
UNIT: User-centric Transaction Management in Web-Database Systems∗

Huiming Qu Alexandros Labrinidis Daniel Mossé

Department of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260, USA
{huiming, labrinid, mosse}@cs.pitt.edu

Abstract

Web-database systems are nowadays an integral part of
everybody’s life, with applications ranging from monitor-
ing/trading stock portfolios, to personalized blog aggrega-
tion and news services, to personalized weather tracking
services. For most of these services to be successful (and
their users to be kept satisfied), two criteria need to be met:
user requests must be answered in a timely fashion and us-
ing fresh data. This paper presents a framework to balance
both requirements from the users’ perspective. Toward this,
we propose a user satisfaction metric to measure the over-
all effectiveness of the Web-database system. We also pro-
vide a set of algorithms to dynamically optimize this met-
ric, through query admission control and update frequency
modulation. Finally, we present extensive experimental re-
sults which compare our proposed algorithms to the current
state of the art and show that we outperform competitors
under various workloads (generated based on real traces)
and user requirements.

1 Introduction

Web-database systems have surely come a long way

since the early days of e-commerce (mid 90s). Everyday we

rely on such systems to perform a variety of tasks that were

not possible a few years back. The wealth of information

online has led to a myriad of data-intensive services and ap-

plications. Typical data-intensive applications include on-

line banking, monitoring and trading of stock portfolios, ag-

gregating blogs and news on specific topics, computer net-

work monitoring (especially for intrusion detection), per-

sonalized weather forecasts, environmental monitoring (for

example, USGS’ National Water Information System Web

Site), and many more.

∗Funded in part by NSF ITR Medium Award (ANI 0325353).

In almost all of these applications, it is crucial that user

requests are answered in a timely fashion, using the most

recent data possible. Let us take the stock trading applica-

tion as an example: assume that a Web server receives stock

ticks (i.e., updates on stock prices) on a regular basis and

that users are querying current stock prices (for example, a

moving average of the stock price over the last half hour).

Clearly, in such an environment, it is imperative to: (1) com-

pute the results to a user’s query based on fresh data and (2)

give the user results as fast as possible. Results computed

on old data can lead to misleading values (while the market

may have changed dramatically) and, also, results that are

delivered late can also lead to missed opportunities and fi-

nancial losses. It is no surprise that modern stock trading

web sites offer guarantees (e.g., 2 seconds1) for when the

user transactions will be executed.

As we can see from the stock trading example, there

are two types of requests competing for resources at the

Web server: user query transactions and update transac-
tions. Update transactions happen in the background, con-

stantly refreshing the data in the database, whereas user

query transactions are the main foreground operations and

are used to compute the answers to users’ requests. As such,

we associate response time (therefore, timeliness) with user

query transactions and freshness with update transactions.

Clearly, high timeliness is achieved by delivering quick re-

sponses, whereas high freshness is achieved by executing

all updates in time.

In order to measure timeliness, we assume that each user

associates a deadline with his/her query transaction, and

overall timeliness can be measured by computing the per-

centage of user queries that met their respective deadlines.

Similarly, we assume that each user associates a fresh-
ness requirement with his/her query transaction, and over-

all freshness can be computed from the percentage of user

queries that met their respective freshness requirements.

1E*Trade, www.etrade.com/2secondgurantee

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) 
8-7695-2570-9/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore.  Restrictions apply. 



Ideally, if we have enough computing resources to han-

dle both user query transactions and update transactions in

time, we could maintain the best timeliness and the highest

data freshness. However, this is usually an unrealistic as-

sumption as Web servers are often characterized by their un-

predictable access patterns over data/time, which typically

translates to periods of peak request load, usually because

of flash crowds. Web-database servers must be prepared to

deal with such bursty accesses and balance the trade-off be-

tween query timeliness and data freshness.

In order to effectively utilize the resources of the Web-

database server in times of peak load, we want to shed some

of the load on the server. Since load on the server is due to

both user query transactions and update transactions, shed-

ding load can be done in two ways: by dropping some of

the user query transactions or by reducing the amount of the

update transactions2. Although performing all updates will

guarantee the highest level of freshness for any user query,

dropping some of the updates does not necessarily lead to

decreased freshness. Revisiting the earlier stock monitor-

ing example, if a stock (e.g., PITT) receives updates every

10 seconds and is only accessed once (through a user query

that involves PITT), we could easily ignore all updates until

the last one before the access, without loss in data freshness

from the user’s point of view.

In general, we identify three types of degradation in the

perceived satisfaction from the users: rejections, deadline

misses, freshness misses. A rejection occurs when the Web-

database server decides that accepting the user query will

jeopardize the timeliness/freshness of the other transactions

to a critical degree and as such chooses to reject the user

query. A deadline miss occurs when a user query trans-

action, although accepted for execution, misses its target

deadline. Finally, a freshness miss occurs when the user

query ends up reading data that are stale to a degree beyond

what is tolerable from the user.

Ideally, we want to eliminate all aspects of user dis-

satisfaction (rejections, deadline misses, freshness misses).

