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ABSTRACT
In modern web-database systems, users typically perform read-
only queries, whereas all data updates are performed in the back-
ground, concurrently with queries. In this paper, we present the
concept of Quality Contracts which allows individual users to ex-
press their preferences by assigning “profit” values to their ex-
pected Quality of Service (QoS) and Quality of Data (QoD). We
propose an adaptive algorithm, called QUTS, to maximize the to-
tal profit from submitted Quality Contracts, which essentially opti-
mizes the overall user satisfaction. QUTS address the problem of
prioritizing the scheduling of updates (crucial to QoD) over queries
(crucial to both QoS and QoD) using a two-level scheduling scheme
that dynamically allocates CPU resources to updates and queries.
We present the results of an extensive experimental study using real
data (taken from a stock information web site), where we show that
QUTS performs better than baseline algorithms under the entire
spectrum of quality contracts; QUTS adapts fast to changing work-
loads and QUTS’ sensitivity to its two parameters is negligible.
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1. INTRODUCTION
Data-intensive web sites are part of everyday life. Checking sports
scores, viewing stock quotes, evaluating realtime warehouse inven-
tory levels, and accessing personalized weather information are all
such cases, i.e., of web-database applications that exhibit high up-
date rates and mostly read-only queries. On the one hand, the pro-
liferation of sensor devices and networks is only going to make the
volumes of collected data even more massive, resulting in what is
being referred to as High-Fan-In systems [9]. On the other hand,
the Web is expected to remain the primary user interface for ac-
cessing such data, and of course, the demand for online availability
of the data will also remain. As such, data-intensive web sites are
expected to become even more data-intensive in the near future.

In earlier work, we showed that WebView materialization allows
for better scalability in data-intensive web sites, without sacrific-
ing freshness [20]. The key idea was to decouple the process-
ing of the queries from the processing of updates. Query results
were materialized outside the database (at the web server) and up-
dates were propagated asynchronously in the background (from
the DBMS). This setup allows for exploiting the trade-off between
performance or Quality of Service (QoS) and freshness or Qual-
ity of Data (QoD), by selecting which query results to material-
ize [19], and essentially by building an “intelligent” asynchronous
cache with eager updates. Efforts towards implementation of simi-
lar frameworks have been publicized by most major database ven-
dors [25, 24, 5, 23].

In this paper, we remove many of the assumptions of earlier work,
and address the problem of efficiently executing queries concur-
rently with updates in data-intensive web sites. Specifically, we
assume a memory-resident system, such as a main-memory DBMS
(as was the case in [3]), or an asynchronous middle-tier cache (as
was the case in [19, 5, 23]). We allow queries and updates to run
concurrently in the system and address the scheduling of queries
and updates in the presence of user preferences in QoS, for exam-
ple, through a deadline, and QoD, for example, through a freshness
requirement. Our end goal is to maximize the overall user satis-
faction (i.e., how close the system matched the prescribed users’
preferences).

Motivating example: Our motivating example is that of a web-
based stock market information system. In such a system, the web
server is receiving queries from users who want to find out current
stock prices, perform analysis comparing multiple stocks, etc. The
web server (or, rather, the database system) also receives contin-
uous feeds with updates on stock prices, and possibly additional
news feeds with articles related to traded companies. Clearly, all
users would like to have their queries completed (1) as fast as pos-
sible (i.e., have high QoS) and (2) with the most up-to-date data
values (i.e., have high QoD). However, this may not be possible
most of the times, either because of high query load (for example,
a lot of people want to check their stock portfolios during lunch
time) or because of high update load (for example, because of a
breaking news story). In these situations, many users would be
willing to receive slightly stale data, if the data are consistent and
the result is returned fast; for example, a query that compares the
relative values of two stocks over time can use slightly stale data
(i.e. while there are pending updates), without forcing the user to
wait for the data to become fresh. Other users would prefer to get
data slightly delayed, but with the “promise” that their queries were
performed over fresh data.

In general, the QoS and QoD preferences are expected to vary sig-
nificantly from one user to another. As our motivating example
indicated, some users would probably put QoS first and then worry
about QoD, whereas others will prefer high QoD with slightly less
QoS. In this paper, we propose a unifying framework for specify-
ing QoS and QoD requirements, which we call Quality Contracts.
Quality Contracts, or QCs for short, are based on the microeco-
nomic paradigm [35, 8], but effectively “merge” all dimensions of
Quality (i.e., multiple, different definitions of QoS and QoD) into a
single, unifying concept. Essentially, the user specifies the amount
of “worth” to him/her for the query to have a certain QoS and QoD.
In this way, users can specify the relative importance of QoS over
QoD and can also specify the relative importance among their dif-
ferent queries. The system, on the other hand, can infer the relative
importance of different users’ queries and allocate its resources to
maximize “profits”, and as such, maximize user satisfaction. With
QCs, we can now cast the problem of scheduling queries and up-
dates into the problem of optimizing the total profit for the system.

