UNIT: User-centric Transaction Management in Web-Database Systems*

Huiming Qu

Alexandros Labrinidis

Daniel Mossé

Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260, USA
{huiming, labrinid, mosse} @cs.pitt.edu

Abstract

Web-database systems are nowadays an integral part of
everybody’s life, with applications ranging from monitor-
ing/trading stock portfolios, to personalized blog aggrega-
tion and news services, to personalized weather tracking
services. For most of these services to be successful (and
their users to be kept satisfied), two criteria need to be met:
user requests must be answered in a timely fashion and us-
ing fresh data. This paper presents a framework to balance
both requirements from the users’ perspective. Toward this,
we propose a user satisfaction metric to measure the over-
all effectiveness of the Web-database system. We also pro-
vide a set of algorithms to dynamically optimize this met-
ric, through query admission control and update frequency
modulation. Finally, we present extensive experimental re-
sults which compare our proposed algorithms to the current
state of the art and show that we outperform competitors
under various workloads (generated based on real traces)
and user requirements.

1 Introduction

Web-database systems have surely come a long way
since the early days of e-commerce (mid 90s). Everyday we
rely on such systems to perform a variety of tasks that were
not possible a few years back. The wealth of information
online has led to a myriad of data-intensive services and ap-
plications. Typical data-intensive applications include on-
line banking, monitoring and trading of stock portfolios, ag-
gregating blogs and news on specific topics, computer net-
work monitoring (especially for intrusion detection), per-
sonalized weather forecasts, environmental monitoring (for
example, USGS’ National Water Information System Web
Site), and many more.

*Funded in part by NSF ITR Medium Award (ANI 0325353).

In almost all of these applications, it is crucial that user
requests are answered in a timely fashion, using the most
recent data possible. Let us take the stock trading applica-
tion as an example: assume that a Web server receives stock
ticks (i.e., updates on stock prices) on a regular basis and
that users are querying current stock prices (for example, a
moving average of the stock price over the last half hour).
Clearly, in such an environment, it is imperative to: (1) com-
pute the results to a user’s query based on fresh data and (2)
give the user results as fast as possible. Results computed
on old data can lead to misleading values (while the market
may have changed dramatically) and, also, results that are
delivered late can also lead to missed opportunities and fi-
nancial losses. It is no surprise that modern stock trading
web sites offer guarantees (e.g., 2 seconds') for when the
user transactions will be executed.

As we can see from the stock trading example, there
are two types of requests competing for resources at the
Web server: user query transactions and update transac-
tions. Update transactions happen in the background, con-
stantly refreshing the data in the database, whereas user
query transactions are the main foreground operations and
are used to compute the answers to users’ requests. As such,
we associate response time (therefore, timeliness) with user
query transactions and freshness with update transactions.
Clearly, high timeliness is achieved by delivering quick re-
sponses, whereas high freshness is achieved by executing
all updates in time.

In order to measure timeliness, we assume that each user
associates a deadline with his/her query transaction, and
overall timeliness can be measured by computing the per-
centage of user queries that met their respective deadlines.
Similarly, we assume that each user associates a fresh-
ness requirement with his/her query transaction, and over-
all freshness can be computed from the percentage of user
queries that met their respective freshness requirements.

'E*Trade, www.etrade.com/2secondgurantee

YFFF
Sudiia

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) Q
8-7695-@3%@%’&%%%%@1 EEJESversity of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore. Restricti

Ideally, if we have enough computing resources to han-
dle both user query transactions and update transactions in
time, we could maintain the best timeliness and the highest
data freshness. However, this is usually an unrealistic as-
sumption as Web servers are often characterized by their un-
predictable access patterns over data/time, which typically
translates to periods of peak request load, usually because
of flash crowds. Web-database servers must be prepared to
deal with such bursty accesses and balance the trade-off be-
tween query timeliness and data freshness.

In order to effectively utilize the resources of the Web-
database server in times of peak load, we want to shed some
of the load on the server. Since load on the server is due to
both user query transactions and update transactions, shed-
ding load can be done in two ways: by dropping some of
the user query transactions or by reducing the amount of the
update transactions®. Although performing all updates will
guarantee the highest level of freshness for any user query,
dropping some of the updates does not necessarily lead to
decreased freshness. Revisiting the earlier stock monitor-
ing example, if a stock (e.g., PITT) receives updates every
10 seconds and is only accessed once (through a user query
that involves PITT), we could easily ignore all updates until
the last one before the access, without loss in data freshness
from the user’s point of view.

In general, we identify three types of degradation in the
perceived satisfaction from the users: rejections, deadline
misses, freshness misses. A rejection occurs when the Web-
database server decides that accepting the user query will
jeopardize the timeliness/freshness of the other transactions
to a critical degree and as such chooses to reject the user
query. A deadline miss occurs when a user query trans-
action, although accepted for execution, misses its target
deadline. Finally, a freshness miss occurs when the user
query ends up reading data that are stale to a degree beyond
what is tolerable from the user.

Ideally, we want to eliminate all aspects of user dis-
satisfaction (rejections, deadline misses, freshness misses).
However, as we discussed earlier, in times of peak loads
this will not be possible. The question then arises of how to
best allocate system resources in order to balance between
the three factors. The answer to this question depends on
what users value the most. Toward this, we propose a uni-
fied User Satisfaction Metric, which considers all three fac-
tors, and also provides weights that indicate the relative im-
portance of each factor to users. For example, users will
most probably prefer to have their queries rejected imme-
diately rather than have the queries accepted and then miss
the deadlines. In this case, we will assign a higher penalty
to deadline misses than rejections.