However, as we discussed earlier, in times of peak loads

this will not be possible. The question then arises of how to

best allocate system resources in order to balance between

the three factors. The answer to this question depends on

what users value the most. Toward this, we propose a uni-

fied User Satisfaction Metric, which considers all three fac-

tors, and also provides weights that indicate the relative im-

portance of each factor to users. For example, users will

most probably prefer to have their queries rejected imme-

diately rather than have the queries accepted and then miss

the deadlines. In this case, we will assign a higher penalty

to deadline misses than rejections.

2We assume periodic updates on the current value of a data item, that

is, updates are not incremental. In such environments, skipping updates

affects data freshness, but not correctness.

Given the User Satisfaction Metric (USM) definition, we

propose a suite of algorithms to maximize USM when the

system resources are not enough to guarantee a hundred per-

cent of both freshness and timeliness. Specifically, we pro-

vide two algorithms: an admission control algorithm and

an update frequency modulation algorithm. The admission

control algorithm adjusts the user query workload by drop-

ping those transactions which threaten the system USM. The

update frequency modulation algorithm adjusts the update

workload by intelligently reducing the frequency of updates

to data that have minimal harm to the overall user-perceived

freshness. When and which workload to adjust depends on

the decisions made by a general feedback control loop.

Contributions The main contributions of this work are:

• We propose a unified User Satisfaction Metric (USM)

for Web-database systems that incorporates multiple

factors and can be tailored to the users’ needs and pref-

erences.

• We propose a feedback control system, UNIT to adap-

tively maximize USM.

• We propose two algorithms that perform admission

control and update frequency modulation to balance

the query and update workload. We compare our pro-

posed algorithms to two baseline algorithms and the

current state of the art with an extensive simulation

study using workloads generated from real traces.

Road Map The paper is organized as follows. Section 2

presents the needed background and definitions. Section 3

presents the proposed UNIT framework. Experimental re-

sults are presented in Section 4. We briefly present related

work in Section 5 and conclude in Section 6.

2 Background and Definitions

2.1 User Queries and Update Transactions

There are two kinds of transactions in our system: user

query transactions (or simply user queries) and update

transactions (or simply updates). The set of all user queries

is denoted as Q = {qi|i ≥ 0}. The set of all updates is

denoted as U = {uj |j ≥ 0}. We assume that the database

D = {di|1 ≤ i ≤ S} has multiple data items, where S
is the number of data items. Each user query reads one or

more data items, whereas each update transaction updates a

single data item.

A user query qi specifies the preferences of the user in

terms of timeliness and freshness for the query, specifically,

relative deadline qti and freshness requirement qfi. The

relative deadline qti is the time distance from query arrival

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) 
8-7695-2570-9/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore.  Restrictions apply. 



to the latest time by which the qi has to be completed (i.e.,

it represents the time duration the query is allowed to run

before being aborted). We assume that user queries have

firm deadlines meaning transactions have no value if they

miss their deadlines. The freshness requirement qfi is the

freshness percentage that qi has to meet. We elaborate on

freshness in Section 2.2.

An update specification uj (or simply update) lists the

data item to be updated and the period that updates for

that data item arrive. For our stock market example, the

web server periodically pulls updates or subscribes to up-

date “feeds” being pushed from the source (e.g., NYSE,

www.nyse.com). Specifically, each update uj specifies: (1)

the data item udj it updates, and (2) the update period upj

with which updates for udj arrive.

Having defined user queries and updates in our system,

we now identify the four possible outcomes for user queries:

Rejection A query qi may fail because the system has re-

jected it outright (i.e., the query did not pass the admis-

sion control phase). We refer to this case as a rejection.

Deadline-Missed Failure A user query qi will fail when

it misses its deadline, that is, when qi fails to commit

before qti. We refer to this case as Deadline-Missed
Failure (DMF).

Data-Stale Failure Even if query qi meets its deadline, it

will fail if it misses its freshness requirement, that is,

when its freshness is less than qfi. We refer to this

case as Data-Stale Failure (DSF).

Success If a user query does not fail (for any of the above

three reasons), it is considered successful.

2.2 Measuring Freshness

In order to measure the freshness of the results returned

to a user query, we measure the freshness of the data items

that were accessed by the query. Therefore, the freshness

for a user query qi, Qu(qi), is a function of the freshness

of all data items accessed by qi, or Qu(dj), where dj ∈ Di

and Di is the set of data items that are accessed by qi. To

properly compute the overall freshness for the user query,

Qu(qi), we must answer two questions: (1) how to measure

the freshness for each data item, and (2) how to aggregate

the freshness over all data items that are accessed by qi.

To answer the second question, we take a strict approach,

where we select the minimum freshness over all the indi-

vidual freshness values from the accessed data items. This

provides a strong guarantee that all items that were accessed

in order to compute the query result have at least as much

freshness. Formally, Qu(qi) = min(Qu(dj)),∀dj ∈ Di.