In this paper, we present a novel two-level scheduling scheme for
scheduling updates and queries under quality contracts. The ba-
sic idea behind the proposed scheme, is in deciding on the alloca-
tion of resources between queries and updates using the expected
“profit gain” to the system: executing queries contributes to QoS
(and QoD), whereas executing updates contributes to QoD. We pro-
pose, QUTS, short for Query-Update Time-Sharing, which adapts
resource allocation by monitoring the achieved user satisfaction in
QoS/QoD and comparing it to the best-case scenario.

Contributions: In this paper, we make the following contributions:

1. We introduce Quality Contracts (QCs), a unifying framework
for expressing QoS and QoD user preferences.

2. We propose using a two-level scheduler for scheduling queries
and updates in the presence of QCs. We also develop a new
(single-level) global scheduling algorithm for comparison.

3. We present QUTS, which is a two-level scheduler, that ad-
dress the problem of prioritizing the scheduling of updates
(crucial to QoD) over queries (crucial to both QoS and QoD)
using a two-level scheduling scheme. In the presence of QCs,
QUTS dynamically allocates CPU resources to updates and
queries at a high-level, while allowing for maximum flexibil-
ity in prioritizing the queries and updates in the low level.

4. We perform an extensive experimental study, where, using
real data (query and update traces from a popular stock mar-
ket information server) we compare QUTS to current algo-
rithms (which it outperforms) and examine the sensitivity of
the algorithm with regards to its two parameters (very little)
and also its adaptability in the presence of rapidly changing
workloads (very good).

Structure of paper: The paper is organized as follows. We present
the Quality Contracts concept and our optimization problem in Sec-
tion 2. Section 3 summarizes related work and describes the base-
line algorithms. We introduce our two-level scheduling algorithm
in Section 4. Section 5 describes our experimental setup, whereas
Section 6 presents the results of our experimental study. Finally,
we conclude in Section 7.
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Figure 1: QC example: combination of QoS and QoD requirements for one ad-hoc query. QoS is measured in response time
(seconds), whereas QoD is measured in number of Unapplied Updates (UUs)

2. QUALITY CONTRACTS
For traditional database management systems, QoS is measured in
textbook ways: response time, stretch1, etc. In the case of real-time
DBMSs, adherence to deadlines (soft or hard) is an additional mea-
sure of QoS [17]. There are also many different ways to measure
QoD in traditional DBMSs (see [19] for an overview). Basically,
there are three main categories of QoD metrics: time-based, where
the time since the last update is used as a measure of staleness, lag-
based, where the number of unapplied updates is used as a measure
of staleness, and, finally, divergence-based, where the difference of
the current value from the most up-to-date value is used as a mea-
sure of freshness. Such QoD metrics can be further aggregated
(either using average, minimum, or maximum) when we are con-
sidering a set of data items together (e.g., HTML fragments as part
of a web page).

The most important deficiency of the current approaches to QoS/QoD
is that they do not have strong support for user preferences. In typ-
ical DBMSs (i.e., for ad-hoc queries), quality is simply reported
as an overall system property (even if both QoS and QoD are re-
ported as separate measures); user preferences are not even con-
sidered. There are a few exceptions to this. Work on real-time
databases [18, 32, 2] typically considers user preferences on a sin-
gle QoS metric (in this case: preference on response time by means
of a deadline) while attempting to maximize QoD. Our work on
database-driven web servers [19, 22, 21, 20], balances the trade-
off between QoS and QoD, while considering user preferences on
one of the two measures: given an application-specified QoD re-
quirement, the proposed system adapts to improve the overall QoS.
Finally, in prior work [31], we have extended the work of [18] to
perform admission control for incoming queries and consider both
QoS user requirements (i.e., deadlines) and QoD user requirements
(i.e., freshness threshold).

In this paper, we propose Quality Contracts, as a simple, yet pow-
erful, framework to express user preferences for QoS and QoD.
Quality Contracts, or QCs for short, are based on the microeco-
nomic paradigm [35, 8], but effectively “merge” all dimensions of
Quality (i.e., multiple, different definitions of QoS and QoD) into
a single, unifying concept. In the general form of QCs, the user
specifies a function over the quality metric of interest, along with
the amount of “worth” to him/her for the query to have a certain
QoS or QoD when it executes. In this way, users can specify the

1Stretch measures the factor by which a job is slowed down relative
to the time it would have taken to execute if it where the only job
in the system [26, 29].

relative importance of QoS over QoD and can also specify the rel-
ative importance among their different queries. We illustrate the
concept with an example.

