query hot-spots in DIM.
As we have discussed in previous sections, a query hot-spot
represents a skewness of the query load toward a given path
of the k-d tree. Thus, ZP is based on continuously check-
ing for such skewness and trying to rebalance it when it is
formed at any subset of sensors. We first illustrate the basic
ZP idea using a simple example.

3.1 Illustrative Example

Figure 3 shows a typical scenario explaining how ZP
works. In the Figure, a circle represents a sensor node and
an arrow represents a hop on a query path. A black node is
one that is storing data accessed by queries, while a white
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Figure 3. ZP example

node is accessed by no queries in the query load. In the
sensor network on the left hand side, queries sent from sen-
sor nodes NO, N2, N4, N8, and N9 require data falling in
the storage range responsibility of N5. After knowing that
none of its neighbors is accessed by queries, N5 determines
that it is responsible for a hot range of attribute values, thus,
falling in a query hot-spot. Subsequently, node N5 parti-
tions the responsibility of its original zone between itself,
node N3, and node N6. After the zone partitioning, queries
take the paths described in the right hand side of the Fig-
ure. Note that this zone partitioning is only logical, hence,
nodes N3 and N6 keep their original zones (i.c., addresses)
and each of them takes responsibility of another zone whose
code value is different from its binary address value. Note
that Nodes N3 and N6 must have enough memory space to
store the newly received events belonging to the hot parti-
tion passed by N5.

In the above ZP process, we call the node that passes (do-
nates) responsibility of part of its hot zone the donor (N5
in Figure 3). The neighbors that take parts of the partitioned
zone are called the receivers (N3 and N6 in Figure 3).

Now that we have presented the basic ZP idea, we show
the actual ZP components in the following subsections.

3.2 Local Detection of Query Hot-Spots

In order to locally detect hot-spots, each node keeps track
of the frequency of accesses of its events. The tuple repre-
senting every stored event is appended by a counter called
the access_fregeuency. This counter represents the num-
ber of queries accessing such event over a given time period
(window), w . The node resets all counters at the start of w
and increments the counter associated with an event every
time it receives a query requesting this event during w.

Each sensor node continuously computes the Average
Access Frequency, AAF(Z;) of each of its zones Z,
which is the average of the access frequencies of events be-
longing to zone Z;. Note that, in general, a node can be
responsible for more than one zone. At this point, let us
assume that events falling in each zone will be uniformly
accessed. In case a node x realizes that

AAF(Z;)

W(Zj) > thresholdy YZ; stored in

that is, zone Z; is highly more accessed than all other zones,
z considers this as an indication of a query hot-spot that it



experiences. Thus, = decides to split the hot zone Z; into
two partitions: Z;; and Z;» in a way that keeps AAF(Z;1)
and AAF(Z;1) almost equal. Note that each of the zone
addresses of Z;; and Z;» should be one bit longer than the
zone address of Z;, as the former zones are children of the
latter in the k-d tree. Then, = keeps one of the partitions
and passes the other one to a selected node of its neigh-
bors, namely the receiver. We call the partition that will be
passed to a receiver, the traded zone 7". Note that the ra-
tio threshold; should be larger than 1 to guarantee the real
existence of a hot-spot. After electing Z; from its zones,
x compares AAF(Z;) to the AAFs of its neighbors as we
discuss in the next subsection.

3.3 The Partitioning Criterion (PC)

We now present the Partitioning Criterion (PC), which
is a set of inequalities to be /ocally applied by the donor
to select the best receiver among its neighbors. The PC in-
equalities relate the loads, as well as the energy levels, of the
donor with those of its neighbors. In these inequalities, we
express the traded zone, T', in terms of the number of traded
messages (Note that an event represents one message). An
energy unit represents the amount needed to send one mes-
sage. The fraction r. is the amount of energy consumed
in receiving one message (it is always less than one energy
unit). We express the total storage capacity of a sensor node
by 5. By [, we mean the storage load of node x, while e,
is meant to be the energy level of node x:

T + lr@c@iver S S (1)
L <k @
€donor
M < Fy 3)
€receiver
AAF (donor)
il bl B ¥
AAF (receiver) — @ @

where F;’s and (; are constants representing energy ratio
and average access frequency thresholds, respectively.
Equation (1) represents a Storage Safety Requirement. It
states that the sum of the pre-partitioning load of the re-
ceiver and the traded zone size should be less than the stor-
age capacity of the receiver. Such constraint is needed in
order to guarantee that the receiver will be able to store
all the traded zone events. Equations (2) and (3) represent
Energy Safety Requirements. Equation (2) states that the
ratio of the energy consumed by the donor in sending the
traded zone to the available donor energy is less than a given
threshold. Equation (3) states that the ratio of the energy
consumed by the receiver in receiving the traded zone to
the available receiver energy is less than a given threshold.
These inequalities are needed to make sure that the energy
amount consumed in the partitioning process will not cause
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the death, or the approach of death, of one or more of the
nodes involved in the partitioning process. The values of
the I; thresholds should be less than 0.5. Finally, equation
(4) represents the Access Frequency Requirement. It relates
the average access frequencies of both, the donor and the
receiver, and makes sure that the ratio of the first to the sec-
ond is greater than a threshold €. This is needed in order
to guarantee that the donor is really falling within a query
hot-spot, as well as to be able to choose the best receiver
to partition the hot zone with. The value of )1 should be
greater than 2.

To be able to apply the PC, the donor is supposed to
know load information, in terms of in terms of storage, en-
ergy and average query frequency, of its neighbors. The pe-
riodic messages exchanged between neighbors to maintain
the DIM structure, as well as insertion and query messages,
can be piggybacked with such information. A sensor node
experiencing a high frequency of accesses uses such neigh-
bors’ information to select the best receiver among them.
This can be done by selecting the node that minimizes the
left hand side of equation (3) while maximizing the left
hand side of equation (4). Upon selecting a receiver, the
donor sends a Request to Partition (RTP) to such receiver.
In case the receiver accepts this request, it replies to the
donor with an Accept to Partition (ATP). Note that the RTP
and ATP could cither be piggybacked on other messages,
or sent explicitly. The overhead of the load information ex-
change messages, as well as the hand shaking messages, is
small compared to that of the traded zone passing messages
as the formers are taking benefit of the structure maintaining
messages that were presented in the original DIM scheme.

We now illustrate how the decomposition of large query
hot-spots, arising in more than one sensor, takes place.
Given the PC inequalities, nodes near the center of the hot-
spot cannot find any receiver to partition load with, as all
their neighbors are falling in the hot-spot. Therefore, the
hot-spot decomposition starts from the /ot-spot borders.
Each of nodes on the borders of the hot-spot partitions its
storage with one of its less loaded neighbors. These bor-
der nodes subsequently cease belonging to the hot-spot. A
new set of nodes now fall on the hot-spot borders. These
nodes start partitioning their storage with their less loaded
neighbors. The process continues in an iterative fashion,
decomposing the hot-spot more and more at each iteration,
until nodes in the center of the hot-spot become normally
loaded. This signifies the complete decomposition of the
hot-spot.

3.4 GPSR Modifications

We now discuss the changes introduced to the GPSR al-
gorithm to account for ZP. Based the above ZP algorithm, a
receiver can re-apply the PC to partion a previously traded
zone. The process can be applied more than once. At each



time, a smaller hot sub-zone is moved further away from its
original node. In case of k& subsequent partitioning times,
keeping GPSR with no changes will involve the original
donor in all insertions and queries concerning any of the
k traded zones. This overhead would be proportional to
the total number of hops a zone is traded. To reduce this
overhead, we augmented GPSR to recognize that a zone has
been traded and moved away from its original owner.

For such purpose, each node maintains a Traded Zones
List (TZL) containing three entries: zone address, original
donor, and final receiver. Upon ZP, the donor sends the
traded zone address, its ID and the receiver’s ID to all its
neighbors. Thus, each node will be aware of zones traded
by its neighbors. In case a receiver z repartitions a traded
zong z into z1 and zo, = becomes the new donor of z. There-
fore, = sends the new sub-zone address (assume it 29), the
original donor of z, as well as the new receiver of 23 to all
of its neighbors. Note that = gets the original donor of z
from the entry of z in its TZL. Each of the neighbors, upon
receiving such entry, should check its TZL for a previous
entry for z, or any of its parent zones. In case of finding
z’s entry, the node overwrites its zone address by z;. Then,
the node adds a new entry for 2z in its TZL. At the end, it
forwards the z- entry to all its neighbors.

