
To Broadcast Push or Not and What?

J. Beaver∗, P.K. Chrysanthis∗, K. Pruhs∗

Department of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260
{beaver, panos, kirk}@cs.pitt.edu

V. Liberatore†

Division of Computer Science
Case Western Reserve University

Cleveland, Ohio 44106-7071
{vincenzo.liberatore}@case.edu

Abstract

A major problem in mobile web applications as well as
the wireless Internet is the scalable delivery of data. The
most popular solution for this problem is a hybrid system
that uses broadcast push to scalably deliver the most pop-
ular data, and reserves broadcast pull for delivery of less
popular data. Such a hybrid scheme introduces a variety of
data management problems at the broadcast server. In this
paper, we examine three of these problems: the push popu-
larity problem, the document classification problem, and the
bandwidth division problem. The push popularity problem
is to estimate the popularity of the documents in the web
site. The document classification problem is to determine
which documents should be pushed and which documents
must be pulled. The bandwidth division problem is to deter-
mine how much of the server bandwidth to devote to pushed
documents and how much of the server bandwidth should
be reserved for pulled documents. We propose simple and
elegant solutions for these problems. We report on experi-
ments with our system that validate our algorithms.

1. Introduction

In the world of mobile computing devices, available
communication bandwidth and component energy are two
huge and very real constraints. For example, these limita-
tions lead to the major issue of scalability in wireless net-
works. Simply put, mobile clients are unable to maintain
constant communication with the server due to the the high
energy cost of communication, frequent disconnections and
the limited amount of bandwidth clients have available to
communicate with the server.

To solve this scalability problem, wireless networks have
adapted the standard of using broadcast push as the pre-

∗Supported in part by NSF grants ANI-0123705, and ANI-0325353.
†Supported in part by NSF grant ANI-0123929.

ferred method of communication between the server and
all clients. Broadcast push employs point-to-multipoint
communication (broadcast) and sends documents from the
server to clients in the absence of explicit client requests
(push) [1, 3, 4, 5, 14, 15, 16]. Broadcast push is scalable in
that the addition of new clients does not change the server
workload or the client-perceived response time.

Broadcast push can be combined with a backchannel
over which feedback and request communication can oc-
cur in a hybrid data dissemination scheme [10, 1, 4, 14]. In
the hybrid scheme, the set of documents is partitioned into
two groups: the broadcast push documents and the client
request driven pull documents. The former are cyclically
and repeatedly transmitted on the broadcast push channel.
The latter are delivered on the broadcast pull channel upon
client requests. In either case, end-users request documents
as usual with any standard request mechanism which for-
wards them to a client-side server extension (i.e., special
client proxy) that handles communication.

Hybrid data dissemination can be evaluated along vari-
ous performance metrics, and much work has focused on
the average server-side delay before a document is trans-
mitted (e.g., [14]). Client-side latency can be minimized
by assigning broadcast push to deliver the most popular
(hot) data and the broadcast pull to deliver less popular
(cold) data [14]. The resulting hybrid scheme strives for the
scalability of broadcast push and avoids clogging a broad-
cast channel with cold data items [1, 8]. However, the hy-
brid scheme introduces three inter-related data management
problems at the server, and the primary contribution of this
paper is an integrated solution for these problems.

In the hybrid scheme, the server must dynamically as-
sign documents either to the broadcast pull or to the broad-
cast push channels (document classification) [14]. Further-
more, the server must also partition dynamically its band-
width between broadcast pull and broadcast push (band-
width division). Document classification and bandwidth di-
vision are inter-related issues because a given bandwidth
division determines the performance of a document clas-

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:28:02 UTC from IEEE Xplore. Restrictions apply.

sification choice and, conversely, a given document classi-
fication determines a bandwidth split that optimizes perfor-
mance. In turn, both document classification and bandwidth
division depend on the popularity of data items because
download latency is smaller when hot items are assigned to
broadcast push, cold items to broadcast pull, and the band-
width is divided appropriately between the two channels.
Therefore, the server must estimate the document popular-
ity (push popularity problem). The estimation of document
popularity is complicated by the fact that no requests are
made by clients for broadcast push documents. In particu-
lar, if the popularity wanes for a specific document and that
document was on the broadcast push, the shift in client in-
terests is not reflected in request logs. In turn, the server
would not know that it is time to demote a document to the
broadcast pull channel.