There are multiple ways to answer the first question, that

is, how to measure the freshness for each data item. We

characterize the various methods into three distinct classes:

time-based, lag-based, and divergence-based [14]. Since we

only have periodic updates, a lag-based scheme is most suit-

able because it uses the number of un-applied updates to

quantify how stale a data item is. Combined with the way

we aggregate the freshness over all data items accessed by

qi, the freshness for qi can be expressed as follows:

Qu(qi) = min
dj∈Di

(
1

1 + Udropj

)
(1)

where Udropj is the number of updates on data item dj that

were dropped since the last successful update, and Di is

the set of data items which query qi accesses. Under this

definition, the lowest possible freshness value for query qi,

Qu(qi), is near 0, whereas the maximum value is 1 for the

case that there are no pending updates for query qi.

2.3 User Satisfaction Metric

From the perspective of the user, the more queries meet-

ing their deadline and freshness requirements, the better it

is. Therefore, one could use the success ratio (i.e., the ratio

of user queries that meet their deadline and freshness re-

quirements over all user queries) as a good metric of overall

system performance. However, using success ratio alone is

not enough if the user has a preference over which require-

ment is more important to him/her, or in other words, which

failure is more serious. For instance, one user may tolerate

slightly stale results, but wants to be able to see the results

very quickly, whereas another user may be willing to toler-

ate delays in order to get fresher results.

By using the success ratio alone, we are not able to dis-

tinguish among the different types of failures: rejections,

deadline-missed failures, and data-stale failures. To ame-

liorate this problem, we propose a dual metric that:

• assigns a gain for user queries that were accepted by

the system, finished before their deadline, and were

computed using fresh data (based on the user’s pref-

erences), and

• assigns a penalty for user queries that fail; the penalty

is differentiated based on the type of failure, according

to users’ preferences.

In this way, the overall performance metric includes not

only how successful the user queries are, but also how seri-

ous it is when user queries fail.

2.3.1 USM Definition

We define the total User Satisfaction Metric of the system

(over Q, the set of all queries submitted by the users) as the

sum of the User Satisfaction of each user query, US(qi):

USMtotal =
∑
qi∈Q

(US(qi)) (2)

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) 
8-7695-2570-9/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore.  Restrictions apply. 



As mentioned earlier, the User Satisfaction Metric (USM)

should include both success gain and failure penalty, and

also enable users to indicate their preference by assign-

ing different cost weights. For each user query, qi, US(qi)
could have four values because there are four possible out-

comes for a query (success, rejection, deadline-missed fail-

ure, data-stale failure). If qi gets rejected by the system,

US(qi) should be assigned a rejection penalty value of Cr.

If qi gets admitted, but fails to meet its deadline, US(qi)
should be assigned a DMF penalty value of Cfm. If qi com-

pletes within its deadline, but the accessed data items do not

meet the freshness requirement, US(qi) should be assigned

a DSF penalty value of Cfs. If qi is admitted and success-

fully meets its deadline and freshness requirements, US(qi)
will be assigned a success gain, Gs. In this paper, Gs is

1 and the penalties (Cr, Cfm, Cfs) are normalized to Gs.

The user satisfaction of qi is defined as follows:

US(qi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Gi
s if qi meets both qti and qfi

−Ci
r if qi is rejected

−Ci
fm if qi fails to meet qti

−Ci
fs if qi fails to meet qfi

(3)

If we have Ns user queries that succeed, Nr that get re-

jected, Nfm that exhibit a deadline-missed failure, and Nfs

that exhibit a data-stale failure, then by combining Equa-

tions 2 and 3 we have that:

USMtotal =
Ns∑
k=1

Gk
s −

Nr∑
k=1

Ck
r −

Nfm∑
k=1

Ck
fm −

Nfs∑
k=1

Ck
fs (4)

Now we have the four parts representing the gain and

penalty according to the four outcomes of the transactions.

If we divide the total USM by the total number of submitted

user queries, we have the following average USM

USM = S − R − Fm − Fs (5)

which is the average success gain (S), deducted by aver-

age rejection cost (R), the average DMF cost (Fm), and the

average DSF cost (Fs).

2.3.2 USM Range

Higher values for the USM as defined in Equation 5, cor-

respond to higher levels of user satisfaction. The maxi-

mum attainable value for USM is 1, for the case that all user

queries are successful. The lowest possible USM value is

-max (Cr, Cfm, Cfs). In other words, the worst case sce-

nario is when all the user queries fail and the type of failure

matches what the users consider to be the most annoying

(and have thus assigned to it the highest penalty).

3 The UNIT Framework

Given the system USM as defined in the previous section,

our goal is to maximize it by employing an adaptive load

control scheme. The idea is inspired by Kang’s work [12]

in which they use a feed back control loop to monitor the

freshness and deadline miss ratio. We provide detailed com-

parison of our work to Kang’s in Section 4.1 and 5.

3.1 System Overview

In this paper, we assume users have similar preferences

(penalty parameters). We believe that our framework can be

easily extended to support multiple preferences. Figure 1

shows the overview of the feedback control system. System

inputs are penalty parameters Cr, Cfm, and Cfs.

There are two interrelated parts in this system:

• Data flow: corresponds to how queries and updates

propagate through the system;

• Control flow: corresponds to how the control process

interacts with the data flow.

