
WhiteBoard P2P: A Peer-to-Peer Reliable Data Dissemination Infrastructure for
Collaborative Applications∗

Panayiotis Neophytou, Alexandros Labrinidis, Panos K. Chrysanthis
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260, USA

{panickos, labrinid, panos}@cs.pitt.edu

Abstract

In this paper we present a new Peer-to-Peer approach for
enabling data dissemination,using filtering techniques, that
provides support for many types of collaborative applica-
tions. Our architecture, called WhiteBoard P2P, is designed
to act as an innovative distributed data stream process-
ing system which is vendor-independent and technology-
independent. Our infrastructure can support the intercon-
nection of existing legacy systems as well as new systems,
and allows dynamic joining and leaving of collaborative
participants on a need-to basis. Furthermore, our system
is designed to support mobile and ad-hoc networks that are
unstable, by allowing disconnected operations while en-
abling dynamic restructuring of the network as required.
We are currently testing our system in the context of disas-
ter management, as part of the Secure-CITI project.

1. Introduction

Reliable message delivery has become a hallmark fea-
ture of many data systems, as has the scalable delivery of
data. The major goal of any data delivery system is to pro-
vide both of these major features, along with perhaps other
features such as security. All of these features become even
more vital when the application is for time critical applica-
tions. Messages stating where and what is happening, along
with on the fly updates need to be received by the right peo-
ple at the right time (i.e. in real time). Currently, the way in
which these features have been addressed varies according
to the system architecture in place. In general, there are two
predominant architectures for current system designs that
provide some of the required functionality. These architec-
tures are the client/server architecture and the peer-to-peer

∗Funded in part by NSF ITR Medium Award (ANI 0325353).

(P2P) system architecture. Both of these designs have their
benefits and their weaknesses.

The client/server design distinguishes between two types
of nodes: servers which are responsible for maintaining
the data and responding to queries, and clients which are
the ones issuing requests for data. Examples of such de-
signs/systems are CORBA [27] and Grid [12]. Such designs
are more rigid with where data is served from and where re-
quests for data are sent. However, these also provide a high
level of security, as being able to centralize the authentica-
tion of messages and message delivery. The client/server
architecture also tends to be reliable in the delivery of mes-
sages and data throughout the network, as the central server
can record data delivery and keep track of missed or unable
to be delivered messages. The design has its drawbacks,
however, when it comes to flexibility and adaptability to
network load and network configuration. Also, it provides
a single point of failure and contains a single bottleneck,
which prohibits scalability.

The P2P design, on the other hand, accomplishes many
things the client/server design lacks. P2P systems [22, 26,
31, 21, 20] are strong in adaptability, scalability, and fault
tolerance, since the system and data are distributed across
many sites, so the failure of one does not dramatically affect
the network. However, since P2P systems are distributed by
nature, they tend not to be very secure, and also lack some
of the rigid structure that would be needed to impose hierar-
chy into the system. P2P systems are also not usually con-
cerned with the reliable delivery of data to all nodes. Many
P2P systems rely on best effort in both the propagation of
requests and the returning of responses. Furthermore, most
of the systems involve searching for data, which again is
performed in a lossy manner, where not all nodes are neces-
sarily included. This will not be acceptable in a system that
wants to include the ability to send messages to all nodes
and guarantee that all the nodes receive those messages.

We are currently developing a disaster management sys-

Figure 1. Design of overall Disaster Management System

tem, which none of the above approaches support. It is a
collaborative system built on top of a distributed P2P in-
frastructure.

A distributed means of communications is needed in or-
der to coordinate the large number of emergency respon-
ders. Such an infrastructure must be robust, reliable, re-
silient to failures and adaptable to the application needs,
supporting nodes joining and leaving, new roles to become
part of the teams etc. We observed that a lot of communica-
tion is needed to take place and simple radio style broadcast
would not work. Centralized approaches have a single point
of failure and in a disaster environment you cannot rely on
having such a point. A completely distributed and flat archi-
tecture would not work either because of the hierarchical
nature of all the participating organizations. Such a hier-
archical organization can be seen in almost every existing
organizational structure nowadays. For these reasons, we
developed an adaptable hybrid P2P architecture that is able
to support hierarchical organization on the fly as needed.

Figure 1 shows the basic interactions that must be able to
take place when a wide-spread disaster occurs. It illustrates
that there are resources from several sources that will need
to get together in order to manage what is happening. This
diagram also shows the need, however, for an infrastructure
which can handle the mass delivery of messages to a wide
variety of sources while adhering to whatever constraints
may be in place. This infrastructure, especially based on the
sensitivity and importance of the information, must provide
the functionality mentioned above of scalability, reliability
and security.