Figure 1 is an example of a Quality Contract (QC) for a query sub-
mitted by a user. We assume an ad-hoc query in this example,
whose QC consists of two graphs: a QoS graph (Figure 1a) and
a QoD graph (Figure 1b). The QoS metric in this QC is response
time, whereas the QoD metric is data staleness. Data staleness is
measured in number of unapplied updates (UUs), i.e., number of
pending updates for the data items that were accessed in order to
answer the query. In our work, we assume that the staleness of a
collection of data items (accessed by a query) is the highest stal-
eness over all data items in the group (i.e., we get the max(UU)
count for the entire query). From the example, we see that QCs al-
low users to combine different aspects of quality. In this example,
the user has set the budget for the query to be $100; $70 are allo-
cated for optimal QoS, whereas $30 are allocated for optimal QoD.
This allocation is one important feature of the QC framework: users
can easily specify the relative importance of each component of the
overall quality by allocating the query budget accordingly.

Although we are not the first ones to use the microeconomic paradigm
(for resource allocation, e.g., [35, 8]) or use a graph/function to de-
scribe quality (e.g., schemes in data stream management systems
[7, 1]), to our best knowledge, this is the first work that combines
these concepts together in a unified framework, also allowing for
multiple quality metrics to be expressed at the same time. In fact,
we propose to use the Quality Contracts framework for both ad-
hoc queries (like those in this work) and also for continuous queries
(like those processed by data stream management systems), but this
discussion is beyond the scope of this paper. Existing schemes [7,
1], do not allow for a user to specify the relative importance of
each component of the overall quality (at best, they simply have
a global function which combines these metrics in the same way
for all users), and they do not allow for a simple way to distin-
guish among queries of difference importance (from the same user
or from different users). All these issues are elegantly addressed by
the QC proposal.

Usability of Quality Contracts: We envision that a system which
supports Quality Contracts (QCs) will provide a wide assortment of
possible types of QoS/QoD metrics to the users. Making QCs easy
to configure is fundamental to their acceptance by the user com-
munity. Towards this we expect service providers to support pa-
rameterized versions of QC graphs that the users can easily instan-



tiate. In fact, a simpler scheme is one where the service provider
has already identified a “budget” for each type of user (which will
translate to a certain class of QCs, a real-life example is the amount
of free minutes included in wireless plans today) and a user will
simply have to turn a “knob” on whether she prefers higher QoS or
higher QoD (the real-life equivalent is choosing for the same price
on a wireless plan whether you want more anytime minutes or more
free nights & weekends minutes). In this way, service providers can
better provision their systems, provide different classes of service,
and allow end users to specify their preferences with minimal ef-
fort.

Definitions: We assume that there are two kinds of transactions in
our system: user query transactions (or simply queries) and update
transactions (or simply updates). The set of all queries is denoted
as Q = {qi|0 ≤ i < Nq}. The set of all updates is denoted as
U = {uj |0 ≤ j < Nu}. Note that both query and update sets are
ordered by arrival time. The number of queries Nq and the number
of updates Nu can be infinity, which means that both query and
updates can be unbounded. The database D consists of Nd data
items, more formally, denoted as D = {dk|0 ≤ k < Nd}. Each
user query qi reads one or more data items, whereas each update
transaction ui updates a single data item.

Optimization Goal: Given multiple quality graphs (or functions),
the question remains on how to combine this into a single QC. For
our case, we have QoS and QoD, so the issue remains on how
to combine them into a single function that the system will opti-
mize. There are four choices, based on whether the two quality
metrics are independent of each other or not. The fully-dependent
choice would be represented by multiplying the two metrics to-
gether, which means that both QoS and QoD constraints have to be
met before the system gets any “profit”. In our case, we opt for
the full-independent case, where essentially we are adding the two
metrics up. This means that QoD “profit” can be gained even if the
QoS constraint is not meant, and vice versa.

3. RELATED WORK AND BASELINE AL-
GORITHMS

To our knowledge, no work has been done to optimize the sys-
tem profit with the presence of both QoS and QoD profit functions.
However, some related work has given solutions to part of the prob-
lem. In the following, we present the related work and two simple
solutions based on those works.

Scheduling Queries: One of the related work is in real time sys-
tems where many schemes [2, 6, 14, 30, 13] are proposed to sched-
ule tasks with time critical value functions, which is similar to our
QoS profit function in quality contracts. The idea is to consider
both deadlines and values (or profit) of the tasks. Haritsa showed
that Value over Relative Deadline (VRD) [12], which uses the ra-
tio of value over the relative deadline as the task priority, gives the
best performance over all workloads, thus it is a well-suited candi-
date to assign query priorities. With some changes on the values
which was originally only on QoS, a promising priority scheme for
queries could be Profit over Relative Deadline (PRD) which uses
the ratio of total maximal profit from both QoS and QoD functions
over query relative deadline. The maximal profit varies along time:
before the query deadline, it is the sum of QoS and QoD maximal
profit; but after the query deadline, it only contains QoD maximal
profit.