Data flow User queries and updates are submitted into

the system and put into the ready queue if admitted. The

dispatching discipline adopted in our system is a dual-

priority queue: updates have higher priorities than queries,

whereas within each group, EDF (Earliest Deadline First)

is applied. When a transaction completes successfully (i.e.,

within deadline and freshness constraints), the query re-

sult becomes available in the success queue. Concurrency

control is addressed by Two-Phase Locking - High Priority

(2PL-HP) [2].

Control flow The Load Balancing Controller (LBC) is

responsible for regulating control flow. Specifically, it can

tighten/loosen admission control by sending signals to the

Query Admission Control module to allow less/more user

queries into the system. LBC can also increase/decrease the

update frequency of updates by sending signals to the Up-

date Frequency Modulation module to carry out more/less

updates. The control flow is triggered periodically or when

the USM drops more than a certain threshold. The LBC also

monitors queries for further load shedding. Since we as-

sume firm deadlines, if a query deadline is missed while

the query is in the ready queue or during its execution, the

query has to be aborted. Similarly, query results with stale

data items (DSF) can be discarded or returned to the user

with a special notice.

3.2 Load Balancing Controller (LBC)

The Load Balancing Controller monitors the system

statistics and initiates the Adaptive Allocation periodically

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) 
8-7695-2570-9/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1. UNIT Feedback Control System

or when there is a big drop of USM, that is, when ΔUSM is

greater than a specified threshold; the threshold is usually

1% of the range of USM.

The policy executed by the LBC to decide on what to

do (admit more/less user queries or improve/deteriorate the

freshness through updates) is described in Adaptive Alloca-

tion Algorithm (see Figure 2). The algorithm takes as input

the rejection ratio Rr, the DMF ratio Rfm and the DSF ra-

tio Rfs, and triggers a new control signal as the result. The

main idea is to reduce the dominant penalty cost at the time

a drop in the USM is detected. If Cr, Cfm, and Cfs are all

0, the system will focus only on reducing the failure with

highest ratio to maintain a high success gain.

3.3 Query Admission Control (AC)

Query admission control filters out the user queries that

have little chance to succeed by transaction deadline check,

and those transactions that can significantly hurt the system

performance by system USM check.

Transaction deadline check We assume the average ex-

ecution time for each transaction can be determined by the

existing monitoring techniques that most database systems

are performing for query optimization. These average exe-

cution times are used to check how promising a transaction

is to finish on time (before it is accepted). More specifically,

for each transaction, the system keeps the Earliest-possible

Start Time (EST). The system will check if ESTi + qei <
qti before accepting the user query qi, where qei is the av-

erage execution time of qi and qti is its relative deadline.

Moreover, we also bring in a lag ratio Cflex to allow some

flexibility to the scheduling; in other words, we check if

Adaptive Allocation Algorithm

0. [Inputs: Rr Rfm, Rfs] [Output: control signals]

1. if ΔUSM > USMt or Δtime >= Grace Period

2. if (Cr, Cfm, Cfs all equal 0)

3. R = Rr; Fm = Rfm; Fs = Rfs

4. switch ( max(R, Fm, Fs) ) / / break ties randomly

5. case R: / / rejection cost is highest

6. Loosen Admission Control [Section 3.3]

7. case Fm: / / DMF cost is highest

8. Degrade Update [Section 3.4.1]

9. Tighten Admission Control [Section 3.3]

10. case Fs: / / DSF cost is highest

11. Upgrade Update [Section 3.4.2]

Figure 2. Adaptive Allocation Algorithm

Cflex · ESTi + qei < qti. All the transactions pass this test

are called promising transactions.

System USM check Usually, not all the promising trans-
actions are admitted, since they may overload the system.

The system USM check considers the global impact of ad-

mitting a query, since the new query may delay the ex-

isting transactions, which may lead to DMFs. We com-

pute the consequence to the USM cost, by counting the total

DMF cost of the endangered transactions (i.e. the transac-

tions that might miss their deadlines due to the new incom-

ing transaction). If the DMF of endangered transactions is

higher than the cost of rejecting the new transaction, the

system rejects the incoming transaction.

The complexity of the admission control algorithm

(transaction deadline check and system USM check) is

O(Nrq) for each transaction, where Nrq is the length of

the ready queue.

Tighten/Loosen Admission Control The LBC will

send TAC/LAC (Tighten/Loosen Admission Control)

signals to adjust Cflex when needed. Notice that the larger

the Cflex is, the tighter the Admission Control is. The

initial value of Cflex is set to 1 and a TAC/LAC signal is to

increase/decrease Cflex by 10%.

3.4 Update Frequency Modulation (UM)

We use Update Frequency Modulation (UM) to control

the number of updates that are processed in the system by

increasing or decreasing the frequency of updates. The re-

duction of updates is carried out on those data that have

relatively little effect on query quality, upon receiving the

Upgrade Update control signal from LBC. Conversely, we

increase the frequency of all degraded updates to help with

the freshness, upon receiving the Degrade Update control

signal from LBC.

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) 
8-7695-2570-9/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore.  Restrictions apply. 



3.4.1 Degrading Updates

Next, we answer the following two questions: (1) Which

update to degrade? (2) How aggressively to degrade the

updates?

