
Ahmad T. Al-Hammouri Æ Wenhui Zhang

Robert F. Buchheit Æ Vincenzo Liberatore

Panos K. Chrysanthis Æ Kirk Pruhs

Network awareness and application
adaptability

Published online: 9 June 2006
� Springer-Verlag 2006

Abstract In this paper, we argue that pervasive applications need to be
aware of and adaptive to network conditions. We begin with an overview of
three software projects in which we are currently involved, and highlight
network awareness and application adaptability as a common thread
among them. We argue that these features stem from the fundamental
architectural principles of the Internet. We generalize our experience and
elaborate on the principles for developing network awareness and adaptable
applications.

1 Introduction

Pervasive computing enables us to access information from anywhere and to
affect local and remote physical environments. The Internet is a powerful
medium on which pervasive applications can be developed and deployed.

This work has been supported in part under NSF grants ANI-0123929, CCR-0098752,
and CCR-0329910.

A. T. Al-Hammouri (&) Æ W. Zhang Æ R. F. Buchheit Æ V. Liberatore
Department of Electrical Engineering and Computer Science,
Case Western Reserve University, 10900 Euclid Av.,
Cleveland, OH, 44106, USA
E-mail: ata5@case.edu
E-mail: vincenzo.liberatore@case.edu

P. K. Chrysanthis Æ K. Pruhs
Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, 15260, USA
E-mail: panos@cs.pitt.edu
E-mail: kirk@cs.pitt.edu

ISeB (2006) 4: 399–419
DOI 10.1007/s10257-005-0012-7

ORIGINAL ARTICLE

However, most of the current Internet lack features that are critical to per-
vasive applications, such as multicast or Quality-of-Service (QoS) provi-
sioning. As a result, applications need to exhibit particular intelligence when
deployed over IP (Internet Protocol) networks. In this paper, we argue that
network-enabled software needs to become network-aware, i.e., knowledge-
able about the technical details of the network, and network-adaptive, i.e.,
responsive to the nature and behavior of the network. We expound the
principles that are critical in developing network awareness and adaptable
applications.

The importance of network awareness and adaptability can be examined
in many pervasive applications. For example, VoIP (Arora 1999) enables
telephony using Internet connectivity instead of plain old phone lines. When
two people have a phone conversation, voice data should be transmitted to
them in real time. Being aware that the Internet cannot provide real-time
communication service, developers implemented some protocols, such as
RTP (Schulzrinne et al. 1996), RSVP (Braden et al. 1997), to achieve real-
time transmission so that VoIP applications can adapt to the Internet
environment. In this paper, we report on three software projects, in which we
are involved, that are network aware and are adaptable. These three projects
are a scalable data dissemination middleware, an agent-based robotic control
framework, and a distributed simulation platform. Although these applica-
tions differ greatly in objectives and functionalities, they share the common
trait that their design acknowledges explicitly the network architectural
principles, functionality, and missing features. In other words, these appli-
cations are network-aware, network-adaptive, or both. We will argue that
network awareness and network adaptability are motivated by the funda-
mental design principle of the Internet—they are not a transient phenome-
non. Based on the generalization of our experience, we will argue that
network environment investigation should be an additional step within the
existing software development methodologies (Pfleeger 1998; Schach 1996)
and pervasive applications should be configurable to enhance adaptability.

The paper is organized as follows. In Sect. 2, we report on our imple-
mentation of the data dissemination software. In Sect. 3, we describe our
agent-based architecture for remote robotic control, and our framework for
distributed and physically realistic simulations. Section 4 puts awareness and
adaptability within the broader perspective of the Internet design principles.
In Sect. 5, we give a highlight to the principles that are crucial in developing
effective pervasive applications with network awareness and adaptability.
Section 6 discusses a common approach to achieve self-awareness and self-
adaptability at runtime. Finally, Sect. 7 concludes the paper.

2 Scalable data dissemination

An HealthCare ALert (HCAL) system is an application that collects data
from health operators, assesses whether there is a widespread health condi-
tions, and, when a disease outbreak is detected, disseminates critical infor-
mation to a large number of receivers. Examples of HCAL is the RODS
system (Tsui et al. 2003; Wagner et al. 2003) and the analytic framework

400 A.T. Al-Hammouri et al.

described in Buckeridge et al. (2003). Figure 1 shows a Graphical User
Interface from the RODS HCAL at the client side (Li et al. 2003). The user is
presented with a map of Pennsylvania broken down by counties. The pur-
pose of this interface is to convey information to health operators and to the
public regarding current disease outbreaks in the state. By clicking on a
county, the user can get current statistics of diseases and prodromes for that
county. The information is automatically refreshed when the client receives
updated data from the server.

The data dissemination component is particularly needed when severe
outbreaks are detected and health operators or the public urgently demand
current information. In these circumstances, the demand for information
would vastly exceed the computational capabilities of any single Web server
and of most interconnection links. Therefore, two fundamental issues are:

1. The preparedness of the software to work in emergency scenarios,
2. Its scalability, i.e., its ability to serve a large number of potential re-

quests for information.