2We assume periodic updates on the current value of a data item, that
is, updates are not incremental. In such environments, skipping updates
affects data freshness, but not correctness.

Given the User Satisfaction Metric (USM) definition, we
propose a suite of algorithms to maximize USM when the
system resources are not enough to guarantee a hundred per-
cent of both freshness and timeliness. Specifically, we pro-
vide two algorithms: an admission control algorithm and
an update frequency modulation algorithm. The admission
control algorithm adjusts the user query workload by drop-
ping those transactions which threaten the system USM. The
update frequency modulation algorithm adjusts the update
workload by intelligently reducing the frequency of updates
to data that have minimal harm to the overall user-perceived
freshness. When and which workload to adjust depends on
the decisions made by a general feedback control loop.

Contributions The main contributions of this work are:

e We propose a unified User Satisfaction Metric (USM)
for Web-database systems that incorporates multiple
factors and can be tailored to the users’ needs and pref-
erences.

e We propose a feedback control system, UNIT to adap-
tively maximize USM.

e We propose two algorithms that perform admission
control and update frequency modulation to balance
the query and update workload. We compare our pro-
posed algorithms to two baseline algorithms and the
current state of the art with an extensive simulation
study using workloads generated from real traces.

Road Map The paper is organized as follows. Section 2
presents the needed background and definitions. Section 3
presents the proposed UNIT framework. Experimental re-
sults are presented in Section 4. We briefly present related
work in Section 5 and conclude in Section 6.

2 Background and Definitions
2.1 User Queries and Update Transactions

There are two kinds of transactions in our system: user
query transactions (or simply user queries) and update
transactions (or simply updates). The set of all user queries
is denoted as Q = {q;|¢ > 0}. The set of all updates is
denoted as U = {u;|j > 0}. We assume that the database
D = {d;|1 < i < S} has multiple data items, where S
is the number of data items. Each user query reads one or
more data items, whereas each update transaction updates a
single data item.

A user query g; specifies the preferences of the user in
terms of timeliness and freshness for the query, specifically,
relative deadline gt; and freshness requirement ¢ f;. The
relative deadline gt; is the time distance from query arrival

YFFF
Sudiia

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) Q
8-7695-@3%@%’&%%%%@1 EEJESversity of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore. Restricti

to the latest time by which the ¢; has to be completed (i.e.,
it represents the time duration the query is allowed to run
before being aborted). We assume that user queries have
firm deadlines meaning transactions have no value if they
miss their deadlines. The freshness requirement g f; is the
freshness percentage that ¢; has to meet. We elaborate on
freshness in Section 2.2.

An update specification u; (or simply update) lists the
data item to be updated and the period that updates for
that data item arrive. For our stock market example, the
web server periodically pulls updates or subscribes to up-
date “feeds” being pushed from the source (e.g., NYSE,
www.nyse.com). Specifically, each update u; specifies: (1)
the data item ud; it updates, and (2) the update period up;
with which updates for ud; arrive.

Having defined user queries and updates in our system,
we now identify the four possible outcomes for user queries:

Rejection A query ¢; may fail because the system has re-
jected it outright (i.e., the query did not pass the admis-
sion control phase). We refer to this case as a rejection.

Deadline-Missed Failure A user query ¢; will fail when
it misses its deadline, that is, when ¢; fails to commit
before qt;. We refer to this case as Deadline-Missed
Failure (DMF).

Data-Stale Failure Even if query ¢; meets its deadline, it
will fail if it misses its freshness requirement, that is,
when its freshness is less than ¢f;. We refer to this
case as Data-Stale Failure (DSF).

Success If a user query does not fail (for any of the above
three reasons), it is considered successful.

2.2 Measuring Freshness

In order to measure the freshness of the results returned
to a user query, we measure the freshness of the data items
that were accessed by the query. Therefore, the freshness
for a user query ¢;, Qu(g;), is a function of the freshness
of all data items accessed by g;, or Qu(d;), where d; € D;
and D; is the set of data items that are accessed by ¢;. To
properly compute the overall freshness for the user query,
Qu(g;), we must answer two questions: (1) how to measure
the freshness for each data item, and (2) how to aggregate
the freshness over all data items that are accessed by g;.

To answer the second question, we take a strict approach,
where we select the minimum freshness over all the indi-
vidual freshness values from the accessed data items. This
provides a strong guarantee that all items that were accessed
in order to compute the query result have at least as much
freshness. Formally, Qu(g;) = min(Qu(d,)),Vd; € D;.