In this paper we propose a new architecture for data
delivery aimed at solving issues that arise when disaster
management is taking place by combining the best of both

approaches mentioned above into a single approach while
minimizing the weaknesses each original design has. We
accomplish this with a design which makes its basis a
P2P system, but interjects additional security and reliabil-
ity checks on data. The system is also designed to act as
a continuous query processing system working on streams
of data that come from the nodes in the network. This is a
new paradigm for P2P systems as well, since our architec-
ture envisions continuous queries to be registered at nodes
and, if necessary, report data to the client that requested the
data, but in the case of many nodes requesting that data, to
facilitate multi-casting of the data throughout the network.

We follow the two tiered architecture which has become
popular lately in several P2P systems [30, 25, 9], where
some nodes will be super peers within the system and thus
act as servers for a group of leaf nodes, but interaction be-
tween the super peers is completely done in a P2P fash-
ion. We designed the system to act as a whiteboard pro-
gram which can also act as a wrapper for legacy systems
throughout the network and interact through standard APIs
with any top-level component. Thus, the proposed architec-
ture is vendor and specific technology independent.

We present our current architecture which is an innova-
tive data stream processing system, which builds upon and
extends current systems like [2, 5, 8, 23], called the White-
board Peer to Peer (P2P) which supports an incident-driven,
adaptive structuring of control and information flow among
components.

In the next section we review the current efforts for col-
laborative systems. Sections 3 and 4 introduce our new
architecture. We present open issues in Section 5 and con-
clude in Section 6.

2

2. Related Work

Many forms of collaborative environment paradigms
have been developed since the emergence of computer net-
works. Typically these are referred to as multi-tier architec-
tures. Technologies and platforms that enable the develop-
ment of collaborative software environments today include
CORBA, Grid Middlewares, J2EE, .NET etc.

In general, CORBA [27] ”wraps” code written in an-
other language into a bundle containing additional infor-
mation on the capabilities of the code inside, and how to
call it. These wrapped objects can then be used by other
programs (or CORBA objects) over the network simply by
calling them. In this sense CORBA can be considered as
a machine-readable documentation format. A very similar
approach in describing the capabilities of the code is used
in Web Services [29].

Grid computing [12] offers a model for solving massive
computational problems using large numbers of computers
arranged as clusters embedded in a distributed telecommu-
nications infrastructure. Grid computing’s focus on the abil-
ity to support computation across administrative domains
sets it apart from traditional distributed computing.

Java 2 Enterprise Edition [19] and Microsoft’s .NET
[18] platforms both present a platform-independent soft-
ware development environment, with many built-in features
for the development of collaborative software. J2EE uses
several technologies including JDBC and CORBA, and ex-
tends their functionality with Enterprise Java Beans, Java
Servlets and XML technologies. .NET framework supports
over 40 languages and technologies. Currently Sun’s J2EE
is fully available in many platforms but .NET is currently
only available on Windows.

Generally, in Peer-to-peer network systems there existed
three phases of evolution. The first generation had a central-
ized indexing service where all the information concerning
the state of the network was kept in a single point. The
most popular example of this was Napster. The second gen-
eration followed a fully distributed approach where each
node was responsible of keeping it’s own state. Learning
about other nodes’ state is done by a peer, by sending a
large amount of messages to it’s neighbors and those mes-
sages are propagated further to those peers’ neighbors until
a reasonable amount of results about others were returned.
Gnutella is a popular example of this architecture. The
third generation was called hybrid systems because they
combine features from both of the mentioned architectures.
In this generation an upper class of nodes, called super-
peers, are responsible for the propagation of messages and
lower class nodes, called leaf-nodes, are connected to one or
more super-peers and only send and receive messages from
them. The most popular implementation of this network
is Gnutella2. We believe that new generations of Peer-to-

peer networks will include more levels/classes of nodes in
an evolving network. This will enable a more structured
way of message propagation for efficiency and organization
of the nodes inside administrative domains.

Another class of P2P networks, called structured net-
works, was developed to cope with the increased redun-
dancy that unstructured systems imposed. A very popular
structured P2P system is Chord [26]. Chord divides the
peers into a circle and assigns ids on that circle using a hash
function. It also hashes data items on that circle and the pre-
ceding node of that item’s id is the node who either should
store the item itself or indexing information on the item.
Although Chord achieves handling of queries inO(logn)
hops it reduces the autonomy of the peers. The system out-
performs the unstructured systems on keyword searches. A
lot of variations on handling failures, load balancing and
other issues were developed and the system is also used as
the base for other kinds of applications too. Other struc-
tured systems were also implemented like Tapestry [31],
Pastry [22], CAN [21] etc. which are based on the same
idea of dividing the space into sections and assigning data
or indexing information to the peers.