Fig. 1 A graphical user interface of the RODS HCAL system showing a map of the
state of Pennsylvania, the number of diseases and prodromes detected in three selected
counties during a run of the software on fictitious data

Network awareness and application adaptability 401

Hence, the software developer should be aware of the network conditions
and employ advanced technologies to improve system scalability. Lack of
network awareness can cause a failure in developing an effective HCAL.

These objectives can be achieved through multicast communication,
whereby a single piece of information is delivered simultaneously to all
parties interested in monitoring health conditions (and only to them). In-
ternet multicast is in principle similar to a television broadcast, which is aired
by one station and received simultaneously and independently by a multitude
of television sets. Multicast brings similar ideas to the Internet. However,
allowing multicast in the network introduces non-trivial data management
problems such as caching, consistency, and scheduling. We have built a
middleware (MSMDD 2004; Chrysanthis et al. 2003; Li et al. 2003; Mah-
moud 2004) which integrates state-of-the-art data dissemination and multi-
cast communication techniques into a software distribution. Although the
user interface appears on the surface as no more than a regular Web page,
the system incorporates multicast through a middleware library and is
consequently prepared for scalable use. For a better understanding of how
the system works, now we give a description of middleware support for
multicast-based data dissemination (MBDD) (Chrysanthis et al. 2003).

2.1 Data dissemination methods

The middleware supports three data dissemination methods, i.e., multicast
push, multicast pull and unicast pull. The middleware can use any combi-
nation of these three multicast methods at run time. Applications cannot
distinguish which method(s) are used because the details of the middleware
are concealed from them. In multicast push, the server periodically multi-
casts data to clients. Clients join the multicast channel to retrieve data
without explicitly sending requests to the server. In this way, the load on the
server is reduced and the system scalability can be enhanced significantly.
Multicast push is a good fit for disseminating hot data, e.g., the most up-to-
date information requested by most clients of an HCAL during a disease
outbreak. In multicast pull, the client sends an explicit request to the server
when it needs some data. The server multicasts the requested data to all
members of the multicast group. When there are multiple clients requesting
the same data within a short time, the server can aggregate the requests and
multicast the information only once. Multicast pull is used to disseminate
warm data for which multicast push cannot be justified, while there is an
advantage in aggregating concurrent client requests. Cold data are dissem-
inated by traditional unicast pull. For instance, in an HCAL, some history
records may be requested sporadically and consequently, unicast is suitable
for delivering these data to the clients.

2.2 Architecture

Figure 2 shows the architecture of the middleware and its relationship with
the transport and application layer. The architecture is flexible and extensible

402 A.T. Al-Hammouri et al.

and its components can be selected or replaced depending on the underlying
multicast transport mechanism or on the application needs. The document
selection component gathers statistics on document (a data item identified by
identifiers such as URLs) popularity, which is the probability that clients
request a document. The component uses this statistic to classify the docu-
ments as hot, warm or cold so that they can be disseminated respectively
through multicast push, multicast pull and unicast pull. An index of sorted
URIs or URI digests is broadcast by the server, which enables clients to
quickly decide if a document is multicast by the push channel. The multicast
push scheduling component determines the frequency and order by which
hot documents are multicast. The multicast pull scheduling component re-
solves contention among client requests to use the multicast pull channel and
arranges the order in which warm documents are disseminated. The multi-
cast documents on the server are loaded into the cache before being dis-
seminated to clients. Caching is also available at the client side. Advanced
caching policies are incorporated into the caching component. Interaction
between the middleware and the underlying transport layer are enabled by
the transport adaptation layer (TAL) using a uniform interface.

2.3 Multicast schemes

The transport layer provides various multicast schemes for multicast com-
munication. A multicast scheme can have specific requirements on the net-
work where it works. This requires developers have a good knowledge of the
network where the multicast system is deployed.

Fig. 2 Middleware data dissemination architecture and its relationship with the trans-
port and application layers

Network awareness and application adaptability 403

There are multiple multicast schemes that have been developed, ranging
from IP multicast and end-to-end multicast schemes. In IP multicast, the
server sends a single data copy to the network and packets are replicated and
forwarded to receivers by multicast-enabled routers. Therefore, the server
can disseminate data to a large number of receivers by using small band-
width. Based on IP multicast, more sophisticated schemes are obtained by
adding higher level features, such as reliability, congestion control and
security. However, IP multicast has not been widely deployed because of a
number of challenging issues, such as the management of globally unique
addresses, maintaining per group state at routers, defending from flooding
attacks and needs for changes at the infrastructure level. In practice, IP
multicast is often confined within local-area networks.

Implemented at the application layer, end-to-end multicast schemes give
an effective solution to deploy multicast in the Internet. In end-to-end
multicast, applications are strategically placed in a logical overlay network,
which is a network abstraction on top of the substrate network. Commu-
nication between the applications is along overlay edges using unicast. End-
to-end multicast can utilize features such as flow control, congestion control
and reliable delivery that are available for point-to-point connections.
However, this approach can increase server-to-client delays because packets
are relayed by applications. End-to-end multicast also requires more band-
width than IP multicast since the same data copies can be transmitted over
the same physical link more than once.

The selection of multicast scheme for a multicast system is determined
by a number of factors: the size of the multicast group, the performance
requirements, the network environments where the system is deployed,
and other requirements on security, reliability. Network awareness can
play an important role in obtaining the correct choice of a multicast
method. For example, because HCALs must be deployed across hetero-
geneous Internet links, an end-to-end multicast scheme should be chosen
by the application.