In this paper, we give an integrated algorithm for solv-
ing simultaneously and to near-optimality the bandwidth
division and document classification problems. Our algo-
rithm was empirically evaluated and compared to an exist-
ing fixed division scheme [14] and our algorithm generated
a document division which results in lower average latency
than previous schemes. This also has the benefit of reduc-
ing the energy consumption at the mobile clients by reduc-
ing required waiting time. The underlying reason is that if
document selection is addressed separately from bandwidth
division, a certain bandwidth split can be fixed to a level
that is suboptimal for a certain assignment of documents to
channels. More generally, the performance trade-offs differ
quantitatively and qualitatively under the combined scheme.
For example, the assignment led to broadcast push latency
that is significantly faster than pull latency due to the higher
relative popularity of push items over pull documents.

In Section 2 we briefly examine our system model then
fully explain our document selection and bandwidth divi-
sion methods. In Section 3, we report on the experimental
validation of our algorithms. In Section 4 we survey some
work related to our own. Finally, Section 5 summarizes our
observations and contributions.

2 Our Broadcast Push Method

The solution we propose for hybrid data dissemination
uses the system model which is shown in Figure 1. As
the figure shows, this model follows the hybrid, multi-
channel data dissemination model similar to that in previ-
ous work [1, 4, 10, 14]. Our model contains three channels
over which communication occurs. The request channel is a
low bandwidth channel over which clients can send requests
to the server. This channel is mainly unidirectional in that
the server will not respond to the client requests with the
requested data. Instead, the server will place the client re-
quests on the broadcast pull channel, which will then sched-

Figure 1. System model

Parameter Description

n number of documents
λ observed request rate λ

α pull over-provisioning factor
L current required latency
B total available system bandwidth
S array of document sizes Si

p array of document probabilities pi

ε tolerance factor

Table 1. Parameters for Algorithms 1 and 2.

ule the requests to be sent out. Additionally, the broadcast
push channel will be used to distribute very popular docu-
ments to the clients without requiring any direct client re-
quests. The decision of which documents to push out, and
which to require client requests for, is handled by our docu-
ment selection component, which runs the document selec-
tion algorithm, which we explain next.

2.1 Document Selection and Bandwidth
Division Algorithm

Our solution to document classification and bandwidth
division is to use an integrated algorithm that minimizes av-
erage latency. Algorithm 1 shows this solution which solves
the bandwidth division and document selection problems,
and works in conjunction with a subroutine shown as Algo-
rithm 2. Algorithm 1 uses a tolerance factor ε > 0, which
is an arbitrarily small positive number, and finds a solution
that has latency within ε of the optimum for the given band-
width and popularities. The algorithm also assumes that the
list of documents passed in is ordered by decreasing popu-
larity (meaning item 1 is the most popular, item n the least
popular) and that the list includes the popularity of the items
on the push channel, which can be computed using the tech-
nique presented in Section 2.2. The parameters for the al-
gorithms are summarized in Table 1.

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:28:02 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 proceeds in the following manner. It first
pre-computes the sums

∑k

i=1
λpiSi (which is a running to-

tal of the bandwidth requirements for the first k items) and
∑k

i=1
Si (which is a running total of the size of the first k

items), placing the totals in the arrays rspt and sizeTotal re-
spectively (Lines 1–4). This will help to optimize the run
time because these values would otherwise have had to be
computed during every loop. The algorithm then sets the
initial minimum latency to be 0 and maximum latency to
be the amount of time required to send all the documents
out over individual connections with each client(Lines 5-
6). A binary search is then performed, for which each loop
consists of taking the average latency between the current
minimum and maximum latencies and passing that average
latency to the subroutine in Algorithm 2, which will use
that average latency to calculate the number of items k that
should be placed on the broadcast push channel (recall that
the list of items is ordered by popularity, so this k refers to
the k most popular documents)(Line 8-9).