There are multiple ways to answer the first question, that
is, how to measure the freshness for each data item. We
characterize the various methods into three distinct classes:

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-@3%@%’&%%%%@1 EEJESversity of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore. Restricti

time-based, lag-based, and divergence-based [14]. Since we
only have periodic updates, a lag-based scheme is most suit-
able because it uses the number of un-applied updates to
quantify how stale a data item is. Combined with the way
we aggregate the freshness over all data items accessed by
q;, the freshness for ¢; can be expressed as follows:

. 1
Qulg:) = d?élgi (1 + Udropj>

where Udrop; is the number of updates on data item d; that
were dropped since the last successful update, and D; is
the set of data items which query g; accesses. Under this
definition, the lowest possible freshness value for query g;,
Qu(g;), is near 0, whereas the maximum value is 1 for the
case that there are no pending updates for query g;.

ey

2.3 User Satisfaction Metric

From the perspective of the user, the more queries meet-
ing their deadline and freshness requirements, the better it
is. Therefore, one could use the success ratio (i.e., the ratio
of user queries that meet their deadline and freshness re-
quirements over all user queries) as a good metric of overall
system performance. However, using success ratio alone is
not enough if the user has a preference over which require-
ment is more important to him/her, or in other words, which
failure is more serious. For instance, one user may tolerate
slightly stale results, but wants to be able to see the results
very quickly, whereas another user may be willing to toler-
ate delays in order to get fresher results.

By using the success ratio alone, we are not able to dis-
tinguish among the different types of failures: rejections,
deadline-missed failures, and data-stale failures. To ame-
liorate this problem, we propose a dual metric that:

e assigns a gain for user queries that were accepted by
the system, finished before their deadline, and were
computed using fresh data (based on the user’s pref-
erences), and

e assigns a penalty for user queries that fail; the penalty
is differentiated based on the type of failure, according
to users’ preferences.

In this way, the overall performance metric includes not
only how successful the user queries are, but also how seri-
ous it is when user queries fail.

2.3.1 USM Definition

We define the total User Satisfaction Metric of the system
(over @, the set of all queries submitted by the users) as the
sum of the User Satisfaction of each user query, US(g;):

USMiotal = Z (US(%«))

¢ EQ

@

YF]',F.

UTER

S

ETY

As mentioned earlier, the User Satisfaction Metric (USM)
should include both success gain and failure penalty, and
also enable users to indicate their preference by assign-
ing different cost weights. For each user query, ¢;, US(g;)
could have four values because there are four possible out-
comes for a query (success, rejection, deadline-missed fail-
ure, data-stale failure). If ¢; gets rejected by the system,
US(g;) should be assigned a rejection penalty value of C,..
If g; gets admitted, but fails to meet its deadline, US(g;)
should be assigned a DMF penalty value of C'y,,,. If ¢; com-
pletes within its deadline, but the accessed data items do not
meet the freshness requirement, US(g;) should be assigned
a DSF penalty value of Cy,. If ¢; is admitted and success-
fully meets its deadline and freshness requirements, US(g;)
will be assigned a success gain, GG5. In this paper, G is
1 and the penalties (C;., Cf,, C'¢s) are normalized to G.
The user satisfaction of g; is defined as follows:

Gt if ¢; meets both ¢t; and g f;

—Ci if g; is rejected
us(g)=4 BN 3)

—C%,, if g; fails to meet gt;

—C’JZ}S if g; fails to meet ¢ f;
If we have Ny user queries that succeed, N, that get re-
jected, Ny, that exhibit a deadline-missed failure, and Ny
that exhibit a data-stale failure, then by combining Equa-
tions 2 and 3 we have that:

me Nfs

Ng N,
USMtotal = ZG]; - ZC:? - Z C}Cm - ZC];S (4)
k=1 k=1 k=1 k=1

Now we have the four parts representing the gain and
penalty according to the four outcomes of the transactions.
If we divide the total USM by the total number of submitted
user queries, we have the following average USM

USM:S_R_F'HL_E§ (5)

which is the average success gain (S), deducted by aver-
age rejection cost (R), the average DMF cost (F7,,), and the
average DSF cost (F).

2.3.2 USM Range

Higher values for the USM as defined in Equation 5, cor-
respond to higher levels of user satisfaction. The maxi-
mum attainable value for USM is 1, for the case that all user
queries are successful. The lowest possible USM value is
-max (C, Cfm, Cys). In other words, the worst case sce-
nario is when all the user queries fail and the type of failure
matches what the users consider to be the most annoying
(and have thus assigned to it the highest penalty).

3 The UNIT Framework

Given the system USM as defined in the previous section,
our goal is to maximize it by employing an adaptive load
control scheme. The idea is inspired by Kang’s work [12]
in which they use a feed back control loop to monitor the
freshness and deadline miss ratio. We provide detailed com-
parison of our work to Kang’s in Section 4.1 and 5.

3.1 System Overview

In this paper, we assume users have similar preferences
(penalty parameters). We believe that our framework can be
easily extended to support multiple preferences. Figure 1
shows the overview of the feedback control system. System
inputs are penalty parameters C,., Cyp, and Cs.

There are two interrelated parts in this system:

e Data flow: corresponds to how queries and updates
propagate through the system;

e Control flow: corresponds to how the control process
interacts with the data flow.

Data flow User queries and updates are submitted into
the system and put into the ready queue if admitted. The
dispatching discipline adopted in our system is a dual-
priority queue: updates have higher priorities than queries,
whereas within each group, EDF (Earliest Deadline First)
is applied. When a transaction completes successfully (i.e.,
within deadline and freshness constraints), the query re-
sult becomes available in the success queue. Concurrency
control is addressed by Two-Phase Locking - High Priority
(2PL-HP) [2].