2.4 Performance

The objective of MBDD is to provide a scalable data management layer to
applications. Therefore, it is important to optimize the application-perceived
level of service. The application level performance often cannot be derived
directly from the network level metrics. For example, a small loss rate on the
links may not largely reduce the bandwidth available to clients, but it can
substantially increase the latency to satisfy a client’s request (Zhang et al.
2004). However, we can still take advantage of network awareness. If we
learn that a network can experience severe loss of packets, we can selectively
incorporate coding techniques (Luby et al. 1997) into applications to avoid
remarkable deterioration of application level performance due to packet
loss. In this way, applications can be more adaptive to networks with higher
loss rates.

404 A.T. Al-Hammouri et al.

3 Remote control

In the case of HCALs, we have argued that network awareness allows
software developers to identify what functionality the network lacks and
what corresponding technologies should be adopted by applications to adapt
to the network environment. We continue our argument on the importance
of adaptability and network awareness by the discussion of remote control.
We first describe the difficulties we face in the network, then we give two
examples: Internet robotics and distributed simulations.

3.1 Quality-of-Service

A network can introduce unreliable and time-dependent levels of service in
terms of, for example, delays, jitter, or losses. QoS can ameliorate the real-
time network behavior, but the network behavior is still subject to inter-
ference (especially in wireless media), to routing transients, and to aggressive
flows. In turn, network vagaries can jeopardize the stability, safety, and
performance of controlled units in a physical environment. Therefore, a
primary objective is to devise algorithms to compensate for the vagaries of
network service. Such strategies are targeted toward the application layer
and their objective is to deal with packet losses, delays, jitter, and network
unreliability.

3.2 Internet robotics

The broad vision of Internet robotics is to enable end-users to affect a remote
physical environment through network connectivity and action units.
Applications range from distributed instrumentation (Al-Hammouri et al.
2003) to home robotics (Ngai et al. 2002). We have implemented a distrib-
uted system to facilitate human-robot remote interaction. Our approach is
based on three concepts, all of which involve the system awareness of and
adaptiveness to network conditions.

First, the system employs software components (agents) that can move
among hosts in response to changes in the robotic tasks and in network
conditions. Consider the snapshot shown in the upper part of Fig. 3 where
agents A1 and A2 start communicating while residing in two different ma-
chines, A and B. Suppose at the beginning the two agents are satisfied with
the communication quality. If, at some time later, network dynamics—such
as congestion and routing paths-change, agents A1 and A2 may not be able to
communicate in real time. However, agent A1 can migrate to another ma-
chine where it can communicate effectively with agent A2. On the extreme, A1

will move to machine B, where A2 resides as shown in the lower part of
Fig. 3. Then, the two agents will execute as two threads and will commu-
nicate using inter-thread communication, which is far faster than commu-
nication over network. This extreme solution is not always feasible due to the
computational requirements on host B, but in general, agent mobility

Network awareness and application adaptability 405

implements a high degree of awareness of and adaptability to end-to-end
communication performance.

One of the core aspects of network awareness and adaptability is the
detection and the recovery from partial failures. Agents’ mobility can deal
with planned disconnections. For example, if an agent realizes that its cur-
rent machine is shutting down or the available computation resources are
stepping down, it can move to another machine in the network with suitable
resources. As for unexpected failures, we adopted the leases strategy from
Jini (2004), which is based on the time-out idea. Agents join the system with
a fixed lease duration. While agents are operational, they maintain their
leases by renewing them. When an agent becomes unavailable because, for
instance its network connection goes down, it will be unable to renew the
lease and so the lease expires after a timeout. The system then cleans pre-
vious references of the unavailable agent and notifies other components via
event notifications. By this process, the system arrives to a safe and pre-
dictable state and it continues to function correctly after failures.

Our system also relies on Jini’s distributed events—the extension of local
events over the network. Distributed events provide flexible asynchronous-
communications. The necessity of deploying this stems from the asynchro-
nous nature of these network applications. By registering to receive
notifications about events that occur in the system, system entities will be
kept updated with recent system conditions without constantly polling each
other. Thus, reducing the amount of communication greatly.

Figure 4 shows a possible configuration of system components. In the
figure, Supervisor is the user who interacts with the robot; VS (Virtual
Supervisor) is a GUI that facilitates interaction with other system compo-
nents; Virtual Robots (VRx’s) are the mobile agents; Robot Proxy (RP) is a
thin legacy layer between diverse robot implementations and our distributed
system; and Lookup Services (LUs), which are adopted from Jini, are
directories of available VRs and RPs in the system. Such tree structure forms
an overlay topology that must be reconfigurable, as we discuss next. On one
hand, the logical interconnection between components are defined to be
specialized, for example VR3 can only communicate with VR4, VR6 and
RP4 but not with, say, VR7. On the other hand, the overlay nodes (the

Machine A Machine B

VR2

VR1

Execute “command”

Return value

Machine A Machine B

VR2

VR1

Exc.

Ret.