Algorithm 1 Bandwidth Division and Document Classifica-
tion

Require: n, λ, α, B, S, p, and ε as defined in Table 1, and pi ≥

pi+1 (1 ≤ i < n)
Ensure: k is the optimal number of documents on the push

channel, pullBW is the optimal pull bandwidth, pushBW is
the optimal push bandwidth

1: for i = 1, . . . , n do
2: rspt

i
← rspt

i−1 + piSiλ
3: sizeTotali = sizeTotali−1 + Si

4: end for
5: lMax← sizeTotaln/B
6: lMin← 0
7: while lMax − lMin > ε do
8: L← (lMax + lMin)/2
9: k ← tryLatency(L, p, λ, n)

10: pullBW← α(rspt
n
− rspt

k
)

11: pushBW← B − pullBW
12: if pushBW ≥ (sizeTotalk/(2L)) then
13: lMax← L
14: else
15: lMin← L
16: end if
17: end while

end

Using the return value of k most popular documents, Al-
gorithm 1 calculates the amount of bandwidth that should
be given to the pull channel based on the choice of k (Line
10). Notice that in this calculation, a value α > 1 is used
that measures the target level of over-provisioning for the
pull channel. More precisely, the actual bandwidth we re-
serve for pull is α times what an idealized estimate predicts.
Queuing theory asserts that α > 1 guarantees bounded
queuing delays, whereas α ≤ 1 leads to infinite queuing

delays. As such, the parameter α can also be thought of as
a safety margin for the pull channel.

Algorithm 2 tryLatency

Require: n, λ, L, p as defined in Table 1
Ensure: Returns the number k of items pushed given that av-

erage latency of L is required
1: while max− min > 1 do
2: k ← (max + min)/2
3: if (pkλL) > 1/2 then
4: min← k
5: else
6: max← k
7: end if
8: end while
9: Return k

end

After calculating the pull bandwidth, the remaining
bandwidth is partitioned to the push channel and it is de-
termined whether the amount of push bandwidth provided
is actually enough to sustain the amount needed for the push
channel (Lines 11–16). If there is enough bandwidth, then
the latency could be lowered, and the max latency is de-
creased and the search performed again. Likewise, if there
is not enough bandwidth, the latency is increased and the
search performed again. This continues until the ε value is
met, at which point the number of items for the push chan-
nel (and therefore which items), the push channel band-
width and the pull channel bandwidth are all returned to be
used to divide the bandwidth and documents for the system.

Let us now examine the details of Algorithm 2. Algo-
rithm 2 requires as input a latency along with the request
rate(λ), number of documents (n) and the list items with
popularities p. It then calculates and returns k, the number
of items that should be placed on the broadcast push chan-
nel. The starting point for Algorithm 2 is a method sug-
gested by [6] that minimizes the bandwidth B to achieve
a target latency L. The known method is not directly ap-
plicable to document classification and bandwidth division
because our goal, on the contrary, is to minimize the latency
L given a fixed amount of available server bandwidth B.

Algorithm 2 operates by using two bandwidth costs, one
if the item is kept on the pull channel and one if the items
is placed on the push channel. If document i is assigned to
the pull channel, it will use bandwidth λpiSi. If document i
is assigned to the push channel, it will use bandwidth Si/L,
which is also the rate at which the document must be broad-
cast to give worst-case response time L. As it was stated in
[6] a document should be pushed if λpiSi > Si

L
. Because

the items are passed in with an order of most popular (first
item) to least popular (last item), a binary search can be per-
formed on the items to find the item k at which the division
should occur.

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:28:02 UTC from IEEE Xplore. Restrictions apply.

2.2 Report Probabilities

Document selection and bandwidth division rely on es-
timates p of document popularity. The values of p can be
estimated by sampling the client population as follows. The
server publishes a report probabilitysi for each pushed doc-
ument i. Then, if a client wishes to access document i, it
submits an explicit request over the backchannel for that
document with probability si. In principle, clients would
not need to submit any request for push documents, but if
they do send requests with probability si, the server can
use those requests to estimate pi. At the same time, the re-
port probability si should be small enough that server is al-
most surely not going to be overwhelmed with requests for
pushed documents. In particular, we consider the objective
of minimizing the maximum relative inaccuracy observed
in the estimated popularities of the pushed documents. In
this case, we show analytically that each report probability
should be set inversely proportional to the predicted access
probability for that document.