As we are constraining each node to send traded zone
information only to its neighbors, it is easy to prove that an
entry for a p-times traded sub-zone will be present in the
TZLs of nodes falling on a path of 8(p) hops away from
its final destination. Based on the definition of a query hot-
spot, the number of zones that will be originally falling in
the hot-spot will be very small. Thus, keeping the TZL rep-
resents a small storage overhead on all sensor nodes. Ad-
ditionally, the computation overhead imposed on any node
for searching its TZL for an entry is O(log p), which is rel-
atively small.

Using the TZL concept, GPSR is changed as fol-
lows. Each message sent by GPSR is appended by a
dest_changed bit flag and a dest, which is a node ad-
dress entry. Originally, dest_changed is set by the message
sender to 0. In routing a message (an event or a query), a
node x first checks the dest.hanged flag. Incaseitis 1, z
uses the dest variable as an explicit destination for the mes-
sage and uses the original GPSR to select the next hop for
the message toward dest. Otherwise, « forms the message
destination address z using the original DIM event to bit-
code mapping and then checks its TZL for an entry whose
zone address (or left most significant string of the zone ad-
dress) is identical to z. In case z is found in =’s TZL, x sets
the dest_changedto 1 and dest to the new destination of z
found in the z’s TZL entry. The original GPSR is then used
to send the message to dest. In case no entry is found for z,
GPSR uses z as the message destination.

Using the modified GPSR algorithm, TZL search for any
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p-times traded zone T" occurs only once by a node which is
O(p) hops away from the final destination of 7". As soon
as such node updates the dest_changed and dest fields in
the message, dest is explicitly used by GPSR in the subse-
quent nodes without searching the list. This has the effect of
minimizing the overhead of both, energy consumption and
computational load, imposed on nodes falling in the query
hot-spot.

3.5 Coalescing Process

We now discuss how to cope with query load distribu-
tion changes. Based on ZP, the receiver continues to keep
track of the accesses of the traded zones. In case any of
such zones is not accessed for a complete time window,
d, this is considered as an indication that the hot-spot has
stopped to exist (or may have moved to another location).
At such point, the receiver transfers the responsibility of the
received zone back to its original owner. We call this the
coalescing process. All neighboring nodes drop the traded
zone entry from their TZLs. Further events belonging to, as
well as queries asking for, that zone are directed to the origi-
nal donor based on the original DIM and GPSR schemes. In
such process, the receiver only sends recent events belong-
ing to the previously received zone to the original donor
(events inserted during d). Thus, the coalescing process is
considered much cheaper than the partitioning process. In
case d is large enough, we can guarantee that the hot-spot
would not be formed again in the future and that the coa-
lescing process is not causing a loss in the quality of data
provided by the sensor network as the receiver drops the
events inserted before d. Using such coalescing process,
partitioning oscillations, where the responsibility of storing
the zone keeps going back and forth between its original
owner in DIM and other neighboring sensor nodes due to
hot-spot changes, can be avoided.

From the above, ZP decomposes the query hot-spot by
continuously partitioning its storage load with its neighbor-
ing sensors starting from the hot-spot borders and moving
toward its center. However, in ZP, we assume that the access
frequency is uniform among the subranges of the hot zone.
How about in case it is skewed toward a narrow subrange?
The following section addresses this question by presenting
our second query hot-spots decomposition algorithm.

4 Zone Partial Replication (ZPR)

We now present ZPR, which is our second query hot-
spots decomposition algorithm. ZPR mainly deals with the
case where a sensor x falls in a query hot-spot and a large
percentage of the queries accessing z target a small range
of the total z’s attribute range responsibility. In such case,
a fairly limited number of events is accessed. ZPR decom-
poses the query hot-spot by replicating such events in neigh-



boring sensors. ZPR is meant to work in parallel with ZP
such that the combination of ZP/ZPR can efficiently handle
the decomposition task of query hot-spots of different sizes.

4.1 Additional PC Requirements

First, let us show how a node decides whether to apply
ZP or ZPR. To do this, it is necessary to enhance the PC (the
Partitioning Criterion already presented in Section 3.3) by
additional conditions that help the node falling in a query
hot-spot in determining which algorithm it should use for
hot-spot decomposition. Specifically, we add two more Ac-
cess Frequency Requirement inequalities to the PC.