Fig. 3 Agent mobility. (Up) agent A1 is in machine A; agent A2 is in machine B.
(Down) Both agents, A1 and A2, are in machine B

406 A.T. Al-Hammouri et al.

software components) are distributed throughout the machines in the net-
work, and the assignment of these nodes to the underlying physical network
devices is reconfigurable, that is, it can change according to network con-
ditions. These software components can be in different machines, all in one
machine, or any intermediate configuration between these two extreme cases.
In our ongoing research, we are investigating how to make the software
components be aware of the communication quality and adaptable to net-
work conditions by reconfiguration of the logical interconnection topology.
For instance, if it happens that VR3 and VR8, in the topology of Fig. 4,
operate in very close machines while VR6 and VR7 are in distant machines,
VR6 and VR7 must become aware of this non-optimal physical placement
and they must react accordingly, i.e., move very close to VR3 and VR8, if
possible.

Robot 2

Robot 1

Robot 3 Robot 4 Robot 5

VR
10

VR
6

VR
8

VR
7

RPCS 5

RP 5

RPCS 4

RP 4

RPCS 3

RP 3

VR
4

VR
3

VR
k

RPCS 2

RP 2

VR
2

VR
1

RPCS 1

RP 1

LUs

VS

Supervisor

Fig. 4 An example of logical interconnection among software agents

Network awareness and application adaptability 407

Figure 5 shows a current prototype: the window on the bottom left corner
is a live WebCam view of the robot work space. The top window enables an
end-user to directly tele-operate the robot through mouse movements and
keyboard strokes. The bottom right window enables the creation of new
mobile agents by directly instantiating the definitions contained in appro-
priate Java class files. This GUI also allows the logical interconnection of
agents in a hierarchal structure such as the one in Fig. 4.

3.3 Distributed simulations

The environment can be located in the physical world, but it can also be
numerically simulated. The result is a distributed interactive simulation, with
applications ranging from medical training to networked video-games.
However, the realism and effectiveness of networked virtual environments
suffers in most current networks due to the network’s lack of QoS guaran-
tees. For example, poor network QoS can render the simulation unrespon-
sive to user input, with consequent loss of user attention and of the overall
effectiveness of the simulation. In these networks, privileged users can obtain
high QoS levels at a substantial cost and show impressive network-enabled
demonstrations. However, most other users do not have access to those
exceptional QoS levels even if they have broadband connectivity, so that the
effectiveness of network applications is hampered. Consequently, the current
state of affairs prevents the widespread adoption of high-fidelity networked
simulations for the large number of potential users with typical broadband
connectivity.

Fig. 5 VS GUI panel

408 A.T. Al-Hammouri et al.

Our project in this field seeks to explore the effectiveness of such appli-
cations through the development and implementation of an application-layer
delay compensation strategy that must be aware of and adaptive to the lack
of QoS. Figure 6 shows a network video-game that we have implemented.
The game simulates a sailing boat and is designed to behave similarly as if
the user is remotely operating an actual sailboat on the open ocean. The
objective of the game is to sail toward the target buoy as quickly as possible
given the environmental conditions (wind and current). The game is based on
a client-server model. In addition to the control and update data stream
pertaining to the game state, there is also a ping stream between the client
and server. This is used by the client to maintain a running estimate of the
latency between itself and the server. This estimate is then used to extrapo-
late and forward the game state by one RTT as in the strategy of dead
reckoning (Smed et al. 2002b). To provide control feedback to the user, the
short circuit mechanism is used (Smed et al. 2002a). Thus, in addition to
sending the control inputs to the server they are also stored locally. The
inputs are then compiled into a position offset for the vehicle and applied to
the incoming state data before it is displayed to the user.

Each of the data points in Fig. 7 are based on the time performance of
two identical automatic pilots on a fixed course consisting of a single buoy
1,000 feet distance to which the agents race. The data points each represent
the average of 15 separate trials under each testing condition. In each case,
one agent runs at the client and is subject to the effects of the latency and any
delay compensation. The other agent runs at the server and experiences no
latency effects. These results demonstrate the effectiveness of the delay
compensation in allowing for feedback-based sail control even at very high
latencies.

Fig. 6 Sailing game screenshot

Network awareness and application adaptability 409

The framework developed for this game can provide a stable platform for
further study of the field including potentially such other techniques as
contingency control (Branicky et al. 2003) and server side latency reduction
as well as improved game state convergence techniques.

4 Awareness and adaptability

Healthcare alert systems, Internet robotics, and distributed simulations are
vastly different types of applications that share one common trait: they
embed communication functionality that the network lacks. For example, an
HCAL embeds multicast methods that are seldom supported in the Internet.
The Internet robotics system embeds mobile agents for real-time commu-
nication. Similarly, distributed simulations embed methods to remediate
poor network QoS. Multicast, real-time communication and QoS appro-
priately belong to the communication sphere and a software developer could
reasonably expect that multicast, real-time communication and QoS should
be provisioned within the network infrastructure, but the pragmatic reality is
that such functions are not supported in the Internet. Therefore, the devel-
oper has the responsibility of knowing about these issues and of explicitly
taking corresponding steps in his code. In this section, we will explore the
causes of this fact.