First, the server calculates the rate β of incoming re-
ports that it can tolerate. Presumably, β is approximately
equal to the rate that the server can accept connections over
the backchannel minus the rate of connection arrivals for
pulled documents. Therefore, the value of β can be esti-
mated from the access probabilities and the current request
rate, all scaled down by a safety factor to give the server a
little leeway for error. Then, the si’s have to be set such
that

∑k

i=1
λpisi ≤ β, where documents 1, . . .k are on the

push channel. The expected number of reports μi that the
server can expect to see for i over a unit time period is λpisi.
Using standard Chernoff bounds, the probability that num-

ber of reports is more than (1 + δ)μi is roughly e
−μiδ2

4 ,
and that the probability that number of reports is less than

(1 − δ)μi is roughly e
−μiδ2

2 . If the goal is to minimize the
expected maximum relative inaccuracy of the reports, all of
the upper tail bounds should be equal and all of the lower
tail bounds should be equal. That is, all μi should be equal,
or equivalently it should be the case that for all i, 1 ≤ i ≤ k,
si = β

λpik
. Hence, each document should have a report per-

centage inversely proportional to its access probability.

3 Experimental Evaluation

The objective of the experiments is to validate the al-
gorithms introduced in the previous section. In particu-
lar, the development of Algorithm 1 made several idealized
assumptions about the environment and these assumptions
need to be investigated experimentally. The choice of α is
a major parameter in the following experiments. We also
wish to verify that lower delays are achieved by an inte-
grated algorithm that does both document classification and

bandwidth division. Finally, the scalability of various pop-
ularity estimation algorithms remains to be verified.

3.1 Methodology

The experimental analysis leverages on an existing pro-
totype middleware. Because this middleware was purely
simulation based, it is used to validate our algorithm regard-
less of the environment provided. The results shown are
measured in relative time units. The middleware supports
the hybrid dissemination scheme utilizing broadcast push
and pull as shown in Figure 1. It acts as a reverse-proxy to
a Web server for the delivery of documents that are materi-
alized views [11]. A simulated client uses the middleware
and generates Poisson requests for documents with a Zipf
probability distribution. In this paper, we report on the case
in which the size of the documents is fixed to 0.5KB, and
we have additional evidence suggesting that results are fun-
damentally the same with variable sized documents.

An objective of this evaluation was to isolate algorithm
performance from network factors, such as network conges-
tion or routing transients. On the other hand, scalability is
asserted when requests are generated by a large number of
clients. Our solution was to run both the client and server on
the same machine so that network effects would not be vis-
ible. (Although the emulation runs on a single machine, the
middleware is capable of running on a distributed environ-
ment [11].) Aggregate requests from multiple clients was
simulated by a background request filler. The filler simu-
lates a specified number of clients, and sends requests to the
server. The requests by the filler are treated identically to
those made by another distinguished client, except that we
record latency only for the requests from the distinguished
client. There were 100 total documents available to be re-
quested. All experiments were run for 10000 requests and
figures reflect the average statistics from these runs.

3.2 Document Classification and Band-
width Division Evaluation

Figure 2 shows the effects of various values of α on the
average latency of Algorithm 1. The curve in Figure 2 is
jagged because an infinitesimal change in α can have a dis-
crete effect in the number of items pushed. Figure 2 shows
that the value of α that minimizes average latency is be-
tween 2.0 to 3.0. We adopt α = 2.0 in the rest of the paper
— although this is not the actual minimum, any value in
the range produces similarly good results. Note that as α
changes in figure 2 our system adjusts the bandwidth di-
vision and document classification to maintain optimality.
This in part explains why the average latency is near opti-
mal for a relatively wide range of α.