Scheduling Updates: Prioritizing updates is not as straightforward
as queries since updates do not have profit functions associated with
them. Adelburg has studied some alternatives in [3] which may be
useful although it is under a different setup, where queries have
QoS profit functions and but no QoD profit function associated. [3]
showed that there are two promising schemes: update first (update
always have higher priority than queries) and update on-demand
(relative updates are executed only when queries find the needed
data items are stale). Something missing in [3] is that they did not
use any concurrency control which could be tricky with update-
on-demand when the the queries get preempted because how to
resume the these queries depends on what concurrency control is
used. Update first, instead, is more independent with the concur-
rency control. Moreover, only execute on-demand is shown to di-
minish the response time by later work[20]. Thus, we use update
first to concurrently schedule updates and queries. Since this guar-
antees the highest QoD has no effect on QoS, there is no need of
priority within the updates, so First In First Out (FIFO) is applied.

Concurrency Control (CC): As we just mentioned, [3] did not
address the problem of concurrency control. Yet data contention
is unavoidable with the preemptive real time scheduling of queries
and updates. In conventional databases, there are two prevailing
concurrency schemes, Two Phase Locking (2PL) and Optimistic
Concurrency Control (OCC). People have extended the concur-
rency control schemes in both firm-deadline and soft-deadline real
time database systems [2, 11, 10, 15, 34, 33, 27, 28]. Earlier stud-
ies[11] have shown that OCC based performs better than 2PL based
schemes in firm deadline systems because in such systems tasks
that miss deadlines are discarded immediately and it is very bene-
ficial to OCC’s late conflict resolvent. Whereas [10] showed that
2PL-HP[2] (two phase locking - high priority, which solves any
conflict in favor of high priority tasks) outperforms the others with
finite resources in soft real time database systems where tasks con-
tinue even after deadlines with less value (or profit) generated. In
our case, queries have both QoS and QoD profit functions which
means even if no QoS profit is possible to earn, the system should
still try to finish the query for the QoD profit. Thus, it is more to-
wards soft real time systems and 2PL-HP is the better choice than
any other lock based and invalidation based concurrency control.

Along with all the above introduction on related works, we intro-
duce two promising candidate baseline algorithms:

• UH (Update High) UH is a preemptive scheduling scheme
with two priority queues for updates and queries, respec-
tively. Updates always have higher priorities than queries.
Within updates, FIFO (First In First Out) is applied for its
simplicity, since with updates always proceeding queries, re-
ordering updates have little effects on the actual profit from
queries. Within queries, PRD (profit over relative deadline)
is applied where queries with higher total maximal profit and
tight deadlines have higher priorities. Notice that after query
miss its deadline, total maximal profit only contains QoD
profit instead of the sum of QoS and QoD profit. 2PL-HP
is used for concurrency control.

The problem with UH is its ignorance of the relative im-
portance between QoS and QoD, and blindly establishes all
updates to get the best QoD even if it dramatically deterio-
rates QoS. Next we generated the second baseline algorithm
Global Priority to relieve the problem by pushing behind the
updates that are not so contributive to the system profit.



• GP (Global Priority): GP is a preemptive scheduling scheme
with a single-priority queue. The priority scheme for updates
is High QoD Profit (HDP) which uses the sum of QoD max-
imal profit from the queries which have intersected data set
with the updates. Query priority scheme is HP (High Profit)
which uses the sum of QoS maximal profit and QoD maximal
profit. Unfortunately, to be comparable with the updates, it
is hard to have deadlines considered in the query priority. In
other words, updates on those data that are needed by more
queries tend to have higher priorities. This scheme automat-
ically pushes behind the updates which may not be contribu-
tive to the data quality of the queries, and promote the up-
dates for those data with high profit attached through QoD
functions of queries. One of the disadvantage is that much
overhead is incurred from the computation of update priori-
ties because every time a query is submitted or finished, the
priority of relative updates (if any) needs to be adjusted. As
with UH, 2PL-HP is used for concurrency control.

GP sounds promising to automatically prioritize updates and
queries. In fact, it might give too much control to the effect
of QoD profit to updates. And all these above algorithms are
purely heuristic-based which only works for specific scenar-
ios.

4. QUTS SCHEDULING
Would the simple heuristics UH and GP handle stochastic arrival of
updates and quality specific queries? We did an experimental test
and found they both tend to provide a better QoD than QoS. In other
words, the scheduling is always biased towards QoD. Obviously an
algorithm that intrinsically favor one of the QoS and QoD will not
perform good for general quality contracts. Therefore, we propose
Query Update Time Share (QUTS) scheduling algorithm, which is
a two-level scheme that can dynamically adjust query and update
share so as to maximize overall system profit.

In the following, we first analyze the problem in Section 4.1 and
then describe the QUTS algorithm in details.