Which update to degrade? Intuitively, we want to de-

grade the updates for the data item that the system spends

too much time updating, yet only few queries need to ac-

cess. The probability a data item is chosen depends on its

access pattern and update frequency.

We use Lottery Scheduling [21] to choose which data

item to degrade, that is, whose update to make less frequent.

Each data item is associated with a certain ticket value. The

larger the ticket value a data item has, the higher the prob-

ability it will be chosen as the victim, and its update fre-

quency will be decreased. The ticket value is decided as

follows.

• Query effect on ticket values: The ticket value of dj

is decreased every time there is a query access to dj .

The amount of decrease depends on the cpu utilization

of the access query. Intuitively, we do not want to de-

grade those data items which are needed by the queries

with high cpu utilization, because if the query’s fresh-

ness requirement is not met, there will be less slack

time for an additional update transaction to be issued to

retrieve the fresh data item. Since the larger the ticket

value is, the more chance it has to be degraded, for

each query, the amount of decrease should be propor-

tional to the cpu utilization. Formally, the amount by

which the value will decrease for each query qi access-

ing dj is defined as:

DTj =
qei

qti
(6)

where qei is the average execution time of qi and qti is

its relative deadline.

• Update effect on ticket values: The system increases

the ticket value of dj whenever there is an update on

dj . The longer the execution time of the update, the

larger the amount of increase on the ticket value. The

idea is that we want to degrade those data items that

have been updated relatively too often, and given two

data items having the same number of updates, we

want to obtain as much cpu time saving as possible by

degrading the data item with longer update execution

time. Among many choices to relate the ticket value

to execution time, we use the sigmoid function. Using

the information of average execution time among all

the updates, the sigmod function smoothly converts the

execution time to the (0, 1) range, and it nicely takes

care of the effect of outliers. Formally, the amount by

which the ticket value will increase for each update ac-

cessing dj is defined as follows:

ITj =
1

1 + eueavg−uej
(7)

where ueavg is the average update execution time of all

updates in the system, and uej is the average execution

time of update uj . Note that the increase of the ticket

value is the sigmoid function of the difference between

execution time and average execution time.

• Forgetting: In order to concentrate on current system

status, we apply a forgetting factor Cforget to the com-

putation of ticket values [10]. With Cforget = 1, all his-

torical accesses and updates are effective to the ticket

values. The smaller Cforget is, the faster it forgets. We

set Cforget = 0.9 in this paper, following the current

practice in the literature.

• Overall ticket value computation: The overall ticket

value for data item dj is computed as described below.

Tj =

{
Tj · Cforget − DTj from query qi

Tj · Cforget + ITj from update uj

(8)

In order to have non-negative ticket values for the Lottery

Scheduling, we subtract the smallest ticket value, Tmin, from

all ticket values (i.e., ∀j, Tj = Tj − Tmin). Then, we use

Lottery Scheduling [21] that randomly picks a data item

with probability proportional to the ticket value of the data

item. The complexity of applying the Lottery Scheduling is

O(logNd) [21], where Nd is the total number of data items.

How to degrade the update? Once dj is chosen to be

degraded, its current update period pcj is increased with a

certain percentage as specified in the following:

pcj = pcj · (1 + Cdu) (9)

In our experiments, Cdu = 0.1; sensitivity analysis in [17]

has shown that the exact value of Cdu does not have a sig-

nificant effect to the average USM.

3.4.2 Upgrading Updates

Upgrading updates needs to be done when degrading up-

dates affects the query freshness and the average DSF cost

Fs becomes the leading cost in the USM. The periods of all

degraded updates should be decreased gradually as in Equa-

tion 10, until they reach the ideal period pij .

pcj = min(pij , pcj − Cuu · pij) (10)

where Cuu = 0.5, in our experiments, to essentially cut the

update period by half and quickly converge to the original

update period.

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) 
8-7695-2570-9/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore.  Restrictions apply. 



(a) Query distribution over data (b) Update distribution over data (c) Update distribution over data

(med-unif trace) (med-neg trace)

Figure 3. Distribution of Accesses and Updates (Original vs. Unit Degraded) Over Data

4 Experimental Evaluation

We evaluated UNIT by comparing it to different algo-

rithms under various performance metrics and workloads

(generated from real traces). Section 4.1 explains the ex-

perimental setup as well as the baseline algorithms. Sec-

tion 4.2 compares UNIT to other algorithms and different

workloads by evaluating UNIT’s Update Frequency Modu-

lation. Section 4.3 quantifies the performance gain of UNIT
to other algorithms. Section 4.4 evaluates how sensitive the

algorithms are to the different weight settings. Finally, Sec-

tion 4.5 provides further insight into the influence of cost

factors over the different algorithms.

4.1 Experimental Setup

User Query Trace We generated user queries based on

the HP disk cello99a access trace, which lasts for 3,848,104

seconds and includes 110,035 reads. Each recorded entry

in cello99a has its arrival time, response time, and location

on the disk. We take the arrival time and response time of

reads from the original trace and map their accessed log-

ical block number (lbn) into our data set. The disk loca-

tion was partitioned into 1024 consecutive regions, where

each region represents a data item in our simulation. The

deadline for each query was generated randomly and ranged

from the average response time to 10 times of the maxi-

mal response time. We set freshness requirement for all

user queries at 90%. Through the above process, we gen-

erate the user queries with each of them containing the ar-

rival time, accessed data, response time (estimated execu-

tion time), deadline and freshness requirements.