4.1 The end-to-end argument

A fundamental design principle of the Internet is the end-to-end-argument.
The argument states that a function should be pushed to the higher layers
if possible, unless a lower layer implementation can achieve large perfor-
mance benefits (Saltzer et al. 1984). The argument makes for a network
that offers minimal functionality and expects additional components to be

Performance Comparison - Optimal AI, StableWinds, 1
Knot Current

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 500 1000 1500 2000
Latency (ms)

%
 D

if
fe

re
n

c
e

L
o

ca
l v

s
R

em
o

te
A

I DC Off

DC On

Fig. 7 Comparison of time performance of synthetic player with delay compensation
and without

410 A.T. Al-Hammouri et al.

implemented by the networked applications. For example, the argument
implies that an HCAL should implement components for multicast. Simi-
larly, Internet robotics systems should implement components for real-time
communication and distributed simulation environments should implement
components to tolerate low QoS. The end-to-end argument has been cen-
tral to the success of the Internet: the network offers minimal functionality,
but it also leaves developers free to create innovative applications. Internet
capabilities are only limited by the inventiveness of the software developer.
At the same time, however, the end-to-end argument requires the software
developer to explicitly recognize the role of the network and to take steps
to make his code network aware and adaptive. As such, awareness and
adaptability are a permanent and structural component of Internet-enabled
software. The end-to-end argument also makes network awareness extra-
neous to network research or to the infrastructure. As such, the argument
implies that progress in network aware and adaptive technology would
stem preferentially from end-applications rather than from core infra-
structure research.

4.2 Awareness and adaptability

Lack of awareness and adaptability can lead to a ‘‘bubble’’ of inflated
expectations and to its subsequent deflation when such expectations do not
materialize.

4.2.1 A hypothetical scenario

In this hypothetical scenario, we consider a distributed simulation environ-
ment that is network-enabled (i.e., it can operate over a network) but not
network-aware (i.e., it is not adaptive to network conditions). The software
is deployed over a local-area network during initial usage and then ported to
a wide-area grid context. The project is successful in the local context (the
‘‘bubble’’), only to fail later on when the same software is used in the wide-
area network (the deflation of the bubble). The resulting perception among
most developers would probably be that simulations cannot be supported
with current network technology. On the other hand, local-area and wide-
area networks differ by order of magnitude in their characteristics, such as
delays, bandwidth, and loss rates. The crux of the issue was really that the
simulation was network-blind and consequently unable to cope with the
heterogeneity of the local- and wide-area contexts.

We maintain that network awareness and adaptability are critical to the
continuous development of effective applications. On the contrary, network
unawareness leads to an intrinsically weaker software design that no amount
of hardware resources can cure. We feel that network awareness and
application adaptability should be part of the software development process
as described in the next section.

Network awareness and application adaptability 411

5 Development of distributed applications

Network awareness and application adaptability can be realized using two
different and complementary approaches. The first approach, discussed in
this section, is to pursue additional steps during the software development
cycle. The second approach, discussed in next section, is to build an adaptive
middleware that monitors the network performance and then configures the
application accordingly to meet application requirements. In this section, we
generalize the lessons learned from the creation of our three examples, and
elaborate on the principles that are crucial to develop applications with
network awareness and adaptability.

5.1 Network environment investigation

Network awareness and application adaptability should receive significant
attention in the software design phase. Network environment investigation
should be an additional step within the existing software development
methodologies (Pfleeger 1998; Schach 1996). This is because network
awareness and adaptability are crucial factors in determining the software
architecture and selection of technologies used to develop the application. In
our examples, because the Internet lacks sufficient available bandwidth,
HCAL employs multicast technology to meet the requirement of dissemi-
nating data to a large number of receivers. In turn, the use of multicast
communication leads to the incorporation of a middleware into the HCAL
architecture to deal with the problems introduced by multicast, such as
caching, scheduling, interaction with various multicast schemes. Internet
robotic systems require frequent communications and cooperations between
software components, while the desired QoS cannot be guaranteed by the
network. This scenario drives the developers to use the agents technology
since agents can travel among the hosts in response to changes in the robotic
tasks and in network conditions.

Generalized from our experience, the investigation procedure should have
the following steps.

Information collection Combined with the analysis of the technical
requirements (e.g., requirements on performance, scalability, reliability,
security), information should be selectively collected from related materials,
including manuals, technical reports and publications that are relative to the
deployment network. Meanwhile, developers should look into the similar
and typical distributed applications that have been deployed in the network.
Developers need to list out the positive and negative features with their
causes of these applications.

Analysis Based on the collected information, developers should classify the
network situations that applications can experience during runtime. Devel-
opers need to identify the missed functionalities in the network that can cause
applications to fail to meet the technical requirements. The analysis result
contributes to the determination of what technologies and schemes should be

412 A.T. Al-Hammouri et al.

taken as solutions in the software development, which in turn affects the
software architecture.

Prototyping It is desired that prototypes are created to affirm the analysis
and evaluate the solution methods. The running environment can be the
network where applications are deployed. Meanwhile, simulation (NS-2
2004) and emulation (Emulab 2004) environments are effective testing plat-
forms because specific network conditions can be intentionally created.
Prototyping enables developers to quantitatively evaluate the effectiveness of
the proposed designs. Moreover, sophisticated testing tools, such as execu-
tion profiling (Podgurski et al. 2003; Varghese 2003; Xu et al. 2004), can be
applied to explore unexpected problems in the network and trace their
causes. The result of this step is the complementary information of the
network environment. Modification and improvements are made on previous
designs.