4.1 Problem Analysis
Here we motivate QUTS through a discussion of the weakness
of UH and GP. UH and GP are both one-level scheduling algo-
rithms with different preferences: (1) UH always favors updates
than queries. If updates keep coming, UH is not able to process any
queries. (2) GP improves UH by letting a global priority decides
the order of queries and updates. As a sacrifice to have updates with
QoD property inflated priorities, queries priorities can only be QoS
property inflated and lose the information on deadlines. Whereas
deadline information is crucial to success rate when system work-
load is light. Another concern is if updates are highly inflated by
QoD profit and keep coming, GP will still starve the queries, as a
result, system can get neither QoS nor QoD profit.

Therefore, we need an algorithm with the following two properties:

• It can dynamically adjust the shares of queries and updates
with no starvation;

• It can use different strategies for updates and queries.

Next we explain how QUTS, our proposed algorithm, achieves both
goals.

4.2 Algorithm overview
QUTS is a two-level scheduling scheme with two priority queues
for queries and updates, respectively. At higher level, it achieves
the first goal by dynamic CPU allocation to either query queue or
update queue according to a profit-guided percentage ρ. At lower
level, queries and updates have their own priority queues. More
specifically, queries are scheduled via PRD and updates are sched-
uled via HDP, which are the best choices as we have discussed
in Section 3. Multiversion is applied to allow the maximal con-
currency and flexible query QoD choices. Table 2 summarizes the
scheduling of both baselines schemes and QUTS.

The rest of the section mainly focus on the higher level schedule,
which is the central component of the algorithm.

4.3 Priorities Between Updates and Queries
We first introduce the objective function for prioritizing updates
and queries. Essentially, the CPU allocation decides how we
choose from updates and queries to have higher priorities in higher
level.

Suppose the total CPU can be allocated is 1, queries share ρ, and
updates share the rest, 1 − ρ. The goal is to have the right ρ such
that the total profit P is maximized. The total profit P depends on
the QoS profit PS and the QoD profit PD (i.e., P = PS + PD).
QoS profit depends on 1) the sum of maximum QoS of all queries
in the system S and 2) the success query percentage r (i.e., PS =
S · r). A leap of faith is that more CPU allocation leads to higher
success percentage. For example, if all CPU cycles are given to
process queries, QoS profit should be maximized. Thus PS can be
approximated by S · ρ. Similarly, QoD profit relies on (1) the sum
of maximum QoD of all queries in the system D, (2) the percentage
of queries that meets their QoD constraint which depends on both
query and update execution. Thus PD can be approximated by
D · p · (1− p). Note that QoD profit has stricter constraint because
it demands CPU allocation to both updates and queries.

Finally, the (normalized) total profit can be modeled as

P ≈ S · ρ + D · (1 − ρ) · ρ, 0 ≤ ρ ≤ 1. (1)

4.4 Optimizing ρ
Here we explain how to find the optimal ρ. QUTS tries to find the
optimal ρ periodically. The adaption period ω decides how often ρ
is adjusted. The default value for ω is 1000 milliseconds. Sensitiv-
ity test on ω is given in experimental examination in Section 6.3.

Equation 1 is a quadratic function with linear constraints, which
usually requires expensive quadratic programming to find the op-
timal solution. Since there is only one variable ρ in the function,
we can simplify it into a gradient descent problem. The optimal
solution is:

ρ = min(
S

2 · D + 0.5, 1) (2)

Notice that since both S and D are positive, the minimal value of
ρ is actually 0.5, which indicates that we should always keep more
than 50% of time giving queries higher priorities than updates un-
der this model. A further improvement of QUTS is to use the ag-
ing scheme [16] to alleviate the possible random variation which is



for each adaptation period ω
Adjust ρ according to Equation 3, 4
(see Section 4.4)

High for each atom time period τ
Level (or the current running queue is empty)

Generate a random number ξ ∈ [0, 1]
if ξ < ρ

query queue is chosen.
else

update queue is chosen.
(see Section 4.5)

Low query priority queue: update priority queue:
Level PRD (Profit over HDP

Relative Deadline) (High QoD Profit)
(see Section 3) (see Section 3)

Table 1: QUTS Two-Level Scheduling with Multiversion Con-
currency Control

similar to standard conjugate gradient optimization:

ρnew = min(
Sk−1

2 · Dk−1
+ 0.5, 1) (3)

ρk = (1 − α) · ρk−1 + α · ρnew (4)

where Sk−1 is the maximal sum of submitted QoS values during
the previous adaptation period. Note that in general α should be a
small value2, but the exact α does not matter much.