Control flow The Load Balancing Controller (LBC) is
responsible for regulating control flow. Specifically, it can
tighten/loosen admission control by sending signals to the
Query Admission Control module to allow less/more user
queries into the system. LBC can also increase/decrease the
update frequency of updates by sending signals to the Up-
date Frequency Modulation module to carry out more/less
updates. The control flow is triggered periodically or when
the USM drops more than a certain threshold. The LBC also
monitors queries for further load shedding. Since we as-
sume firm deadlines, if a query deadline is missed while
the query is in the ready queue or during its execution, the
query has to be aborted. Similarly, query results with stale
data items (DSF) can be discarded or returned to the user
with a special notice.

3.2 Load Balancing Controller (LBC)

The Load Balancing Controller monitors the system
statistics and initiates the Adaptive Allocation periodically

YF]',F.

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) Q UTER
8-7695-@3%@%'%%%%@1 EEleversny of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore. Restricti %%IETY

User Query

Update

i) Update Frequency
) Modulation
2 (um)

a4p 48
/‘/ Data
R~ |
| |
v
| I
Fmg Rg

IJSM Load Balancing Controller(LBC)

Figure 1. UNIT Feedback Control System

or when there is a big drop of USWM, that is, when AUSM is
greater than a specified threshold; the threshold is usually
1% of the range of USM.

The policy executed by the LBC to decide on what to
do (admit more/less user queries or improve/deteriorate the
freshness through updates) is described in Adaptive Alloca-
tion Algorithm (see Figure 2). The algorithm takes as input
the rejection ratio R,., the DMF ratio Ry, and the DSF ra-
tio [iys, and triggers a new control signal as the result. The
main idea is to reduce the dominant penalty cost at the time
a drop in the USM is detected. If C,., C'yy,, and Cy are all
0, the system will focus only on reducing the failure with
highest ratio to maintain a high success gain.

3.3 Query Admission Control (AC)

Query admission control filters out the user queries that
have little chance to succeed by transaction deadline check,
and those transactions that can significantly hurt the system
performance by system USM check.

Transaction deadline check We assume the average ex-
ecution time for each transaction can be determined by the
existing monitoring techniques that most database systems
are performing for query optimization. These average exe-
cution times are used to check how promising a transaction
is to finish on time (before it is accepted). More specifically,
for each transaction, the system keeps the Earliest-possible
Start Time (EST). The system will check if EST; + qge; <
qt; before accepting the user query ¢;, where ge; is the av-
erage execution time of ¢; and qt; is its relative deadline.
Moreover, we also bring in a lag ratio C,, to allow some
flexibility to the scheduling; in other words, we check if

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-@3%@%’@%%%%@1 EEJESversity of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore. Restricti

Adaptive Allocation Algorithm

0. [Inputs: R, Rym, Rys] [Output: control signals]
1. if AUSM > USM; or Atime >= Grace Period

2 if (Cr, Ctp, Cys all equal 0)

3 R=Rr;Fm:Rfm;F€:Rfs

4 switch (max(R, F,,, F)) //break ties randomly
5 case R: / I rejection cost is highest

6. Loosen Admission Control [Section 3.3]

7 case F,: / / DMF cost is highest

8 Degrade Update [Section 3.4.1]

9 Tighten Admission Control [Section 3.3]

1 case Fj: / / DSF cost is highest

1

0
1 Upgrade Update [Section 3.4.2]

Figure 2. Adaptive Allocation Algorithm

Chex - EST; + ge; < qt;. All the transactions pass this test
are called promising transactions.

System USM check Usually, not all the promising trans-
actions are admitted, since they may overload the system.
The system USM check considers the global impact of ad-
mitting a query, since the new query may delay the ex-
isting transactions, which may lead to DMFs. We com-
pute the consequence to the USM cost, by counting the total
DMF cost of the endangered transactions (i.e. the transac-
tions that might miss their deadlines due to the new incom-
ing transaction). If the DMF of endangered transactions is
higher than the cost of rejecting the new transaction, the
system rejects the incoming transaction.

The complexity of the admission control algorithm
(transaction deadline check and system USM check) is
O(N;q) for each transaction, where N, is the length of
the ready queue.

Tighten/Loosen Admission Control The LBC will
send TAC/LAC (Tighten/Loosen Admission Control)
signals to adjust Cg., when needed. Notice that the larger
the Cp, is, the tighter the Admission Control is. The
initial value of Cj,, is set to 1 and a TAC/LAC signal is to
increase/decrease Cex by 10%.

3.4 Update Frequency Modulation (UM)

We use Update Frequency Modulation (UM) to control
the number of updates that are processed in the system by
increasing or decreasing the frequency of updates. The re-
duction of updates is carried out on those data that have
relatively little effect on query quality, upon receiving the
Upgrade Update control signal from LBC. Conversely, we
increase the frequency of all degraded updates to help with
the freshness, upon receiving the Degrade Update control
signal from LBC.

YF]',F.

SR

3.4.1 Degrading Updates

Next, we answer the following two questions: (1) Which
update to degrade? (2) How aggressively to degrade the
updates?

Which update to degrade? Intuitively, we want to de-
grade the updates for the data item that the system spends
too much time updating, yet only few queries need to ac-
cess. The probability a data item is chosen depends on its
access pattern and update frequency.