The above steps are repeatedly conducted to improve network awareness
and application adaptability. Although most work of network investigation
is done during the design phase, the investigation should proceed through the
whole life of software development because new problems can arise due to
the unawareness of some aspects of the network.

5.2 Configurability

Applications have been traditionally designed under the assumption that a
desired network service level can be achieved through a signaling protocol.
For example, an application would assume that bandwidth is reserved by
running the RSVP (Barden et al. 1997) protocol. In reality, an application
cannot manipulate a best effort network with distributed control. Moreover,
networks are dynamic environments that can differ at different locations and
times. We recognize these constraints and insist that applications should be
configurable to enhance their adaptability to various network conditions.

5.2.1 Configurability of network parameters

First of all, applications should have the ability to set network parameters at
the end-hosts in accordance to network conditions. Network parameter
configuration is often conducted when an application is started. Settings
should be either manually specified by the users based on their knowledge of
the network environment or automatically set by the application based on its
analysis of network conditions. Generally, the configuration aims to adapt to
notable variations between networks, such as the different bandwidth, de-
lays, scalability characters on different types of networks. The effectiveness
of the configuration is closely related to the extent of network awareness. For
instance, generally an HCAL server limits the length of a multicast message
in UDP to 576 bytes (the minimum reassembly buffer size defined by IPv4)

Network awareness and application adaptability 413

to guarantee the datagram can be accepted by any client. However, if the
server knows that the network is an IPv6 environment, it can set the maxi-
mum UDP datagram length to 1,280 bytes (Deering and Hinden 1998). As
the transmission overhead is significantly reduced, the multicast performance
can be remarkably improved.

Network conditions can vary during runtime. In many cases, applications
should reconfigure some setting parameters during runtime in order to
maintain satisfactory performance. For example, to maximize the through-
put without triggering unacceptable network congestions, an HCAL server
monitors the online available bandwidth of the network and modulates the
server’s multicast rate accordingly. We will elaborate on this point in Sect. 6.

5.2.2 Structural configurability

Pervasive applications should be structurally configurable. The software
architecture should be flexible so that its individual components can be se-
lected or replaced depending on the network conditions and application
needs. In the HCAL example, the caching component in the middleware can
be switched on or off and the type of multicast scheme can be selected by the
application. In the Internet robotic systems, the logical interconnection
topology of the system components (VSs, VRx’s, and RPs) are configured
according to network conditions.

While network parameter configurability is relatively easy to implement,
structural configurability is more flexible and effective to improve applica-
tion adaptability. Network parameter configuration modulates setting
parameters in accordance to the network condition, but it does not change
the algorithms in the software and the relationship between components. The
adaptability achieved by parameter configuration is limited. For example, an
HCAL using the IP multicast scheme, which works within local networks,
cannot adapt to the Internet environment just by reconfiguring the settings in
the application. To accomplish the task, the IP multicast scheme must be
replaced by an end-to-end multicast scheme, which is a structural configu-
ration.

The procedure of designing configurable components can be described as
follows:

– Identify the functions that are used to achieve awareness and adaptability.
– Analyze the relationship between these functions. The relationship can be
exclusive such as the multicast schemes in HCAL, or be cooperative such
as the network communication functions of the VR and VS in the Internet
robotics system.

– Organize these functions into a number of components and define the
interface for those components that need to cooperate with each other.

– Design interface layers for these components to plug into the software
architecture. A good example is the TAL in HCAL. Through TAL, the
multicast schemes are selectively plugged into HCAL systems so that the
data management modules can access the multicast channels with a uni-
form interface.

414 A.T. Al-Hammouri et al.

Distributed applications are extensible when they are structurally con-
figurable. Two reasons make application extensibility important. Firstly, it is
difficult to anticipate all the network conditions. Unpredictable network
conditions can cause problems which require addition of new functions and
modification of the applications. Secondly, with the evolution of technology,
new algorithms and schemes need to be incorporated into the applications in
order to enhance performance. When the applications are extensible, new
functions and schemes can be added to the software architecture with few
changes on the existing code. For an application with structural configura-
bility, extensibility is achieved by adding new components, replacing old
components, or restricting modification to a few components. In HCAL, for
example, new multicast scheduling algorithms, multicast schemes, caching
schemes can be easily incorporated into the application because the config-
urability and extensibility were taken into consideration strategically. An-
other example, in the Internet robotics system, the end-user (the supervisor)
has the ability to replace an existing VR with a new one having specialized
constructs to deal with changes in network conditions. This can be accom-
plished on the fly, i.e., while the system is running.

6 Self-awareness and self-adaptability

Throughout this paper, we repeatedly stated that for distributed applications
to be effective, they must be network aware and adaptable. In the previous
section, we discussed how to develop a software application that is network
aware and adaptable at design time, at deployment time, and at runtime with
intervention from the developer (see the two examples at the end of Subsect.
5.2.2). In this section, we go one step further and sketch a common approach
to achieve self-awareness and self-adaptability at runtime. We emphasize
that the two approaches of Sects. 5 and 6 are complementary and are not
exclusive of each other.