4.5 How to establish ρ?
Now we know the guideline is that the probability of query running
(or queries have higher probabilities) is ρ and the probability of
update running (or updates have higher probabilities) is 1−ρ within
current ω. A simple way to establish ρ is that at every CPU time we
throw a token (a random number from 0 to 1.0 ) and see where it
drops. If it drops in the query territory [0 ∼ ρ), we pick the head of
the query priority queue to run, and if drops in the update territory
[ρ ∼ 1], we pick the head of update priority queue to run. If either
queue is empty, the head of another queue is picked automatically.

The problem is if we throw it too often, not only we have a lot
of overhead making this decision, but also the contention between
data reads and writes could range from very bad to prohibitive. On
the other hand, we also cannot afford to wait too long that the sys-
tem may lose a big trunk of QoS profit with time critical queries.
We define an atom time τ to be the minimal time we keep running
queries or updates if both queues are nonempty. Specifically, there
are two possible states: if queries have higher priorities than up-
dates in τ , we call it query state and label it with τ · q, otherwise,
we call it update state and label it with τ · u. Each time when τ
expires, the system throws the token and chooses from queries and
updates for the next τ . A state change may happen every τ time, or
the picked queue is empty at any instant of time.

4.6 Concurrency Control
Notice that with QUTS, the more often the state changes, poten-
tially the more unfinished transactions there will be, thus the more
data contention could be generated. In the following, we will ex-
plain the concurrency control scheme applied with QUTS begin-
ning with an example.

2We use α = 0.1 in our experiment.

Figure 2 shows an example of queries and updates over the same
data set, arriving along time. Suppose that they all arrive within a
single adaptation period ωk; q1, q2 and q3 have increasing query
priorities respectively; and the two updates are on the same data
item. Look at Figure 3, at the beginning of atom time τ1 · q, q1
starts execution, but later on, is preempted by q2. At the end of
τ1 · q, both q1 and q2 have not committed yet. At the time of
τ2 · u, it happens that updates take over the CPU. As the transac-
tion with highest priority in the system, u gets executed and tries
to commit with the writing on the data item that q1 and q2 have
not released yet. With any lock or invalidation based concurrency
control schemes that avoids priority inversion3, both q1 and q2 will
be restarted since the committing update holds the highest priority
among all transactions. Although the restart is good for the QoD
values of q1 and q2, it wastes a lot of time (in the example, all
the execution in τ · q, and q1’s execution in τ · q since q1 will be
preempted by a higher priority query q3) which may diminish the
system’s QoS profit. In addition, it is not mandatory for queries to
use perfectly fresh data if their QoD constraint is loose (e.g., more
than one unapplied updates are allowed).

q1 q3u uq2

time

Figure 2: Example Execution: Arrival of Queries and Updates
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Figure 3: Example Execution with Lock or Invalidation Based
Concurrency Control
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Figure 4: Example Execution with Multiversion Concurrency
Control

Under various QoD requirements, we should have a flexible scheme
to allow transactions to use a stale (but still acceptable) data item.
As a result, we keep a multiversion [4] table for each data item. The
table entry consists of the time stamp, read locks, and value. The
benefits are two fold: (1)queries and updates can proceed without
conflicts and queries are allowed to read the stale data to minimize

3Priority inversion happens when higher priority transactions wait
on lower priority transactions because of resource contention.



UH (Update High) Section 3 GP (Global Priority) Section 3 QUTS Section 4
Query Priorities PRD (Profit over Relative Deadline) HP (High Profit) PRD

Update Priorities FIFO (First In First Out) HDP (High QoD Profit) HDP
Queries vs. Updates Updates always proceed queries Naturally comparable Profit guided ρ

Concurrency Control 2PL-HP (2 Phase Lock - High Priority) 2PL-HP Multiversion

Table 2: Algorithms
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Figure 5: Data characteristics: (a) query distribution is more stable ; (b) while the update has a downward trend over time; (c) the
number of updates and queries are roughly positively correlated.

the waste of time on restarts for the sake of its QoS profit. As
shown in Figure 4, now q2 can finish without being preempted by
q3. (2)multiversion also facilitates the computation of QoD (which
depends on the number of unapplied updates of the data) by com-
paring the time stamp queries are holding and the time stamp of
newest intended update. Otherwise, the computation may be diffi-
cult when unfinished queries are holding data with different stale-
ness. Nonetheless, multiversion also comes at a cost of maintaining
the table. We do the garbage collection on unused versions to keep
the table small. The sensitivity test in Section 6.3 shows that with
careful choice of atom time τ , the overhead can be negligible.

5. EXPERIMENTAL SETUP
We have managed to acquire access traces from a popular stock
market information web site which we will refer to as Stock.com4,
which we combined with update traces from the NYSE. These
traces enabled us to accurately generate both query and update
workloads for our experiments, without having to resort to gen-
erating synthetic data.

Our goal is to evaluate how well the proposed methods perform
under the entire spectrum of quality contracts, and also gauge the
adaptability and sensitivity of our proposed algorithm.