As described in [10], the metaphor behind a whiteboard
(aka blackboard) architecture is a group of specialists gath-
ered around a physical whiteboard, cooperatively working
to solve a problem. The whiteboard is used as a workspace
where all initial data and current contributions are written.

The whiteboard architecture is intended to facilitate co-
ordination of cooperating software modules and human par-
ticipants [11]. First conceived in the 1970s for the speech
recognition system Hearsay-II [17], it is well suited to many
other problem solving tasks and to system or agent control.
There have been many applications since Hearsay-II in ar-
eas such as command and control, process control, data fu-
sion, case-based reasoning, speech recognition, signal and
image understanding, planning and scheduling, structure
identification, and machine translation [10, 6].

Many architectures use predetermined connections be-
tween modules, with the ordering of operations based on
data-flow. Problems arise when the specific modules in-
volved are not known in advance or are subject to change,
and when no ordering can be determined until runtime.
Whiteboards provide an attractive alternative through indi-
rect connections via the whiteboard, which acts as an inter-
mediary. Ordering and module participation becomes dy-
namically determined at runtime, and fewer communication
interfaces need be supported. A disadvantage of standard
whiteboards is the need for a control component or arbiter
that determines which module can take the next action.

3

Figure 2. Nodes’ core WhiteBoard P2P architecture.

3. Whiteboard P2P Design and Architecture

In this section we will describe the node’s architecture
that each participating peer must implement and describe
the topology of our network. The topology will be forced
using protocols and we have designed them in such way that
will help answering queries efficiently and accurately. The
Data Management part of the architecture will be described
in Section 4.

3.1. Node Design

Interconnected nodes is the main ingredient of any P2P
system. In order for a node to be able to participate in our
system and collaborate with other nodes it must provide cer-
tain functionality and follow our protocols. In this section
we describe the components that compose a node partici-
pating in our network. The overall node architecture is de-
picted in Figure 2.

3.1.1 Application Interface

The application interface is the means of communication
between the User Interface, otherwise known as resident
component or legacy application, which could have its own
database and functionality. The Resident component, in or-
der to communicate with the rest of the network, must pro-
vide two main interfaces. One to submit queries and data to
the WBp2p network and one to receive data responses from
other peers in the network.

The way data is sent into the network is by applying
model management over the available metadata [3] in or-
der to create a representation of the local data to a univer-
sally accepted XML format. The WBp2p software provides
an internal port to receive these kind of XML messages
and forward them through the Message Manager to the net-
work. The queries, using a similar transformation technique
which is implemented into the interface, are translated into
XQueries [7] again in the form of XML messages.

3.1.2 Message Manager

The message manager is responsible for any actions that
have to do with opening and handling of messages. It han-
dles messages from two sources: (a) the rest of the network
and (b) the local Resident Component, through the front-
end interface.

When a new message comes from the network, it is for-
warded to the Data stream processor for evaluation and an
acknowledgment message is generated. If the message is
intended for this node it will be returned back to the mes-
sage manager to handle it by passing it to the application
interface. If the message is a query request then the query
is registered into the Data Stream Processor and a trigger is
generated on the Resident Component to generate the data
needed by the requestor when they become available. All
these assume that the requestor has the necessary access
level and trust for the requested data.

Messages generated from the Resident Component are
forwarded to the message manager. The message manager
adds the credentials needed and then forwards the message
to the Data Stream Processor to decide to which connections
the message should be forwarded.

3.1.3 Data Stream Processor

The Data Stream Processor (DSP) keeps Continuous
Queries registered on the node. Each query is associated
with a number of connections that currently are active be-
tween this node and other peers. Every message coming
from the message manager is evaluated over the queries.
Then the DSP forwards the message along with the union
of the connections of the satisfied queries to the Network
Manager.

3.1.4 Network Manager

The network interface provides the necessary connections
needed to route data within the network. It also promotes

4

the structure of the network. Each node in the system will
become part of an overall P2P environment in which it can
take any or all of three types of roles (broker, data provider,
and data requestor). Additionally, the network interface,in
conjunction with the main decision module, helps to make
the network adaptable to situations where incidents become
highly widespread, thus requiring a more structured chain
of command for decision making, or if the network becomes
too big and scalability is crucial.