We use Lottery Scheduling [21] to choose which data
item to degrade, that is, whose update to make less frequent.
Each data item is associated with a certain ticket value. The
larger the ticket value a data item has, the higher the prob-
ability it will be chosen as the victim, and its update fre-
quency will be decreased. The ticket value is decided as
follows.

e Query effect on ticket values: The ticket value of d;
is decreased every time there is a query access to d;.
The amount of decrease depends on the cpu utilization
of the access query. Intuitively, we do not want to de-
grade those data items which are needed by the queries
with high cpu utilization, because if the query’s fresh-
ness requirement is not met, there will be less slack
time for an additional update transaction to be issued to
retrieve the fresh data item. Since the larger the ticket
value is, the more chance it has to be degraded, for
each query, the amount of decrease should be propor-
tional to the cpu utilization. Formally, the amount by
which the value will decrease for each query ¢; access-
ing d; is defined as:

_ e

at; ©

DT
where ge; is the average execution time of ¢; and gt; is
its relative deadline.

e Update effect on ticket values: The system increases
the ticket value of d; whenever there is an update on
d;. The longer the execution time of the update, the
larger the amount of increase on the ticket value. The
idea is that we want to degrade those data items that
have been updated relatively too often, and given two
data items having the same number of updates, we
want to obtain as much cpu time saving as possible by
degrading the data item with longer update execution
time. Among many choices to relate the ticket value
to execution time, we use the sigmoid function. Using
the information of average execution time among all
the updates, the sigmod function smoothly converts the
execution time to the (0, 1) range, and it nicely takes
care of the effect of outliers. Formally, the amount by

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-@3%@%’&%%%%@1 EEJESversity of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore. Restricti

which the ticket value will increase for each update ac-
cessing d; is defined as follows:

1
IT; =

- 1 4 eueas—ue;

(N

where ue,,, is the average update execution time of all
updates in the system, and ue; is the average execution
time of update u;. Note that the increase of the ticket
value is the sigmoid function of the difference between
execution time and average execution time.

e Forgetting: In order to concentrate on current system
status, we apply a forgetting factor C,e.; to the com-
putation of ticket values [10]. With Cf,.; = 1, all his-
torical accesses and updates are effective to the ticket
values. The smaller Cp,.; is, the faster it forgets. We
set Chyreer = 0.9 in this paper, following the current
practice in the literature.

e Overall ticket value computation: The overall ticket
value for data item d; is computed as described below.

7 _ [Ti s = DT,
! T] : Cforgel + I TJ

from query ¢; @)

from update u;

In order to have non-negative ticket values for the Lottery
Scheduling, we subtract the smallest ticket value, T,,,;,, from
all ticket values (i.e., Vj,T; = T; — Tpun). Then, we use
Lottery Scheduling [21] that randomly picks a data item
with probability proportional to the ticket value of the data
item. The complexity of applying the Lottery Scheduling is
O(logNy) [21], where Ny is the total number of data items.

How to degrade the update? Once d; is chosen to be
degraded, its current update period pc; is increased with a
certain percentage as specified in the following:

©))

In our experiments, Cy,, = 0.1; sensitivity analysis in [17]
has shown that the exact value of Cy, does not have a sig-
nificant effect to the average USM.

pc; =pej - (14 Cay)

3.4.2 Upgrading Updates

Upgrading updates needs to be done when degrading up-
dates affects the query freshness and the average DSF cost
F; becomes the leading cost in the USM. The periods of all
degraded updates should be decreased gradually as in Equa-
tion 10, until they reach the ideal period pi;.

pc; = min(pij, pc; — Cuy - Dij) (10)
where C',,, = 0.5, in our experiments, to essentially cut the

update period by half and quickly converge to the original
update period.

YF]',F.

UTER

S

ETY

700 original updates original updates

600 B UNIT degraded updates B UNIT degraded updates 1
Z 500 i
3 3 g 150 +————————
CE’ 400 3 ki
< 300 2 ST T 111
- o k3
S 200 —t * ®o504—————

100

0 0 il B
0 Data ID Data ID Data ID
(a) Query distribution over data (b) Update distribution over data (c) Update distribution over data
(med-unif trace) (med-neg trace)

Figure 3. Distribution of Accesses and Updates (Original vs. Unit Degraded) Over Data

4 Experimental Evaluation

We evaluated UNIT by comparing it to different algo-
rithms under various performance metrics and workloads
(generated from real traces). Section 4.1 explains the ex-
perimental setup as well as the baseline algorithms. Sec-
tion 4.2 compares UNIT to other algorithms and different
workloads by evaluating UNIT’s Update Frequency Modu-
lation. Section 4.3 quantifies the performance gain of UNIT
to other algorithms. Section 4.4 evaluates how sensitive the
algorithms are to the different weight settings. Finally, Sec-
tion 4.5 provides further insight into the influence of cost
factors over the different algorithms.

4.1 Experimental Setup

User Query Trace We generated user queries based on
the HP disk cello99a access trace, which lasts for 3,848,104
seconds and includes 110,035 reads. Each recorded entry
in cello99a has its arrival time, response time, and location
on the disk. We take the arrival time and response time of
reads from the original trace and map their accessed log-
ical block number (Ibn) into our data set. The disk loca-
tion was partitioned into 1024 consecutive regions, where
each region represents a data item in our simulation. The
deadline for each query was generated randomly and ranged
from the average response time to 10 times of the maxi-
mal response time. We set freshness requirement for all
user queries at 90%. Through the above process, we gen-
erate the user queries with each of them containing the ar-
rival time, accessed data, response time (estimated execu-
tion time), deadline and freshness requirements.