5.1 Query Traces
We used real trading queries from Stock.com for the date of April
24, 2000. Query types include but not limited to: (1) look-up, (2)
computing moving average of stock prices, (3) comparison among
stocks. They are all read-only. Each query has an arrival time and
query stock name. Query execution time ranges from 5 to 28 mil-
liseconds. Our source, Stock.com, is an online trading platform

4We cannot disclose the identity of the site because of a confiden-
tiality agreement.

which provides various types of real-time queries and data analy-
sis tools on stock information. The server works 24 hours a day
accepting queries from users. However, most activity is occurring
during normal trading hours (9:30am - 4:00pm). Thus, we con-
centrate on queries during those hours for our experiments, when
the server is challenged by the floods of stock updates as well as the
queries from jittery investors. The results presented in the paper are
based on a 30-minute (9:30am-10:00am) interval with over 82,000
queries on more than 4,000 different stocks.

5.2 Update Traces
To match the queries, we extracted the actual trades on all securities
listed in NYSE during 9:30am-10:00am on April 24, 20005. The
update trace includes the stock ticker symbol, record date, trade
time, and trade price per share. Update execution time ranges from
1 to 5 milliseconds. In particular, there are over 496,000 updates
on different stocks which share the same indexing scheme with
query traces, the stock ticker symbol. Figure 5(a) and (b) show the
query and update distributions over time, respectively. Figure 5(c)
presents the number of updates and queries over all the stocks (each
point corresponds to a stock). Notice that many of the updates oc-
cur on stocks with very few queries. We can definitely see that these
updates could be reduced (i.e., applied less frequently) to save pro-
cessing time without diminishing the QoD.

5.3 Experiment Setup: Quality Contracts
As part of the experimental setup, we attach a quality contract to
every real query before it is submitted to our system.

Although QUTS works for generic profit functions, simple func-
tions like step and linear decreasing functions. in these experiments

5The original trace was acquired from Wharton Research Data Ser-
vices of the University of Pennsylvania.



Varying ps pd rd uu

{1 : $10 ∼ $19,
ps . . . , 5 : $50 ∼ $59 50ms 0

10 : $100 ∼ $109}
{1 : $10 ∼ $19,

pd 5 : $50 ∼ $59 . . . , 50ms 0
10 : $100 ∼ $109}

rd 5 : $50 ∼ $59 5 : $50 ∼ $59 {20, 30, . . . , 100, and 200} 0
uu 5 : $50 ∼ $59 5 : $50 ∼ $59 50ms {0, 1, 2, 3, 4}

Table 3: Quality Contracts Used in Performance Comparison. Notice that 5 : $50 ∼ $59 represents that ps or pd is uniformly
distributed within $50 to $59 and it is labelled by 1 in the plots.
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Figure 6: QUTS performs best for all settings. UH performs worst because too many unnecessary updates execute and starve most
of the queries; GP avoids those unnecessary updates, however, due to the global prioritization, starvation on queries or updates can
easily occur, which jeopardizes the performance. QUTS works best because the time share scheme successfully avoids the starvation
problem of GP.

we only use a ”step” profit function for both QoS and QoD. Thus,
a quality contract can be defined by four parameters, ps (the QoS
profit if the query is return before deadline), rd (relative deadline
which is the difference between deadline and query arrival time),
pd (the QoD profit if the query is return with data meet the fresh-
ness requirement), and uu (number of unapplied updates which
measures the maximal staleness allowed). The values of these pa-
rameters for the quality contracts will be discussed in the presenta-
tion of the experiments.

5.4 System Parameter Setup: ω and ρ
System parameters consist of (1) the atom time τ (i.e., the minimal
time quantum before QUTS switches the priority between the query
queue and update queue), and (2) the adaptation period (i.e., the
minimal time before a rescheduling occurs). The default values of
τ and ω are 10 and 1000 milliseconds respectively. As we will
show in Section 6.3, the exact values of these two parameters do
not influence the performance much of our algorithm.

5.5 Performance Metric
Intuitively, we want to maximize the system profit. However, the
total actual profit6 very much depends on the profit value attached
to each QC. To bypass this dependency, we normalize the profit and
instead use another metric called the total profit percentage (TPP),

6When showing the experiment result, we use $ if we really need to
give the actual profit. ms is short for millisecond and s for second.

query execution time 5 ∼ 28ms
update execution time 1 ∼ 5ms

number of queries 82129
number of updates 496892

number of stocks 4608

default atom time 10ms
default sampling time 1000ms

Table 4: Workload Information and Parameter Setup

which is the actual gained profit by the maximal possible profit, as
shown in Equation 5. In the next section, we will illustrate the TPP
as function of different parameters to understand the performance
of the proposed methods.

TPP =

P
i∈Nq

PiP
i∈Nq

max(Pi)
(5)

where Nq is the number of queries.