There are three roles that a node can take in our P2P net-
work. The first role is that of a data provider. These nodes
usually provide vital information to the decision making
process. Data is pulled from the nodes with the use of con-
tinuous queries every time new updates are available. These
nodes generate a new message for each update and forward
it to the network through the registered queries. The second
role is that of a data requestor. These nodes send queries to
the network to find information that they need.

The nodes that comprehend the backbone of our network
are called brokers (third role). These nodes are responsible
for the propagation of messages to and from data providers,
data requestors, as well as other brokers that are connected
to them. Broker nodes also play a large role in the reliable
delivery of data. As stated earlier, disconnected operation is
available through the whiteboard application. The way this
is performed is as follows. When a broker node attempts
to send data to either another broker or data requestor, it
expects to get back an acknowledgment message from that
node. If no acknowledgment message is received, a retrans-
mission is attempted. Two failed attempts cause that node to
be marked as disconnected, and the broker begins to store
the messages for that peer as it receives them. When the
peer comes back online, the super peer will send to it all
missed messages. In terms of reliable delivery of data, bro-
kers are only responsible for nodes connected to them. The
peer then relies on other brokers to further guarantee the
reliable transmission of data. To enhance the chances of
reliable message delivery, routing is done using two routes
towards the requesting peer. Having these three roles de-
fined, any node can take at most all of these role depending
on its needs and capabilities.

3.2. Network Configuration - Topology

The network topology is semistructured based on layers.
The layers are used to cluster nodes with common inter-
ests and help in efficiently routing messages and queries.
The layered topology is closely coupled with an application
specific taxonomy of the user roles. To better understand the
idea of layers and taxonomies we created a sample topology
in Figure 3, following a disaster management scenario. The
taxonomy is a hierarchical representation of part of Region
13 in Pennsylvania, which includes the 13 counties around

Figure 3. Taxonomy/Topology example in the White-
Board P2P network. a. The application’s taxonomy. b.
How the taxonomy can be mapped into a possible layered
topology. c. How the layered topology translates into some
global unlayered view.

the Pittsburgh area. Pennsylvania Region 13 covers a pop-
ulation of 3.1 million people over a 9,550 square mile area
(http://www.pa-region13.org). Only the leaf nodes are in-
stantiated as nodes and most internal nodes can be layers.
Using this taxonomy helps us identify nodes using specific
application contexts. A possible layered interconnectionbe-
tween the nodes is shown in Figure 3b. To have a better
view of the whole interconnection network we show Figure
3c where we have a global view of the topology without the
layers.

One of the major features of the whiteboard network de-
sign is its ability to adapt to changing network topology
in the face of an increasing range of environmental char-
acteristics, application needs, and dynamics of an incident.
This means that as it may start with only one layer, it may
soon become known that the original command centers are
no longer in charge, that a new level of command centers
would now take over. In this case, the nodes that are at this
new level of command centers designate themselves as rep-
resentatives of their current level to the level above or below
and establish connections to the nodes that exist at the new

5

hierarchy level.
Besides the hierarchical overlays that help to better han-

dle message routing according to the application’s mor-
phology of data and hierarchical modeling, the brokers of
each level are also clustered depending on the data they can
serve. For instance certain brokers are known to serve a
specific type of leaf-nodes (i.e. hospital nodes), in a cer-
tain level of the hierarchy. This knowledge is stored into
caches just like [14]. These caches are considered neither
consistent nor reliable, but help nodes get a starting point
into the network and find their place inside it after querying
the network nodes for information. Caches store contact in-
formation like IP address and port numbers as well as the
layers each node is part of.

4. Data Management

It has become recently widely accepted that the most
successful standard for describing and handling data be-
tween heterogeneous data sources is XML [28]. A lot of
work has been done in the management of XML data in P2P
systems. A recent review of these technologies is in [15].
The main innovation of our system is that the queries trigger
the creation of a flow of information from the sources. This
is extremely useful for monitoring applications that rely on
real time data. The flows of data can then be shared by var-
ious other peers that are interested in this information thus
reducing the number of flows of the same data.

4.1. Data and Query Format

All the data exchanged throughout our infrastructure is
expressed as structured XML messages. The messages con-
tain metadata to describe the data inside the message in or-
der to be able to make the necessary updates to a receiving
component’s local database without having to have the same
schema as the sender of the message. We call the language
of messages of the Whiteboard P2P as wbXML.