Figure 3 can be interpreted as a brute force search for

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:28:02 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Effects of various α values

Figure 3. Optimality of Algorithm 1 (arrow
identifies single point found by the algorithm)

a good bandwidth split and document classification by try-
ing several closely spaced values of k and pushBW. In the
chart legend, the first number in the bandwidth split refers
to pull. In addition to the points plotted in the figure, we
verified that if less than half of the bandwidth was devoted
to pull, the latency was suboptimal. In this scenario, Algo-
rithm 1 assigns the most popular 7 documents on the push
channel, and allocates 63% percent of the bandwidth to pull.
The figure shows the algorithm’s outcome with a circular
point and an arrow pointing to it. The solution produced by
our algorithm is better than any other point in the diagram.
More specifically, our algorithm chose a split of 63/37 and
the closest brute force curve in the figure is the 65/35 curve.
The 65/35 line was also the lowest in the graph. Algorithm
1 chose k = 7 point as the number of push documents,
which is also the minimum point on the 65/35 curve. Thus,
Algorithm 1 chose a better bandwidth split than the brute
force approach and a document classification that was just
as good.

3.3 Report Probabilities Evaluation

In order to determine the usefulness of our proposed
push popularity scheme, we compare it to a solution found

Figure 4. Drop down method versus our prob-
ability method.

in a comparable work to our own. The solution for the push
popularity problem proposed in [14] was to occasionally
drop each pushed document i off of the push channel so
that clients would have to make explicit requests to i. How-
ever, there is a danger that these explicit requests for i could
overload the server. Thus, in [14] it was recommended that
i should be dropped as short of a period of time as possible.
The shortest possible time the the document can be dropped
is one broadcast cycle. However, we show here that even
such a short drop disrupts the server, while our proposed
method does not suffer from such disruptions.

Figure 4 shows the average latency over the next 5 broad-
cast cycles when the ith most popular document is dropped
from the push channel for one broadcast cycle. The flat line
represents the average response time using our method for
push popularity. If the most popular document is dropped,
then we see a 35% increase in average latency over the next
5 broadcast cycles. If the 6th most popular document is
dropped, we see an 8% increase in average latency over
the next 5 broadcast cycles. This increase is in compari-
son to using the simple yet effective scheme we propose.
Thus, based on all else being equal, using our scheme will
maintain lower response times than using the drop down
and check scheme.

4 Related Work

Hybrid data dissemination in wireless networks has re-
ceived much attention in the research community [10, 1,
4, 14, 2]. These works focus on using multiple channels
to distribute data. However, most of these papers focus on
scheduling items on their respective channels or on organiz-
ing the broadcast [13, 12]. They try to distribute data across
all channels evenly and in a way that will minimize user
latency. However, each channel has both a popular and un-
popular aspect to the data on the channels. We introduced a
new way to look at using multiple channels, with the chan-

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:28:02 UTC from IEEE Xplore. Restrictions apply.

nels defined to serve specific types of documents, one ded-
icated to popular documents and one dedicated to unpopu-
lar documents. In addition, we focus on how to divide the
documents and not on only how to schedule the documents
once given a division.

The document classification problem was introduced in
[14]. In addition to directly related work, some other work
has been done addressing the issue of hot and cold docu-
ments and of bandwidth division, though not in the context
we are describing. In [1, 9, 3, 15] the issue of mixing pull
and push documents together on a single broadcast channel
is examined. The idea is that popular documents are simi-
larly considered hot, and are continuously broadcast while
all other documents are cold. These documents are request
through a back channel and scheduled for broadcast. Simi-
larly, in [1] the authors discuss how to divide the broadcast
channel bandwidth between hot and cold documents. The
main difference between previous work and ours is previ-
ous work deals with a broadcast environment with a single
channel and focuses on scheduling items, not how to divide
them into hot and cold with separate channels and limited
bandwidth. We are looking into the division of both docu-
ments and bandwidth to minimize latency.

The hybrid scheme relies on estimates of the popular-
ity of documents because popularity determines the assign-
ment of documents to dissemination modes. Popularity es-
timation can be approached separately for pulled and for
pushed documents. Pull popularity can be solved in sub-
linear space by monitoring the client request stream [7]. As
for push popularity, the problem is complicated by the ab-
sence of a client request stream. One solution is to occa-
sionally drop each pushed document from the push channel,
thus forcing clients to send explicit requests. Such requests
can be counted and the document popularity estimated [14].