Update Trace Update workloads are classified into low,
medium, and high workloads with 6144, 30000, and 61440
total updates, respectively, representing a 15%, 75%, and
150% cpu utilization. In general, we need to specify the
spatial distribution (what data item to be accessed or up-
dated) and temporal distribution (at what time it happens)
of updates. However, we only have periodic updates, so the

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) Q UTER
8-7695-@3%[5%'%&%%%@1 EEleversny of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore. Restricti %%IETY

Updates Traces

Total Num. || Distribution

uniform low — unif
6144 positive correlation | low — pos
(or 15% workload) negative correlation | low — neg

uniform med — unif
30000 positive correlation | med — pos
(or 75% workload) negative correlation | med — neg

uniform high — unif
61440 positive correlation | high — pos
(or 150% workload) || negative correlation | high — neg

Table 1. Update Traces

temporal distribution is fixed. For the spatial distribution
we tried uniform, positive correlation and negative corre-
lation (to the query distribution with a coefficient of 0.8)
on each update workload. The update traces are listed in
Table 1. We generated estimated execution time for up-
dates randomly in the range of the response time of writes in
cello99a. Each entry contains an estimated execution time
and an update period for a particular data item.

Baseline Algorithms We compared our scheme, UNIT,
to two baseline algorithms (IMU and ODU) and the current
state-of-the-art (QMF [12]).

e IMU (Immediate Update): All the updates are exe-
cuted immediately; No admission control on queries.
IMU achieves 100% freshness, but may suffer from
low query success ratio for the high update load.

e ODU (On-demand Update): updates are executed only
when a query finds that a needed data item is stale;
No admission control on queries. ODU also achieves
100% freshness, but the additional update issued may
also delay the query and lead to missed deadlines.

e QMF: [12] uses a feedback control loop to adjust ad-
mission control and adaptive update policy. With the
CPU underutilized, QMF tries to update more often if

YF]',F.

1 MU 19 IMU 14 IMU
—+-0DU ~+-ObU —+-0DU

08 —QVF 08 —&- QWF 08 —4-QNF

Ny '\ S UNIT s s |- UNIT| = UNIT

Naive USM
o
(o2}
N

o
IS
L

Naive USM

Naive USM
o
e
f

Y

o
N}

0.4 \

T 3 0 T T A

med-pos high-pos low-neg med-neg high-neg

\

A 0
high-unif

o

low-unif med-unif low-pos

(a) Uniform (b) Positive correlation (c) Negative Correlation

Figure 4. Performance Comparison when UsSM = Success Ratio

the target freshness is not met, otherwise admits more
transactions. With the CPU overloaded, QMF up-
dates less often if current freshness is higher than tar-
get freshness, otherwise drops incoming transactions
until the system recovers. The adaptive update policy
controls how many updates to be dropped, and whose
updates to be dropped (based on the ratio of number of
accesses over number of updates on each data).

4.2 Update Frequency Modulation Evaluation

First, we want to verify if our Update Frequency Mod-
ulation can intelligently choose to drop updates that con-
tribute little to the user query freshness. We show both the
query access distribution over data and the update distribu-
tion over data. The results are from user query trace with
update trances med-unif and med-neg. Please refer to [17]
for experiments on more update traces.

Case Study 1: med-unif Updates Figure 3(a) shows the
number of queries per data item, illustrating a skewed dis-
tribution of requests over data items. Whereas the original
update requests are distributed uniformly over all the data
as indicated by the grey area in Figure 3(b). Intuitively, the
system should cut down the updates on the less frequently
queried items when necessary, which is exactly what UNIT
does (see black lines in Figure 3(b)). By comparing black
lines in Figure 3(a) and Figure 3(b), we can see that UNIT
can adaptively follow the query distribution to select the im-
portant data items to update.

Case Study 2: med-neg Updates The grey area in Fig-
ure 3(c) (i.e., the update volume) shows that the number of
updates over data is negatively correlated to the query dis-
tribution in Figure 3(a). This update trace has two promi-
nent groups: hot updated and cold updated data. As shown
in Figure 3(c) with the tiny black dots close to x-axis,
more than 95% of the updates are dropped and the updates
dropped concentrate on hot updated data which is also the
data with less frequent accesses (smaller IDs). What we
can also roughly see from the black dots in Figure 3(c) is
that the hot accessed data has about the same number of
updates than cold accessed data, instead of the big differ-
ence in Figure 3(b). The reason is that for the hot accessed

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)

8-7695-@3%[5%im%%m591 EEJESversity of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore. Restrictigr;%%@%ETY

data in Figure 3(c), originally the number of updates is very
small, i.e., a relative small number of updates is enough to
guarantee the freshness of the data.

We make the following observations: (1) It is not true
that hot accessed data should always get more updates than
other data. When the data are inherently stable, a small
number of updates is enough. (2) Updates on cold accessed
and hot updated data will be dropped more often than those
on hot accessed and cold updated data.

4.3 Naive USM: Quantitative Evaluation

We now quantitatively compare UNIT to other algo-
rithms. In order to be fair, we set all the weights C.., Cyp,,
C'ts to 0, which means USM equals to the traditional success
ratio in this naive setting.

Figure 4 shows the naive USM over 3 different update dis-
tributions (unif/pos/neg) and three different update volumes
(low/med/high). We can clearly see that UNIT has much
higher USM (success ratio) over all of the different settings
in Figure 4.