6.1 Application requirements and network performance

Different applications tend to have different communication requirements.
For physical real-time distributed systems, the necessary requirement is to
maintain system stability and the secondary objectives include speed of
convergence and overshoot. In downloading web documents, performance is
characterized by the latency to download a complete web page. In wireless
applications, on the other hand, energy and power consumption are more
significant factors. From such and other examples, we conclude that different
applications have radically different performance requirements. Despite this
fact, all application performance metrics are influenced by network-oriented
performance metrics, which include delay, jitter, packet loss rate, and
bandwidth availability. Consequently, application requirements can be
supported by a unified middleware framework that ties network-oriented
metrics and application-oriented metrics.

Network awareness and application adaptability 415

6.2 Middleware framework

The purpose of a middleware framework is to provide a common platform
for a range of applications by acting as a broker between the applications
and the network, as mentioned in Sect. 2. To provide such a service, the
middleware usually incorporates specific modules for monitoring, analyzing,
and customizing. One powerful technique to build applications that are able
to observe and change their own code at runtime is through the use of
reflective programming languages. This type of programming languages
gives the program the ability to inspect and adapt itself (Mahmoud 2004;
Schantz and Schmidt 2001). Based on this, we distinguish three types of
modules: monitoring modules, decision-making modules, and customizing
modules.

The monitoring modules collect online measurements for network-ori-
ented metrics and report their statistics, see (NLANR 2004) for a list of
network performance and measurement tools. Some applications require
measurement of instantaneous and real-time events (e.g., commanding ro-
botic systems are very sensitive to individual packet losses) whereas others
require average quantities over a period of time (e.g., distributed simulations
depend on the average RTT, see Sect. 3).

The decision-making modules retrieve statistics on network-oriented
metrics from the monitoring modules, map these statistics to application-
oriented metrics, and issue appropriate signals to the customizing modules.
Mapping network-oriented metrics to application-oriented metrics can be
achieved using several strategies and is application dependent. In some sit-
uations, a mathematical equation can be established to predict application-
oriented metrics from network oriented-metrics. Another common strategy
is to have an operational-threshold profile for the application-oriented
metrics and the corresponding network-oriented metrics. The customizing
modules alter other system modules and configurations in response to the
control signals from the decision-making modules to adapt the system to
network vagaries.

These three modules work in a feedback manner that resembles a con-
ventional closed-loop feedback control system (Fig. 8). Specifically, the
monitoring modules serve as sensors; the decision-making modules as con-
trollers; and the customizing modules as actuators.

In our distributed simulation system (Sect. 3.3), we employed a similar
feedback approach. The system dedicated a communication stream to
measure the round-trip-time delay between the client and the server
(sensing). The estimate of the delay is then used to extrapolate the
game state according to the dead-reckoning strategy (computing control
information). Finally, the extrapolated value is used to forward the
game state by one RTT (actuating). Although we did not implement this as
a distinct reusable framework—rather it was embedded within the appli-
cation itself—it represents a groundwork for a network-delay compensation
middleware.

416 A.T. Al-Hammouri et al.

7 Conclusions

The paper has reviewed scalable healthcare alert systems and our scalable
data dissemination component, our multi-agent Internet robotics system and
our research in distributed simulation environments. These applications are
vastly different but share one commonality: the software explicitly incor-
porate modules for communication features that are not supported in most
of the current Internet. Although a software developer could reasonably
expect that such communication functionality should be provided by the
network infrastructure, in fact it is not so. The functionality needs to be
explicitly implemented in the application. Further, we argued that such state
of affairs derives from a fundamental design principle of the Internet. As a
result, network awareness and application adaptability should be a critical
component of networked applications. Conversely, network-blindness can
lead to a ‘‘bubble’’ of over-inflated expectations.

By generalizing the experience from our examples, we argued that net-
work environment investigation should be an additional step within the
existing software development methodologies and pervasive applications
should be configurable to enhance adaptability. Moreover, to achieve self-
awareness and self-adaptability, system components should be able to
monitor the network, and should be customizable to adapt to network
vagaries. These principles are important to existing and future pervasive
computing. One important yet challenging area for future work is ad-hoc
systems. In an ad-hoc system, the heterogeneity of networks is more serious
compared with traditional distributed systems. The network state can be
more various and complex. Ad-hoc scenarios require much effort to inves-
tigate network environments in order to develop network aware and
adaptable pervasive applications. Moreover, as these distributed systems
have no fixed infrastructure, devices can travel in different networks that use
different communication protocols. Thus, there is a need for an adaptive
middleware that hides such different network protocols and provides to the
applications a unified services interface.

Customizable
system

modules

Monitoring
modules

Decision-making
& customizing

modules

Fig. 8 Feedback control system approach

Network awareness and application adaptability 417

Acknowledgements We acknowledge the help of two anonymous reviewers in greatly
enhancing the clarity of this paper.