5 Conclusion

It has been shown that data broadcasting and selective
tuning offer efficient solutions to the energy deficiency
faced by mobile clients and the scalability issues present
in a wireless network. Hybrid data broadcasting schemes
attempt to combine these two techniques to achieve
scalability with the maximum possible energy saving. In
this paper, we examined three fundamental problems at
a hybrid data broadcasting server. We argued that the
document classification problem and bandwidth division
problem should be solved in an integrated manner. We then
presented a simple, yet essentially optimal, algorithm for
the integrated problem which focused on latency. This also
provides the benefit of reducing energy at the mobile clients
by decreasing the required waiting time. We validated the
optimality of our algorithm experimentally. We proposed
solving the push popularity problem by having each client

request a hot document Di with some probability si,
which the server sets in the push index. We looked at the
difference in using our push popularity scheme versus using
a scheme which simply drops an item off the push channel
in order to test its popularity. We showed that dropping
an item off the hot channel for one broadcast cycle can
appreciably increase the average latency for approximately
five broadcast cycles. Our proposed scheme does not suffer
from such disruptions.

Acknowledgments: We would like to thank the reviewers
of MDM 06 and WebDB04 where an earlier version of this
work was presented.

References

[1] S. Acharya, M. Franklin, and S. Zdonik. Balancing push and
pull data broadcast. In ACM SIGMOD, 1997.

[2] R. Agrawal and P. K. Chrysanthis. Efficient data dissem-
ination to mobile clients in e-commerce applications. In
WECWIS, 2001.

[3] D. Aksoy and M. Franklin. RxW: A scheduling approach for
large-scale on-demand data broadcast. ACM/IEEE Transac-
tions on Networking, 7(6), 1999.

[4] K. C. Almeroth, M. H. Ammar, and Z. Fei. Scalable delivery
of Web no-pages using cyclic best-effort (UDP) multicast. In
INFOCOM, 1998.

[5] M. Altinel, D. Aksoy, T. Baby, M. Franklin, W. Shapiro, and
S. Zdonik. DBIS toolkit: Adaptable middleware for large
scale data delivery. In ACM SIGMOD, 1999.

[6] Y. Azar, M. Feder, E. Lubetzky, D. Rajwan, and N. Shulman.
The multicast bandwidth advantage in serving a web site. In
3rd NGC, 2001.

[7] G. Cormode and S. Muthukrishnan. What’s hot and what’s
not: Tracking frequent items dynamically. In ACM PODS,
2003.

[8] Y. Guo, M. Pinotti, and S. Das. A new hybrid scheduling
algorithm for asymmetric communication systems. ACM
M2CR, 5(3), 2001.

[9] A. Hall and H. Taubig. Comparing push- and pull-based
broadcasting or: Would “microsoft watches” profit from a
transmitter? In WAE, 2003.

[10] H.P.Hung and M.S.Chen. A general model of hybrid data
dissemination. In MDM, 2005.

[11] V. Penkrot, J. Beaver, M. Sharaf, S. Roychowdhury, W. Li,
W. Zhang, P. Chrysanthis, K. Pruhs, and V. Liberatore. An
optimized multicast-based data dissemination middleware:
A demonstration. In ICDE, 2003.

[12] E. Pitoura and P. K. Chrysanthis. Multiversion wireless data
broadcasting. IEEE Transactions on Computers, 51(10),
2002.

[13] O. Shigiltchoff, P. K. Chrysanthis, and E. Pitoura. Mul-
tiversion data dissemination: Broadcast organizations and
caching. Information Systems Journal, 29(6), 2004.

[14] K. Stathatos, N. Roussopoulos, and J. S. Baras. Adaptive
data broadcast in hybrid networks. In VLDB, 1997.

[15] P. Triantafillou, R. Harpantidou, and M. Paterakis. High per-
formance data broadcasting systems. MONET, 7(4), 2002.

[16] W. Zhang, W. Li, and V. Liberatore. Application-perceived
multicast push performance. In IPDPS, 2004.

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:28:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