Specifically, UNIT outperforms other algorithms rang-
ing from 0.172 to 0.386 improvement in Figure 4(a), from
0.129 to 0.282 improvement in Figure 4(b), and 0.056 to
0.588 improvement in Figure 4(c) in absolute values for
USM. These differences translate to a 30%, 50% and 10%
minimum relative improvement over the competitor algo-
rithms and multiple orders of magnitude improvement in
the best case (since some of the other algorithms produce
near zero USM).

It is interesting to note that in Figure 4(a), QMF performs
even worse than the simple on-demand update scheme
(ODU), because QMF is trying to reduce the Miss Ra-
tio (number of deadline misses over number of admitted
queries), which makes QMF reject more aggressively to se-
cure the admitted transactions. As a result, QMF has fewer
successful transactions than ODU. In Figure 4(b), immedi-
ate updates (IMU) performs almost identical to ODU, be-
cause the query and update distributions are positively cor-
related. In Figure 4(c), ODU performs close to UNIT, be-
cause most of updates are “irrelevant” under the negative
correlation. ODU by itself tries to minimize updates.

YF]',F.

UTER

‘IIMU DODU &QMF EIUNIT| BIMU JODU EQMF EIUNIT|

1

0

-1

%

5-2

-3

-4

-0.5 -5
high Cr high Cfm high Cfs high Cr high Cfm high Cfs

(a) Penalties < 1 (b) Penalties > 1

Figure 5. Non-zero Penalty Cost

4.4 Normal USM: Sensitivity Evaluation

With UNIT, it is possible to assign different penalties for
different type of failures (i.e., assign different values for C,.,
Ctm, Cys). In this set of experiments, we evaluate how
sensitive UNIT is to the different cost functions. The main
result is that UNIT is fairly stable in terms of USM, even
when the cost functions change dramatically.

Figure 5(a) and 5(b) show the performance (measured as
USM) of different methods (under the query trace and update
trace med_unif) with penalties less than 1 and greater than
1, respectively. The 3 values along the x-axis (high C,., high
C'tm, high Cy;) refer to the cases where the corresponding
cost factor is higher than the other two costs. The exact
weights are shown in Table 2.

Figure 5 clearly shows that UNIT performs best in both
cases: penalties < 1 and penalties > 1. Some interesting
observations are: (1) QMF performs worse with high C.,
because it rejects many queries to favor the miss ratio; (2)
IMU and ODU are worse with high C't,,, because they fail
to finish many queries on time.

4.5 Insight into behavior of UNIT

After showing the performance gain of UNIT over a va-
riety of settings, we now elaborate on why UNIT gives
a better and more stable USM than the other methods.
User queries could have four “fortunes”: Success, Rejec-
tion, DMF, and DSE. We can collect how many transac-
tions fall into each group by having the number of Suc-

Penalties <1 | Cs | Cr | Cpm | Cys
high C). 1 05 | 0.1 0.1
high Cyp, 1 0.1 | 0.5 0.1
high C 1 0.1 | 0.1 0.5
Penalties > 1
high C,, 1 |5 |1 1
high Cyp, 1 1 5 1
high Cys 1 1 1 5

Table 2. usM weights for Figure 5

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)

8-7695-@3%[5%im%%m591 EEJESversity of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore. Restrictigr;%%@%ETY

high Cr high Cfm high Cfs UNIT

IMU ODU QMF

Figure 6. Ratio Distribution

cess/Rejection/DMF/DSF divided by the total number of
queries, denoted as Success/Rejection/DMF/DSF ratio (i.e.,
Ry/R./Ryp/Rys). By visualizing the ratio decompositions
of the outcome of queries, we can have an insight about the
results in the previous sections.

Figure 6(a) plots the four ratios for IMU, ODU, and
QMF which are insensitive to weight variations, and Fig-
ure 6(b) plots the four ratios for UNIT under the same setup
of Figure 5(a). We observe the following: (1) Regardless
of the penalty settings, UNIT gives a much higher success
ratio than the others. (2) The ratio distribution of UNIT
changes a lot with different cost setups. With the rejec-
tion cost smallest with high_Cr setup and DMF cost small-
est in the high_Cfm setup, it can be explained why the USM
for UNIT remains stable along different cost setups: UNIT
effectively minimizes the portion that dominates the cost.
(3) IMU, ODU and QMF are not affected by the cost pa-
rameters and hold the same success ratio. Comparing the
three algorithms, we find QMF’s rejection ratio very high.
The reason is that when there is a burst of requests, QMF
is being conservative and drops many queries to guarantee
the admitted transactions to be successfully executed. Al-
though within those admitted transactions, the miss ratio is
minimized, the overall success ratio is low too.

5 Related Work

We view our work as being at the intersection of web-
databases, real-time database systems, and stream data
management.

Web-Databases There is a plethora of papers that focus
on improving the performance of user requests to database-
driven web sites, using caching [11, 5, 7, 15] or material-
ization [13]. These approaches usually provide a best-effort
solution in terms of data freshness. In recent work [14],
we introduced a framework to balance the trade-off between
performance and freshness in web servers, by choosing data
items to materialize in the presence of continuous, asyn-
chronous updates. In [19], we emphasized on continuous
queries over the dynamic Web and proposed a scheduling
policy to improve QoD (freshness) instead of the traditional

YF]',F.

UTER

performance criteria. However, we did not address user-
specified deadlines or perform admission control in order to
provide any quality guarantees.