AAF (partialsubrange) >0 5)
AAF(totalzonerange) — @
size tialsub
' (partialsubrange) <O ©)
size(totalzonerange)

Equation (5) relates the AAF of given subrange of the
attribute ranges of the hot zone to the AAF of the entire hot
zone range. Such equation indicates that almost all queries
targeting the hot zone are basically asking for events falling
within the hot subrange of attribute values. The threshold,
(22 should take values close to 1, such as 0.7 to 0.9. On the
other hand, equation (6) makes sure that the size of the hot
sub-zone is fairly small compared to the total hot zone size.
It is clear that the threshold, ()3, should take values close to
0, such as 0.2 or less.

A node falling within the query hot-spot first tries to sat-
isfy all 6 PC inequalities. In case it succeeds in this, then
the node chooses to apply ZPR. In the node is only able to
satisfy the first 4 PC inequalities, it proceeds in applying
ZP as presented in Section 3. In case ZPR is chosen to be
applied, the donor sends the hot sub-zone to all its direct
neighbors. Each of these neighbors, upon receiving the hot
sub-zone, inserts an entry for such sub-zone in its TZL. The
entry is represented by the tuple (sub-zone code, donor, self
address). In other words, the node indicates itself as the re-
ceiver of such sub-zone. Note that we selected to follow
the same TZL technique as the one used in ZP in order to
reduce special cases.

Based on the above, no further changes need to be im-
posed to the modified GPSR to route queries in ZPR. Upon
routing a query asking for a given zone, the node checks its
TZL first. In case an entry is found for such with the re-
ceiver address is equal to the node’s self address, the event
is simply looked up in the node’s storage. When a query is
answered by one of the receivers of the replicated hot zone,
such receiver broadcasts the hot zone to all its neighbors.
In other words, whenever a replicated hot zone is used to
answer queries, we enforce such zone to be re-replicated
one hop further from the original hot zone owner. Neigh-
bors receiving such broadcast store the replicated hot zone
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Figure 4. ZPR example

in case of space availability. Note that in case a query asks
for a portion of the hot zone and the query is answered by
replica node, such node only broadcasts that portion of the
hot-zone. This should not happen frequently as the hot zone
is small enough by definition.

Figure 4 shows a ZPR example. In the left hand side,
node N5 (in black) is accessed by queries sent from nodes
NI, N2, N4, N7, and N8. By applying ZPR, N5 sends the
hot sub-zone events to all its direct neighbors (nodes in dark
gray, i.c., nodes N1, N2, N3, N6, and N7). Thus, queries ini-
tiated by N1, N2, and N7 are answered from the initiating
nodes’ self storages. For queries initiated at N4 and N8, the
results are first provided by N3 and N6, respectively. Each
of the nodes N3 and N6, upon realizing that the replicated
hot sub-zone was used in answering such queries, forward
such sub-zone to N4 and N8 (filled with light gray), respec-
tively.

4.2 ZPR Handling of Insertions

An interesting question is how ZPR handles event inser-
tions. Recall that when any node = receives a message (in
this case, an event insertion), it applies the modified GPSR
presented in Section 3.4. Thus, x first checks its TZL for
the destination zone (i.¢., node address) of such event. In
case ZPR was applied to the event’s zone z, = will find an
entry for z with x’s address as z’s final destination. In such
case, x inserts the new event in its memory and proceeds
with sending the event to its original owner as determined
by the DIM scheme. Upon receiving a newly inserted event,
the original owner re-initiates ZPR to propagate such event
to all neighbors having copies of z.

It is worth mentioning that ZPR may encounter some in-
consistency in the answer of some simultancously posed
queries. Consider in Figure 4, a new hot-spot event gen-
erated by node N7. At the same time, two queries are gen-
erated by N4 and N8. By the time the new event arrives at
NS5, N8’s query would have been already answered by N6.
However, N5 updates N3 with the newly inserted event be-
fore N3 replies at N4 with the query result, therefore, the
new event will be included in such result. In order to de-
crease this effect, we bound the number of hops a zone can
be replicated away from its original owner to a limited num-
ber of hops.

We now present simulation results showing the ability of
ZP/ZPR to decompose query hot-spots of different sizes.



S Experimental Evaluation

In order to measure the ZP/ZPR performance, we created
a simulator for a typical sensor network applying DIM, as
presented in [10]. We also simulated GPSR to be used as the
routing protocol. Then, we added the ZP/ZPR functionality
to such network to compare the effect of applying ZP/ZPR
on top of DIM versus using pure DIM.