Update Trace Update workloads are classified into low,

medium, and high workloads with 6144, 30000, and 61440

total updates, respectively, representing a 15%, 75%, and

150% cpu utilization. In general, we need to specify the

spatial distribution (what data item to be accessed or up-

dated) and temporal distribution (at what time it happens)

of updates. However, we only have periodic updates, so the

Updates Traces
Total Num. Distribution

uniform low − unif
6144 positive correlation low − pos
(or 15% workload) negative correlation low − neg

uniform med − unif
30000 positive correlation med − pos
(or 75% workload) negative correlation med − neg

uniform high − unif
61440 positive correlation high − pos
(or 150% workload) negative correlation high − neg

Table 1. Update Traces

temporal distribution is fixed. For the spatial distribution

we tried uniform, positive correlation and negative corre-

lation (to the query distribution with a coefficient of 0.8)

on each update workload. The update traces are listed in

Table 1. We generated estimated execution time for up-

dates randomly in the range of the response time of writes in

cello99a. Each entry contains an estimated execution time

and an update period for a particular data item.

Baseline Algorithms We compared our scheme, UNIT,

to two baseline algorithms (IMU and ODU) and the current

state-of-the-art (QMF [12]).

• IMU (Immediate Update): All the updates are exe-

cuted immediately; No admission control on queries.

IMU achieves 100% freshness, but may suffer from

low query success ratio for the high update load.

• ODU (On-demand Update): updates are executed only

when a query finds that a needed data item is stale;

No admission control on queries. ODU also achieves

100% freshness, but the additional update issued may

also delay the query and lead to missed deadlines.

• QMF: [12] uses a feedback control loop to adjust ad-

mission control and adaptive update policy. With the

CPU underutilized, QMF tries to update more often if

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) 
8-7695-2570-9/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore.  Restrictions apply. 



(a) Uniform (b) Positive correlation (c) Negative Correlation

Figure 4. Performance Comparison when USM = Success Ratio

the target freshness is not met, otherwise admits more

transactions. With the CPU overloaded, QMF up-

dates less often if current freshness is higher than tar-

get freshness, otherwise drops incoming transactions

until the system recovers. The adaptive update policy

controls how many updates to be dropped, and whose

updates to be dropped (based on the ratio of number of

accesses over number of updates on each data).

4.2 Update Frequency Modulation Evaluation

First, we want to verify if our Update Frequency Mod-

ulation can intelligently choose to drop updates that con-

tribute little to the user query freshness. We show both the

query access distribution over data and the update distribu-

tion over data. The results are from user query trace with

update trances med-unif and med-neg. Please refer to [17]

for experiments on more update traces.

Case Study 1: med-unif Updates Figure 3(a) shows the

number of queries per data item, illustrating a skewed dis-

tribution of requests over data items. Whereas the original

update requests are distributed uniformly over all the data

as indicated by the grey area in Figure 3(b). Intuitively, the

system should cut down the updates on the less frequently

queried items when necessary, which is exactly what UNIT
does (see black lines in Figure 3(b)). By comparing black

lines in Figure 3(a) and Figure 3(b), we can see that UNIT
can adaptively follow the query distribution to select the im-

portant data items to update.

Case Study 2: med-neg Updates The grey area in Fig-

ure 3(c) (i.e., the update volume) shows that the number of

updates over data is negatively correlated to the query dis-

tribution in Figure 3(a). This update trace has two promi-

nent groups: hot updated and cold updated data. As shown

in Figure 3(c) with the tiny black dots close to x-axis,

more than 95% of the updates are dropped and the updates

dropped concentrate on hot updated data which is also the

data with less frequent accesses (smaller IDs). What we

can also roughly see from the black dots in Figure 3(c) is

that the hot accessed data has about the same number of

updates than cold accessed data, instead of the big differ-

ence in Figure 3(b). The reason is that for the hot accessed

data in Figure 3(c), originally the number of updates is very

small, i.e., a relative small number of updates is enough to

guarantee the freshness of the data.

We make the following observations: (1) It is not true

that hot accessed data should always get more updates than

other data. When the data are inherently stable, a small

number of updates is enough. (2) Updates on cold accessed

and hot updated data will be dropped more often than those

on hot accessed and cold updated data.

4.3 Naive USM: Quantitative Evaluation

We now quantitatively compare UNIT to other algo-

rithms. In order to be fair, we set all the weights Cr, Cfm,

Cfs to 0, which means USM equals to the traditional success

ratio in this naive setting.

Figure 4 shows the naive USM over 3 different update dis-

tributions (unif/pos/neg) and three different update volumes

(low/med/high). We can clearly see that UNIT has much

higher USM (success ratio) over all of the different settings

in Figure 4.