All communication and data transfer in the system is
done with data objects that wrap different types of informa-
tion. These will use a self-contained XML representation
that will adhere to newly defined standards that address the
application’s need or standards already in use and those in
development in the emergency management context, for ex-
ample the NIMS Resource Typing System. The objects will
be separated into meta-data and actual content data. The
data section will include actual data fields of the object,
such as textual information, database records, or pictures.
Meta-data includes the category of the object, origin, times-
tamp, priority, security and credential information, desired
delivery guarantees, usage guidelines, and more. It may in-
dicate one or more specific destination peers, or a category
of peers (e.g., fire stations). Collectively, this information

will facilitate and influence routing decisions at the super
peers and act as conditions for continuous query triggers. A
more detailed description of the meta-data follows.

• Category: This is the basic type of the data object,
identifying it as a request, a reply, a status report, etc...

• Origin: The peer that submitted this object to the sys-
tem. This may also indicate the super peer responsible
for that peer.

• Timestamp: The time the object was created.

• Priority: A rating of the urgency and importance of the
data object. This also influences delivery of the mes-
sage through the network. The most critical messages
would need high reliability and as much speed as pos-
sible, while others may only need high reliability, but
could sacrifice some speed, for example.

• Security and Credential Information: Includes encryp-
tion keys, trust information or tokens required to view
the data, possibly allowing more limited, aggregate or
summary access in some cases. This is explained in
more detail in the following section.

• Usage Guidelines: Provides advice on how the data
should be used or interpreted, or what it is relevant to.
For example, this could indicate the subject of a picture
object.

An example of the XML data our messages contain is
displayed in Figure 4. This example shows a resource re-
port. The meta-data specifies all needed delivery informa-
tion, as well as aiding in data access and interpretation. The
data in this example is a resource description for a search
and rescue team. It is an XML document formatted accord-
ing to the standard NIMS Resource Typing System, men-
tioned previously.

For multimedia data, there are two categories to account
for: (1) static data like pictures, maps, and audio/video clips
and (2) dynamic streaming data such as live audio and video
feeds. The Whiteboard P2P handles the static multimedia
as any other form of data using an XML message wrapper.
Thus the deliveries go through the network of super peers
and leaf nodes as usual. Streaming data requires a dedi-
cated direct connection between the source and the receiver.
This is established by exchanging XML messages through
the whiteboard that indicate how and to whom the receiver
should connect.

Since all of the data within our system is XML format-
ted, the most suitable standard for querying the data is the
XQuery language [7].

6

<meta-data>

<category> Report</category>

<origin> R13:Allegheny:Triage:Station1738</origin>

<destination> R13:Allegheny:Al-EOC</destination>

<timestamp> 200412050937</timestamp>

<priority> normal</priority>

<security>

<token> <id> 34f5a9</id> <access> full </access> </token>

</security>

<priority> normal</priority>

<usage> NIMS Resource</usage>

</meta-data>

<data>

<resource name=“Search & Rescue Task Force” cat=“S&R” kind=“Team”>

<component name=“Personnel”>

<metric name=“Number in Team”>

<type1> 70</type1> <type2> 28</type2>

</metric>

<metric name=“Training”>

<type1> NFPA 1670</type1> <type2> NFPA 1670</type2>

</metric>

<metric name=“Areas of Specialization”>

<type1> high angle rope rescue, confined space rescue</type1>

<type2> basic rope rescue</type2>

</metric>

</component>

<component name=“Equipment”>

<metric name=“Rescue Equipment”>

<type1> Pneumatic Tools, Elec. Tools, Hand Tools, Safety</type1>

<type2> Pneumatic Tools, Elec. Tools, Hand Tools, Safety</type2>

</metric>

</component>

</resource>

</data>

Figure 4. Example XML Message with NIMS-compliant Resource Description

4.2. Data Streams, Query Handling and Informa-
tion Discovery

All message processing and routing in WBP2P is done
using XQueries. There are two channels for message
propagation. The PUSH and the PULL channel. Both
channels are implemented using XQueries. The first
thing a node wants to establish as soon as it becomes
part of the network is the PUSH channel. This is the
only way other nodes will be able to reach it directly.
The PUSH channel is directly associated with the ap-
plication taxonomy. Based on our motivating applica-
tion of disaster management (Figure 1 and 3) let us see
how R13:Allegheny:Hospitals:Presbyterian
would establish it’s PUSH channel. The node would have

to generate the following query:

for $dest in
/wbMessage/meta-data/taxonomyDest

return
if ($dest/text() == "R13:Allegheny:

Hospitals:Presbyterian")
then true();

else if (starts-with(\$dest/text(),
"R13:Allegheny:Hospitals:")

then true();
else if ($dest/text() ==

"R13:Allegheny:*")
then true();

else if ($dest/text() == "R13:*")
then true();

7

This query is to be flooded to all the peers that have the
same primary layer as this node and go just one hop beyond
to any nodes that are connected to this layer, but it is not
their primary layer. This flooding leaves a trail that goes
back to the originating node. That is every hop points to
the previous hop. This way if a message hits on this query,
it propagates back to the originating node (e.g., the EOC
nodes for our example). Notice that the secondif clause
covers all the messages intended to go to hospitals. The
third one is for messages intended to go to any Allegheny
county node and the last one for those messages intended
to go to every node in Region 13. Now let’s see the PUSH
channel query for theR13:Allegheny:EOC node:

for $dest in
/wbMessage/meta-data/taxonomyDest

return
if ($dest/text() == "R13:Allegheny:EOC")

then true();

else if (starts-with($dest/text(),
"R13:Allegheny:")

then true();
else if ($dest/text() == "R13:*")

then true();

This is also propagated to all the nodes that have the
same primary layer as the EOC and one hop beyond that.
You can easily see that this way all the messages exchanged
between layers would be routed through the EOC’s layer
which isAllegheny-county.

As you can see the PUSH channel is a set of helpful
queries that propagate the messages to the correct nodes.
The PULL channel corresponds to application specific
queries that help gather information from various informa-
tion providers. The PULL queries are propagated through
the PUSH channel and are registered along the way, cre-
ating a trail from the information provider to the requester.
These queries could be simple XQueries, aggregate queries,
or even join queries that join information from two or more
information providers.

Simple queries can be addressed to mul-
tiple information providers (i.e. getting sta-
tus information from all of the hospitals, where
taxonomyDest=R13:Allegheny:Hospitals:*).
Dealing with these queries is simple. Aggregate and
join queries need a defined window to function properly.
For instance, if you want the number of patients triaged
in the past hour and update this every five minutes you
need a buffer that contains an hour’s worth of data and
evaluate it every 5 minutes against the query. The way we
implement this is depicted in Figure 5. The queries have
an extra admission query which filters out messages that
have nothing to do with the data concerning the actual
query. This makes evaluating the aggregate or join query

Figure 5. Processing of aggregate/join queries using
buffers.

faster. Each of these queries may be evaluated upon each
new message admission in the query buffer, or everyx

time units interval specified with the query’s meta-data.
In the future we plan on extending the query language to
include the epoch between evaluations of the queries, for
increased expressibility. Each evaluation that produces
data is compiled into a new wbMessage with the results as
the payload and a new time stamp etc. If necessary, the
generated message may go into the message cache. The
message cache is maintained by a global thread which is
bound to application-specific rules (i.e. how big the cache
should be, how long should the messages be kept for, etc.)

5. Open Issues regarding our design

Although some of the techniques presented thus far have
been used in the past to address individual parts of the is-
sues raised by our motivating application, we believe this
is the first attempt at a holistic solution that provides secu-
rity, robustness and high-availability of data, which are very
much needed features for many applications.

The new research problems arising from our design are:
Data encryption and message routingusing continuous

queries seems impossible to handle because to evaluate a
query the data must be unencrypted and available to the peer
doing the evaluation. A new security model, that will sup-
port multiple levels and dimensions of decryption keys that
on the one hand will help preserve sensitive data, and on the
other hand allow for the evaluation of the basic information
needed to correctly route the messages, must be designed.

Preserving trust while routingmessages is also difficult,
since the interactions that a peer has to make are not only
end-to-end. There are many intermediate nodes that han-
dle the data without certainty for who the intermediate node

8

will be and how it will handle the data. The trust mecha-
nisms have to be extended for this to work.

Another interesting optimization problem is how to ef-
ficiently satisfy query routing without having to go all the
way to the sources of data, but instead use intermediate, ex-
isting streams. That is, if some existing stream is already
serving a query that is identical to the one being routed, or
produces results that satisfy this query, then there is no need
to go all the way to the sources of data. The query can be
satisfied from that intermediate point. The bigger problem
is to guarantee that all the necessary sources are involved in
the current stream. A step further would be to also satisfy
queries for which their data requirements are a subset of the
data currently being routed.

The current query routing scheme can handle queries
to nodes such as:R13:Allegheny:hospitals:*,
which will serve all the hospitals in Allegheny county. An-
other possible requirement in query routing would be: how
can you send a query in all the hospitals in Region 13? Such
a query would beR13:*:hospitals:*.