5.1 Experimental Testbed

In our simulation, we tried to use the same experimen-
tal setting used in [10] to get similar DIM performance.
Thus, we simulated networks of sizes ranging from 50 to
300 sensors, each having an initial energy of 100 units, a
radio range of 40m, and a storage capacity of 10 units. The
sensors locations were drawn from a uniform distribution.
The service arca was computed such that each node has on
average 20 nodes within its nominal radio range.

We selected a value of 2 for threshold;. Concerning
the PC parameters, we chosen a value of 0.3 for the F7 and
FE5 constants of equations (2) and (3), respectively. For the
accessing frequency equations, we set (1 to 3, ()9 to 0.8,
and we gave (J3 an 0.2 value. Note that these are just typi-
cal values for such thresholds. For an exact performance of
ZP/ZPR, extensive binary search among the different com-
binations of such constants is required and is part of our
future work.

Our simulation modeled a network of temperature sen-
sors. The range of possible temperature values was [30, 70].
The simulation consisted of two alternating phases: the
insertion phase and the querying phase. In the insertion
phase, cach sensor initiates (i.e., reads) 1 event and for-
ward such reading to its owner sensor node. Event values
were picked uniformly at random from the range of possible
temperatures. The insertion phase was followed by a query-
ing phase that is supposed to form a single query hot-spot
within the network. In such phase, each sensor generates 4
queries of the form:

select NodeID, timestamp
from sensors
where temrature > p and temperature < q

In order to model the worst case scenario, queries initiated
by all sensors used the same [p, g] range, thus, all queries
were asking for events stored by the set of sensors respon-
sible of the [p, ¢] range. We alternate both phases for 5 con-
secutive times. At each round, the [p, ¢] range is chosen uni-
formly at random from the range of possible temperatures.
This moving query hot-spot effect was needed in order to
validate the robustness of our algorithms and their ability of
quick detection and decomposition of query hot-spots.

We ran the above simulation for various hot subrange
sizes (from 0.05% to 10% of the total possible temperature
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Figure 5. Node energy level distribution for a
network with 200 nodes and 0.33% hot-spot
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Figure 6. Node energy level distribution for a
network with 220 nodes and 2.5% hot-spot

range). Note that the size of the hot subrange determines
which of the two algorithms is applied more. ZP is used
more for larger subranges while the usage of ZPR domi-
nates as long as the hot subrange size decreases. Through-
out this section, an (z, y) network is a network with 2 nodes
and a hot subrange of size equal to y%o of the whole attribute
ranges. Note that y is also used to indicate the hot-spot size.

5.2 Results

The results of the simulations are shown in the Figures
5 to 9. In these Figures, we compare the performance of
the pure DIM versus that of DIM appended with ZP/ZPR,
based different performance measures. Note that we only
report some of our findings due to space constraints.

Energy Consumption: Figures 5 and 6 present a clustering
of sensor nodes into groups based on their energy level for
(200, 0.33) and (220, 2.5) networks, respectively. In both
Figures, the x-axis indicates is partitioned into 10 chuncks
of size 10 each (recall that the initial node energy is 100
units), while the y-axis indicates the number of sensor
nodes falling in each chuck, i.e. whose final energy level
belongs to the energy range of such chunck. In both runs,
almost all nodes fall in the first chuck for DIM, that is,
all nodes have energy € [0,10]. Thus, a query hot-spot
causes the death, or closeness to death, of the majority of
the network nodes in the pure DIM. By running ZP/ZPR on
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Figure 7. The number of unanswered queries
for networks with a 5% hot-spot

top of DIM, nodes tend to be more uniformly distributed
among chuncks. Thus, we achieve a better balancing of the
energy consumption among the sensor nodes, which leads
to more energy savings and less node deaths. Note that
this also shows that applying ZP/ZPR does not cause an
additional energy overhead on the sensor nodes.

Quality of Data; Figures 7 shows the number of unan-
swered (failed) queries for networks with 5% hot-spots. It is
clear that ZP/ZPR algorithms improve the QoD by decreas-
ing the number of dead nodes (based on the previous result),
which leads to loosing less stored data, thus, decreasing the
number of unanswered queries. Note that the gap between
DIM and ZP/ZPR, in terms of the number of unanswered
queries, increases with the increase of the network size.

This result has a very important implication on the data
accuracy of the sensor readings output from a network
experiencing a hot-spot. The success of the ZP/ZPR combi-
nation in decomposing query hot-spots results in improving
the network ability to keep a higher portion of the hot-spot
data. This ameliorates the degree of correctness of any
aggregate functions on the network readings, for example,
an average of the temperature or pressure values where a
high percentage of the data is falling within a small range
of the total attributes’ range. We consider this to be a good
achievement compared to the pure DIM scheme.