Specifically, UNIT outperforms other algorithms rang-

ing from 0.172 to 0.386 improvement in Figure 4(a), from

0.129 to 0.282 improvement in Figure 4(b), and 0.056 to

0.588 improvement in Figure 4(c) in absolute values for

USM. These differences translate to a 30%, 50% and 10%

minimum relative improvement over the competitor algo-

rithms and multiple orders of magnitude improvement in

the best case (since some of the other algorithms produce

near zero USM).

It is interesting to note that in Figure 4(a), QMF performs

even worse than the simple on-demand update scheme

(ODU), because QMF is trying to reduce the Miss Ra-

tio (number of deadline misses over number of admitted

queries), which makes QMF reject more aggressively to se-

cure the admitted transactions. As a result, QMF has fewer

successful transactions than ODU. In Figure 4(b), immedi-

ate updates (IMU) performs almost identical to ODU, be-

cause the query and update distributions are positively cor-

related. In Figure 4(c), ODU performs close to UNIT, be-

cause most of updates are “irrelevant” under the negative

correlation. ODU by itself tries to minimize updates.

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) 
8-7695-2570-9/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore.  Restrictions apply. 



(a) Penalties < 1 (b) Penalties > 1

Figure 5. Non-zero Penalty Cost

4.4 Normal USM: Sensitivity Evaluation

With UNIT, it is possible to assign different penalties for

different type of failures (i.e., assign different values for Cr,

Cfm, Cfs). In this set of experiments, we evaluate how

sensitive UNIT is to the different cost functions. The main

result is that UNIT is fairly stable in terms of USM, even

when the cost functions change dramatically.

Figure 5(a) and 5(b) show the performance (measured as

USM) of different methods (under the query trace and update

trace med unif ) with penalties less than 1 and greater than

1, respectively. The 3 values along the x-axis (high Cr, high

Cfm, high Cfs) refer to the cases where the corresponding

cost factor is higher than the other two costs. The exact

weights are shown in Table 2.

Figure 5 clearly shows that UNIT performs best in both

cases: penalties < 1 and penalties > 1. Some interesting

observations are: (1) QMF performs worse with high Cr,

because it rejects many queries to favor the miss ratio; (2)

IMU and ODU are worse with high Cfm, because they fail

to finish many queries on time.

4.5 Insight into behavior of UNIT

After showing the performance gain of UNIT over a va-

riety of settings, we now elaborate on why UNIT gives

a better and more stable USM than the other methods.

User queries could have four “fortunes”: Success, Rejec-

tion, DMF, and DSF. We can collect how many transac-

tions fall into each group by having the number of Suc-

Penalties < 1 Cs Cr Cfm Cfs

high Cr 1 0.5 0.1 0.1

high Cfm 1 0.1 0.5 0.1

high Cfs 1 0.1 0.1 0.5

Penalties > 1
high Cr 1 5 1 1

high Cfm 1 1 5 1

high Cfs 1 1 1 5

Table 2. USM weights for Figure 5

Figure 6. Ratio Distribution

cess/Rejection/DMF/DSF divided by the total number of

queries, denoted as Success/Rejection/DMF/DSF ratio (i.e.,

Rs/Rr/Rfm/Rfs). By visualizing the ratio decompositions

of the outcome of queries, we can have an insight about the

results in the previous sections.

Figure 6(a) plots the four ratios for IMU, ODU, and

QMF which are insensitive to weight variations, and Fig-

ure 6(b) plots the four ratios for UNIT under the same setup

of Figure 5(a). We observe the following: (1) Regardless

of the penalty settings, UNIT gives a much higher success

ratio than the others. (2) The ratio distribution of UNIT
changes a lot with different cost setups. With the rejec-

tion cost smallest with high Cr setup and DMF cost small-

est in the high Cfm setup, it can be explained why the USM
for UNIT remains stable along different cost setups: UNIT
effectively minimizes the portion that dominates the cost.

(3) IMU, ODU and QMF are not affected by the cost pa-

rameters and hold the same success ratio. Comparing the

three algorithms, we find QMF’s rejection ratio very high.

The reason is that when there is a burst of requests, QMF

is being conservative and drops many queries to guarantee

the admitted transactions to be successfully executed. Al-

though within those admitted transactions, the miss ratio is

minimized, the overall success ratio is low too.

5 Related Work

We view our work as being at the intersection of web-

databases, real-time database systems, and stream data

management.

Web-Databases There is a plethora of papers that focus

on improving the performance of user requests to database-

driven web sites, using caching [11, 5, 7, 15] or material-

ization [13]. These approaches usually provide a best-effort

solution in terms of data freshness. In recent work [14],

we introduced a framework to balance the trade-off between

performance and freshness in web servers, by choosing data

items to materialize in the presence of continuous, asyn-

chronous updates. In [19], we emphasized on continuous

queries over the dynamic Web and proposed a scheduling

policy to improve QoD (freshness) instead of the traditional

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) 
8-7695-2570-9/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore.  Restrictions apply. 



performance criteria. However, we did not address user-

specified deadlines or perform admission control in order to

provide any quality guarantees.