Software Security Layer: After entering the system, en-
cryption, and transmission to the appropriate peer, data
availability will be determined at the application level. Each
message belongs to a class and by using these classes we
define roles for certain types of users/peers. Using these
roles, connected users can only access data and messages
included in their roles. Specifically, roles define who, from
where, what and when someone can access certain classes
of information. These roles exist to define the jurisdictional
relations between the users of our system, a major require-
ments for any real-life disaster management system.

Trust management is also critical since the messages are
routed throughout the network by several peers. Trust must
be established to make sure that sensitive information re-
mains confidential and secure. Although data is encrypted,
decryption has to be allowed for some peers to be able to
evaluate the queries registered to them and route the mes-
sages correctly. Since there has been a lot of work done in
this area [4, 13, 24] we have decided to use existing tech-
nologies, test them and then modify whatever is needed to
suit our needs. The most promising technique from what we
have encountered so far is Trust-X [4]. Trust-X is a com-
prehensive XML-based framework for trust negotiations in
peer-to-peer environments. It provides feature like trust
tickets and support for different negotiation strategies.

Another requirement that is needed, is to provide guar-
antees that each request for data is fully evaluated upon
the network and the replies received are from all possible
sources of the requested data. For example, if the query
misses a hospital peer then the decision support that the sys-
tem provides is degraded and any decisions made will be
wrongful. Exhaustive testing of the considered clustering
techniques in conjunction with caching and routing mecha-

nisms and the hierarchical topology setup, will show which
is the best combination to exhaustively answer any query.

6. System Status and Future Work

In this paper we presented a new architecture for en-
abling reliable message passing and filtering for disaster
response management. Our architecture, which is called
Whiteboard P2P, attempts to aggregate the benefits that ex-
ist from two predominant architectures, the client/server
and the peer-to-peer architecture. The system we are de-
signing acts as an innovative data stream processing sys-
tem which is vendor-independent and specific technology-
independent. We are specifically designing this system to
work in conjunction with responding to disasters, by pro-
viding quick, easy, and accurate information to a variety of
actors in disaster response while enabling coordination fol-
lowing the necessary rules and guidelines already in place
in the real world.

Our main design contains several features which are nec-
essary in an architecture which is to be vendor-independent
and innovative, such as message formats, system secu-
rity, and the ability to reliably send and deliver messages
while scaling up to high numbers of participating nodes
and data/queries. Our message format, which we termed
wbXML, adheres to the standard of the NIMS Resource
Typing System which allows for easy use in disaster man-
agement and contains many features to ease information
passing. Security in our system is done at both the soft-
ware level, through the use of filters, and at the network
level, through secure message passing hardware. Finally,
our system design for message delivery is intended to not
only be highly scalable, but also enable disconnected oper-
ation, while allowing for dynamic restructuring of the net-
work as needed.

At the current time, we have begun building our architec-
ture from scratch, and are making good progress towards the
full-fledged implementation and deployment of the White-
Board P2P architecture. We have successfully been able to
establish our own network overlay, which provides reliable
message delivery through the use of acknowledgment mes-
sages. The system also incorporates the use of XQueries
and maps them to connections to accommodate routing.
The query manager used is NUX [16]. In this way, the
messages are successfully multi-casted out, with leaf nodes
only needing to send one message, whereas all nodes re-
questing such a message are receiving it. This means that
we have been able to create a network of peers that is self-
forming, able to do filtering at both where data is routed and
where data is received, and can reliably send messages. Our
future implementation plans include porting the existing
components to the JXTA framework (http://www.jxta.org).
This will make our implementation adhere to current stan-

9

dards and make it easier to expand, deploy and integrate
with other systems. We did not use JXTA at this stage be-
cause the routing and network organization techniques im-
plemented with it do not match our needs. We plan on ex-
tending JXTA to accommodate our architecture.

We also see our architecture working as a middleware
for integration with new emerging technologies such as the
Global Sensor Networks middleware [1] which tries to ad-
dress the complications of deploying and interconnecting
heterogeneous sensor networks. GSN offers virtual sensors
as a powerful abstraction which enables the user to declara-
tively specify XML-based deployment descriptors with the
possibility to integrate sensor network data over local or re-
mote data sources. We see our architecture as a means for
supporting message delivery, resource discovery and dis-
tributed query processing in such environments.