Load Balancing: Figure 8 presents the average node stor-
age level for networks with an 0.05% hot-spot. The Figure
shows the average node load is almost the same for both
DIM and ZP/ZPR. Recall that, in our insertion phases, each
sensor generated 5 events. As events are uniformly distrib-
uted, the average storage of a sensor should not exceed 5
events in the pure DIM. Although ZP/ZPR moves events
away from their original owners, the Figure shows that it
achieves the same average storage per node as DIM, thus,
does not disturb the uniformity of the events among sen-
sors. Figure 9 presents the number of full nodes for net-
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works with an 0.05% hot-spot. By fitll nodes, we mean the
nodes having full memories. In our simulation, this means
a node having 10 events in its cache. The Figure shows that
the performance of networks applying ZP/ZPR on top of
DIM is equal to those applying the pure DIM scheme for
smaller network sizes. ZP/ZPR algorithms perform better
than pure DIM for larger network sizes.

Additionally, we have not observed any dropping of
events due to storage overflow while appending DIM with
ZP/ZPR. This means that the ZP/ZPR combination does not
cause the formation of storage hot-spots by moving a large
number of events to few sensor nodes, thus, increasing event
droppings [1]. In conclusion, the ZP/ZPR algorithms im-
prove the sensor network ability to support a higher portion
of the hot-spot events, while achieving a better balancing of
such events among sensor nodes.

6 Related Work

Many approaches have been presented in literature defin-
ing how to store the data generated by a sensor network. In
the early age of sensor networks research, the main storage
trend followed consisted of sending all the data to be stored
in base stations, which lic within, or outside, the network.
However, this approach may be more appropriate to answer



continuous queries, which are queries running on servers
and mostly processing events generated by all sensors over
a large period of time [5, 11, 19, 15, 3, 12, 13, 7].

To improve the QoD of ad-hoc queries, In-Network
Data-Centric Storage (INDCS) techniques have been pro-
posed [16]. These INDCS schemes differ from each other
based on the events-to-sensors mapping used. The mapping
was done using hash tables (and mapping based on event
types) in DHT [16] and GHT [14], or using k-d trees in
DIM [10].

The formation of query hot-spots due to irregularity, in
terms of sensor deployment or query load distribution, rep-
resent a vital issue in current INDCS techniques [6]. Some
possible solutions for irregular sensors deployments were
highlighted in [6], such as routing based on virtual coordi-
nates, or using heuristics to locally adapt to irregular sen-
sor densities. To our knowledge, no techniques have been
provided to cope with irregular query load distribution nor
with query hot-spots in INDCS. A complentary work to our
paper is that on exploting similarities in processing queries
issued by neighboring sensors in a DCS scheme [17].

Recently, some load balancing heuristics for the irreg-
ular events distribution problem, namely the Storage Hot-
Spots problem, were presented by [1, 9, 2]. A storage hot-
spot arises in case a large percentage of the readings has
similar, or close, values. Thus, it is basically depending on
the sensed environment, as well as the sensed phenomena
unlike query hot-spots that mainly depend on the ad-hoc
queries, sent by first responders for example. Zone Shar-
ing has been presented by [1] to locally decompose storage
hot-spots. On the other hand, global and periodic load bal-
ancing of the k-d tree was adopted in [9, 2] to solve the
storage hot-spots problem. It is clear that storage hot-spots
are independent from query hot-spots. Thus, an algorithm
decomposing one of them is not by any means guarranteed
to decompose the other type. It is not clear for us how to
extend any of the previously presented storage hot-spots de-
composition algorithms to cope with query hot-spots.

7 Conclusions

In this paper, we presented two novel algorithms for de-
composing query hot-spots in Data-Centric Storage sensor
networks, Zone Partitioning (ZP) and Zone Partial Replica-
tion (ZPR). ZP is based on partitioning the hot zone storage
responsiblity among larger number of sensors, while ZPR
is based on replicating the hot zone in sensor neiboring the
hot-spot area. Our experimental results show that applying
the ZP/ZPR algorithms on top of the DIM scheme achieves
good performance in decomposing query hot-spots of dif-
ferent sizes. This improves the QoD and increases energy
savings, which implies an ameliration of the profit gained
from the sensor network throughout the network lifetime.
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