Real Time Database Systems There exists a significant

amount of research in Real-Time Database Systems that

deals with the scheduling of real-time transactions in the

presence of deadlines [9, 18]. QMF [12] deals with fresh-

ness in addition to deadlines and is the closest to our work

in this paper (UNIT). UNIT improves on QMF in that it is

user-centric (it optimizes USM, while QMF targets freshness

and miss ratio), and it uses Lottery Scheduling for efficiency

and fairness. Update frequency modulation has also been

addressed in [4], which treated periodic tasks as springs,

so the period (and also the workload) can be adjusted by

changing the elastic coefficients. This approach is a general

overload management technique, while our proposed UNIT
scheme is maximizing the user satisfaction metric (USM).

Another approach to adjust the update workload has been

proposed in [22] through a deferrable schedule for update

transactions that minimizes update workload while main-

taining freshness (temporal validity) of real-time data.

Stream Processing In order to deal with the never-

ending flood of data and the burstiness of data streams [16,

1], multiple load shedding techniques have been proposed.

For example, [3, 6, 8] focus on the accuracy of the query an-

swers, whereas [20] provides a mechanism to optimize on

different QoS requirements (including latency, value-based,

and loss-tolerance). However, in this paper, we focus on ad-

hoc queries that operate on data being updated periodically,

instead of continuous queries. Also, our emphasis is on co-

ordinating query admission control with update frequency

modulation, in order to prevent overload (instead of simply

reacting to it, as load shedding does).

6 Conclusions

Web-based database systems of today manage time-

sensitive data and must comply with several requirements

such as freshness and deadlines. In this paper, we proposed

to combine such requirements into a novel User Satisfac-

tion Metric (USM), and introduced UNIT. UNIT uses a feed-

back control mechanism and relies on an intelligent admis-

sion control algorithm along with a new update frequency

modulation scheme in order to maximize USM. Our evalu-

ation showed that UNIT performs better than two baseline

algorithms and the current state-of-the-art when tested us-

ing workloads generated from real traces.

Acknowledgements The authors would like to thank Dr.

K. D. Kang for gratiously providing the code for his QMF

algorithm, to Jimeng Sun for his help with earlier ver-

sions of this paper, and to Mengzhi Wang for providing the

cello99a traces.

References

[1] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.

Aurora: a new model and architecture for data stream man-

agement. The VLDB Journal, 12(2):120–139, 2003.
[2] R. K. Abbott and H. Garcia-Molina. Scheduling real-time

transactions: a performance evaluation. In VLDB, 1988.
[3] B. Babcock, M. Datar, and R. Motwani. Load shedding for

aggregation queries over data streams. In ICDE ’04.
[4] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elas-

tic scheduling for flexible workload management. IEEE
Trans. Comput., 51(3):289–302, 2002.

[5] J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and

P. Reed. A Publishing System for Efficiently Creating Dy-

namic Web Content. In INFOCOM ’00.
[6] A. Das, J. Gehrke, and M. Riedewald. Approximate join

processing over data streams. In SIGMOD, 2003.
[7] A. Datta et al. Proxy-Based Acceleration of Dynamically

Generated Content on the World Wide Web: An Approach

and Implementation. In SIGMOD ’02.
[8] L. Ding and E. A. Rundensteiner. Evaluating window joins

over punctuated streams. In CIKM ’04.
[9] J. R. Haritsa, M. Livny, and M. J. Carey. Earliest deadline

scheduling for real-time database systems. In RTSS, 1991.
[10] S. Haykin. Adaptive Filter Theory. Prentice Hall, 1992.
[11] A. Iyengar and J. Challenger. Improving Web Server Perfor-

mance by Caching Dynamic Data.
[12] K.-D. Kang, S. H. Son, and J. A. Stankovic. Managing

deadline miss ratio and sensor data freshness in real-time

databases. TKDE, 16(10):1200–1216, 2004.
[13] A. Labrinidis and N. Roussopoulos. WebView Materializa-

tion. In SIGMOD ’00.
[14] A. Labrinidis and N. Roussopoulos. Exploring the tradeoff

between performance and data freshness in database-driven

web servers. The VLDB Journal, 13(3):240–255, 2004.
[15] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo,

B. G. Lindsay, and J. F. Naughton. Middle-tier Database

Caching for e-Business. In SIGMOD ’02.
[16] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,

M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.

Query processing, resource management, and approxima-

tion in a data stream management system. In CIDR, 2003.
[17] H. Qu, A. Labrinidis, and D. Mossé. Transaction man-

agement in web-database systems. Technical Report

PITT/CSD/TR-05-126, November 2005.
[18] K. Ramamritham. Real-time databases. Distributed and

Parallel Databases, 1(2):199–226, 1993.
[19] M. A. Sharaf, A. Labrinidis, P. K. Chrysanthis, and K. Pruhs.

Freshness-aware scheduling of continuous queries in the dy-

namic web. In WebDB, 2005.
[20] N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, and

M. Stonebraker. Load shedding in a data stream manager.

In VLDB, 2003.
[21] C. A. Waldspurger. Lottery and stride scheduling: Flexible

proportional-share resource management. Technical Report

MIT/LCS/TR-667, 1995.
[22] M. Xiong, S. Han, and K.-Y. Lam. A deferrable scheduling

algorithm for real-time transactions maintaining data fresh-

ness. In RTSS ’05.

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) 
8-7695-2570-9/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