References

Al-Hammouri A, Covitch A, Rosas D, Kose M, Newman WS, Liberatore V (2003)
Compliant control and software agents for internet robotics. In: Eighth IEEE inter-
national workshop on object-oriented real-time dependable systems (WORDS)

Arora R (1999) Voice over IP: protocols and standards. URL http://www.cse.ohio-sta-
te.edu/�jain/cis788-99/ftp/voip_%protocols/index.html

Braden R, Zhang L, Berson S, Herzog S, Jamin S (ed) (1997) RFC 2205: resource reser-
vation protocol (RSVP)—version 1 functional specification. Status: PROPOSED
STANDARD. URL http://www.ietf.org/rfc/rfc2205.txt

Branicky MS, Liberatore V, Phillips S (2003) Networked control system co-simulation for
co-design. 2003 American Control Conference

Buckeridge DL, Musen MA, Switzer P, Crubezy M (2003) An analytic framework for
space-time aberrancy detection in public health surveillance data. In: AMIA 2003 fall
symposium

Chrysanthis PK, Liberatore V, Pruhs K (2003) Middleware support for multicast-based
data dissemination: a working reality. WORDS 2003, pp 265–272

Deering S, Hinden R (1998) RFC 2460: Internet Protocol, Version 6 (IPv6) specification.
Obsoletes RFC1883. Status: DRAFT STANDARD. URL http://www.faqs.org/rfcs/
rfc2460.html

Emulab (2004) Utah emulation facility. URL http://www.emulab.net/
Jini (2004) Jini network technology. URL http://wwws.sun.com/software/jini/
Li W, Penkrot V, Roychowdhury S, Zhang W, Chrysanthis P, Liberatore V, Pruhs K (2003)

An optimized multicast-based data dissemination middleware: a demonstration. In:
Proceedings of the 19th international conference on data engineering (ICDE 2003)

Luby M, Mitzenmacher M, Shokrollahi A, Spielman D, Stemann V, (1997) Practical loss-
resilient codes. In: Proceedings of the 29th ACM symposium on theory of computing
(STOC’97), pp 150–159

Mahmoud QH (ed) (2004) Middleware for communications. Wiley
MSMDD (2004) Middleware support for multicast-based data dissemination. URL http://

dora.eeap.cwru.edu/mware
Ngai ML, Liberatore V, Newman WS (2002) An experiment in remote robotics. In: IEEE

international conference on robotics and automation (ICRA), pp 2190–2195
NLANR (2004) Nlanr distributed applications support team. URL http://dast.nlanr.net/
NS-2 (2004) The network simulator—ns-2. URL http://www.isi.edu/nsnam/ns/
Pfleeger SL (1998) Software engineering: theory and practice. Prentice-Hall, Englewood

Cliffs
Podgurski A, Leon D, Francis P, Masri W, Minch M, Sun J, Wang B (2003) Automated

support for classifying software failure reports. ICSE
Saltzer J, Reed D, Clark D (1984) End-to-end arguments in system design. ACM Trans

Computer Syst 2(4):195–206
Schach SR (1996) Classical and object-oriented software engineering, 3rd edn. IRWIN
Schantz R, Schmidt D (2001) Middleware for distributed systems: evolving the common

structure for network-centric applications. Encyclopedia of Software Engineering
Schulzrinne H, Casner S, Frederick R, Jacobson V (1996) RFC 1889: RTP: a transport

protocol for real-time applications. Status: PROPOSED STANDARD. URL http://
www.faqs.org/rfcs/rfc1889.html

Smed J, Kaukoranta T, Hakonen H (2002a) Aspects of networking in multiplayer computer
games. The Electronic Library 20(2):87–97

Smed J, Kaukoranta T, Hakonen H (2002b) A review on networking and multiplayer
computer games. Turku Center for Computer Science (2)

Tsui FC, Espino JU, Dato VM, Gesteland PH, Hutman J, Wagner MM (2003) Technical
description of RODS: a real-time public health surveillance system. J Am Med Informa
10(5):399–408

418 A.T. Al-Hammouri et al.

Varghese J (2003) Testing and profiling middleware-supported multicast software. Master’s
thesis, Case Western Reserve Universiy, Cleveland, Ohio

Wagner MM, Robinson JM, Tsui FC, Espino JU, Hogan WR (2003) Design of a national
retail data monitor for public health surveillance. J Am Med Informat Assoc 10(5):409–
418

Xu Z, Leon D, Podgurski A, Liberatore V (2004) Detecting aaa vulnerabilities by mining
execution profiles. IEEE Symposium on Security and Privacy

Zhang W, Li W, Liberatore V (2004) Application-perceived multicast push performance.
In: IPDPS 2004

Network awareness and application adaptability 419

	Network awareness and application �adaptability
	Abstract
	Introduction
	Scalable data dissemination
	Fig1
	Data dissemination methods
	Architecture
	Multicast schemes
	Fig2
	Performance
	Remote control
	Quality-of-Service
	Internet robotics
	Fig3
	Fig4
	Distributed simulations
	Fig5
	Fig6
	Awareness and adaptability
	The end-to-end argument
	Fig7
	Awareness and adaptability
	A hypothetical scenario
	Development of distributed applications
	Network environment investigation
	Configurability
	Configurability of network parameters
	Structural configurability
	Self-awareness and self-adaptability
	Application requirements and network performance
	Middleware framework
	Conclusions
	Fig8
	Acknowledgements
	References
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