While much has been accomplished in our current im-
plementation, there still remains a lot of work to be done.
For example, one of our goals was to enable disconnected
operation, which means that nodes which get disconnected
will receive vital messages that appeared while they were
disconnected. While we have begun implementing this,
we have not incorporated it yet into the system. After the
system implementation is completed, we will go through a
beta-testing phase, where we will need to fine-tune different
components of the system e.g., the security levels provided,
according to real users’ needs. Given the progress so far we
expect this to happen in the near future, which will allow
for the creation of a complete system that supports reliable
message delivery, a fine-grained security model, and intelli-
gent filtering to enhance disaster management.

References

[1] K. Aberer, M. Hauswirth, and A. Salehi. The Global Sensor
Networks middleware for efficient and flexible deployment
and interconnection of sensor networks. Technical report,
2006.

[2] S. Babu and J. Widom. Continuous queries over data
streams.ACM SIGMOD Record, 30(3), 2001.

[3] P. A. Bernstein. Applying model management to classical
meta data problems. InCIDR, 2003.

[4] E. Bertino, E. Ferrari, and A. C. Squicciarini. Trust-x:A
peer-to-peer framework for trust establishment.IEEE Trans.
Knowl. Data Eng., 16(7):827–842, 2004.

[5] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.
Monitoring streams: A new class of data management ap-
plications. InVLDB, 2002.

[6] N. Carver and V. Lesser. The evolution of blackboard control
architectures.Expert Systems with Applications, 7(1), 1994.

[7] D. Chamberlin. XQuery: An XML query language, 2002.
[8] J. Chen, D. DeWitt, F. Tian, and Y. Wang. Niagaracq: A

scalable continuous query system for internet databases. In
SIGMOD, 2000.

[9] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. InICSI Workshop on Design Iddues in Anonymity
and Unobervability, 2000.

[10] D. Corkill. Blackboard systems.AI Expert, 6(9), 1991.
[11] D. Corkill. Collaborating software: Blackboard and multi-

agent systems & the future. InInt’l Lisp Conference, 2003.
[12] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the

grid: Enabling scalable virtual organizations.International
J. Supercomputer Applications, 15(3), 2001.

[13] H. Garcia-molina, M. T. Schlosser, and S. D. Kamvar. The
eigentrust algorithm for reputation management in P2P net-
works, Nov. 18 2003.

[14] Gwebcache: http://www.gnucleus.com/gwebcache/, 2003.
[15] G. Koloniari and E. Pitoura. Peer-to-peer management of

xml data: Issues and research challenges. InSIGMOD
Record, Vol. 34, No. 2, 2005.

[16] B. Lab. Nux toolkit: http://dsd.lbl.gov/nux/, 2006.
[17] V. Lesser and L. Erman. A retrospective view of the hearsay-

ii architecture. InInt’l Joint Conference on A.I., 1977.
[18] Microsoft. Microsoft .net information.

http://www.microsoft.com/net/default.asp.
[19] S. Microsystems. Java 2 platform, enterprise edition (j2ee).

http://java.sun.com/j2ee/.
[20] C. G. Plaxton, R. Rajaraman, and A. Richa. Accessing

nearby copies of replicated objects in a distributed environ-
ment. In 9th Annual ACM Symposium on Parallel Algo-
rithms and Architectures, pages 311–320, June 1997.

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Computer Communication Review, volume 31, pages 161–
172, 2001.

[22] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. InIFIP/ACM Middleware, 2001.

[23] M. Sharaf, P. Chrysanthis, and A. Labrinidis. Preemptive
rate-based operator scheduling in a data stream management
system. InACS/IEEE International Conference on Com-
puter Systems and Applications, 2005.

[24] A. Singh and L. Liu. Trustme: Anonymous management of
trust relationships in decentralized P2P, July 10 2003.

[25] A. Singla, C. Rohrs, and L. W. LLC. Ultrapeers: Another
step towards gnutella scalability, version 1.0.26, 2002.

[26] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable Peer-To-Peer lookup service for
internet applications. InProc. ACM SIGCOMM, 2001.

[27] S. Vinoski. Corba: Integrating diverse applications within
distributed heterogeneous environments.IEEE Communi-
cations Magazine, 14(2), 1997.

[28] W3C. Extensible markup language (XML):
http://www.w3.org/xml/, 1996.

[29] W3C. Web-services standards, 2002.
http://www.w3c.org/2002/ws/.

[30] B. Yang and H. Garcia-Molina. Designing a super-peer net-
work. In ICDE, page 49, 2003.

[31] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. D. Kubiatowicz. Tapestry: A resilient global-scale
overlay for service deployment.IEEE Journal on Selected
Areas in Communications, 22(1), 2004.

10