Real Time Database Systems There exists a significant
amount of research in Real-Time Database Systems that
deals with the scheduling of real-time transactions in the
presence of deadlines [9, 18]. QMF [12] deals with fresh-
ness in addition to deadlines and is the closest to our work
in this paper (UNIT). UNIT improves on QMF in that it is
user-centric (it optimizes USM, while QMF targets freshness
and miss ratio), and it uses Lottery Scheduling for efficiency
and fairness. Update frequency modulation has also been
addressed in [4], which treated periodic tasks as springs,
so the period (and also the workload) can be adjusted by
changing the elastic coefficients. This approach is a general
overload management technique, while our proposed UNIT
scheme is maximizing the user satisfaction metric (USM).
Another approach to adjust the update workload has been
proposed in [22] through a deferrable schedule for update
transactions that minimizes update workload while main-
taining freshness (temporal validity) of real-time data.

Stream Processing In order to deal with the never-
ending flood of data and the burstiness of data streams [16,
1], multiple load shedding techniques have been proposed.
For example, [3, 6, 8] focus on the accuracy of the query an-
swers, whereas [20] provides a mechanism to optimize on
different QoS requirements (including latency, value-based,
and loss-tolerance). However, in this paper, we focus on ad-
hoc queries that operate on data being updated periodically,
instead of continuous queries. Also, our emphasis is on co-
ordinating query admission control with update frequency
modulation, in order to prevent overload (instead of simply
reacting to it, as load shedding does).

6 Conclusions

Web-based database systems of today manage time-
sensitive data and must comply with several requirements
such as freshness and deadlines. In this paper, we proposed
to combine such requirements into a novel User Satisfac-
tion Metric (USM), and introduced UNIT. UNIT uses a feed-
back control mechanism and relies on an intelligent admis-
sion control algorithm along with a new update frequency
modulation scheme in order to maximize USM. Our evalu-
ation showed that UNIT performs better than two baseline
algorithms and the current state-of-the-art when tested us-
ing workloads generated from real traces.

Acknowledgements The authors would like to thank Dr.
K. D. Kang for gratiously providing the code for his QMF
algorithm, to Jimeng Sun for his help with earlier ver-
sions of this paper, and to Mengzhi Wang for providing the
cello99a traces.

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-@3%@%’&%%%%@1 EEJESversity of Pittsburgh Library System. Downloaded on November 12,2025 at 18:08:59 UTC from IEEE Xplore. Restricti

References

(1]

(2]
(3]
(4]

(3]

(6]
(7]

(8]
(9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
Aurora: a new model and architecture for data stream man-
agement. The VLDB Journal, 12(2):120-139, 2003.

R. K. Abbott and H. Garcia-Molina. Scheduling real-time
transactions: a performance evaluation. In VLDB, 1988.

B. Babcock, M. Datar, and R. Motwani. Load shedding for
aggregation queries over data streams. In /CDE "04.

G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elas-
tic scheduling for flexible workload management. IEEE
Trans. Comput., 51(3):289-302, 2002.

J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and
P. Reed. A Publishing System for Efficiently Creating Dy-
namic Web Content. In INFOCOM ’00.

A. Das, J. Gehrke, and M. Riedewald. Approximate join
processing over data streams. In SIGMOD, 2003.

A. Datta et al. Proxy-Based Acceleration of Dynamically
Generated Content on the World Wide Web: An Approach
and Implementation. In SIGMOD ’02.

L. Ding and E. A. Rundensteiner. Evaluating window joins
over punctuated streams. In CIKM "04.

J. R. Haritsa, M. Livny, and M. J. Carey. Earliest deadline
scheduling for real-time database systems. In RTSS, 1991.
S. Haykin. Adaptive Filter Theory. Prentice Hall, 1992.

A. Iyengar and J. Challenger. Improving Web Server Perfor-
mance by Caching Dynamic Data.

K.-D. Kang, S. H. Son, and J. A. Stankovic. Managing
deadline miss ratio and sensor data freshness in real-time
databases. TKDE, 16(10):1200-1216, 2004.

A. Labrinidis and N. Roussopoulos. WebView Materializa-

tion. In SIGMOD °00.

A. Labrinidis and N. Roussopoulos. Exploring the tradeoff
between performance and data freshness in database-driven
web servers. The VLDB Journal, 13(3):240-255, 2004.

Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo,
B. G. Lindsay, and J. F. Naughton. Middle-tier Database
Caching for e-Business. In SIGMOD °02.

R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query processing, resource management, and approxima-
tion in a data stream management system. In CIDR, 2003.
H. Qu, A. Labrinidis, and D. Mossé. Transaction man-
agement in web-database systems. Technical Report
PITT/CSD/TR-05-126, November 2005.
K. Ramamritham. Real-time databases.
Parallel Databases, 1(2):199-226, 1993.
M. A. Sharaf, A. Labrinidis, P. K. Chrysanthis, and K. Pruhs.
Freshness-aware scheduling of continuous queries in the dy-
namic web. In WebDB, 2005.

N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, and
M. Stonebraker. Load shedding in a data stream manager.
In VLDB, 2003.

C. A. Waldspurger. Lottery and stride scheduling: Flexible
proportional-share resource management. Technical Report
MIT/LCS/TR-667, 1995.

M. Xiong, S. Han, and K.-Y. Lam. A deferrable scheduling
algorithm for real-time transactions maintaining data fresh-
ness. In RTSS "05.

Distributed and

YF]',F.

UTER

S

ETY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