6. EXPERIMENTS
In this section, we show that QUTS performs consistently better
than existing methods under the entire spectrum of quality con-
tracts. In Section 6.2, we study the adaptability if QUTS, and show
that the proposed algorithm reacts quickly to changing workloads.
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Figure 7: QUTS performs best across all the spectrum of different relative deadline and maximum staleness settings.

Finally, we study the sensitivity of QUTS to its two parameters
(adaptation period and atom time) in Section 6.3.

6.1 Performance Comparison
We want to compare the three different algorithms UH, GP and
QUTS (Table 2) under various quality contracts. Since there are
four parameters in a quality contract, we vary one and fix the others
to median values to see how the TPP changes.

6.1.1 Varying QoS (ps) and QoD (pd)
Experiment Design: In order to change the ps and pd, we generate
quality contracts from ten possible profit ranges: 1 : $10 ∼ $19,
2 : $20 ∼ $29, . . . , 10 : $100 ∼ $109. Specifically, 1 :
$10 ∼ $19 means the QoS or the QoD profit of quality contracts
is uniformly distributed within $10 to $19 and we use 1 to label it
in the plots. Similar notation applies on the other ranges. In this
set of experiments, we fix QoS (or QoD) to the median, which is
5 : $50 ∼ $59, and varying another. rd is fixed to 50ms. And uu
is fixed to 0, which means no stale data is allowed. This QC setup
is also summarized in the first two entries of Table 3.

Result: Figure 6(a) shows the TPP as a function of ps. QUTS per-
forms the best among the three which almost reaches the maximum
TPP. Note that the performance gap is bigger for smaller pd (when
the QoS constraint is more important than the QoD constraint),
which is usually of more interests in real applications. Likewise,
Figure 6(b) plots TPP vs. pd. Again, QUTS outperforms all others.

6.1.2 Varying Relative Deadline (rd) and Un-applied

Updates(uu)
Experiment Design: We evaluate the performance of the three al-
gorithms with rd and uu, while the other two parameters in the
quality contracts were constant. Please refer to the last two entries
in Table 3 for the setup details.

Results: Figure 7(a) shows the TPP as a function of relative dead-
line. QUTS performs consistently better than the other two. In
general, the smaller the relative deadline, the harder the query de-
mands will be. Even for ”difficult” queries with small deadline,
QUTS achieves over 80% TPP and 2X better than the others.

We also vary the number of maximum allowed un-applied updates
(see Figure 7(b)). GP and UH are not affected by that (since they

are biased towards updates), while QUTS actually performs slightly
better with uu increasing (i.e., the QoD constraint is relaxed). How-
ever this is hard to see from the plots since QUTS is too close to
the optimal: with uu of 1, TPP is 96.1% and with uu of 4, TPP
is 97.6%. 100% means maximum ”profit” was received from all
queries.
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Figure 8: The performance comparison over various quality
contracts. QUTS performs much better than the competitors
and is very close to the maximal possible profit.

6.1.3 Mixed QCs
Experiment Design: Next, we use a hybrid setting where the QoS
and QoD functions traverse all ten ranges listed in Table 3 (10×10
choices). This means the total maximal QoS profit and QoD profit
submitted to the system is equal despite the randomness. Of course,
this is a completely unrealistic scenario, and is meant to simply
assess the entire spectrum of choices. In reality, we expect QoD
to contribute a much smaller part of the overall quality, with QoS
getting the lion’s share. In this set of experiments, rd and uu remain
constant at 50ms and 0 respectively.

Results: Figure 8 illustrates the overall performance of the three
methods followed by the maximal possible profit percentage. The
profit is divided into two parts: QoS profit and QoD profit. Notice
in the maximal possible profit percentage, QoS and QoD occupy
half and half as expected. We can see that although UH and GP per-
form very well on the QoD profit component, they both lose a sig-
nificant amount of QoS profit (i.e., they have ”unrealized” profit),
whereas QUTS performs very close to the optimal.
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Figure 10: ρ: quickly adapts to the QC changes.

6.2 Adaptability to User Preferences
Having shown that QUTS is much better and robust than UH and
GP in the general cases and even when the QoD profit dominates,
we now gives some insight into why QUTS can achieve that. In
particular, here we illustrate that QUTS can quickly adapt to the
changing workloads.

Experiment design: Using real query and update traces, we vary
the QoS and QoD in the quality contracts over time. More specifi-
cally, we divide the experiment period into 4 intervals evenly. With
rd and uu fixed at 50ms and 0, we vary the QoS and QoD ratios as
1:5 or 5:1 (i.e., QoD is 5 times more important than QoS (1:5), or
vice versa). Note that we intentionally create the sudden changes
on user preferences during small time intervals (75 seconds) in or-
der to test the performance of QUTS in a challenging scenario. The
goal is to show (1) how quickly the ρ adapts to the changes, and (2)
how good the system profit is over time.

Results: Figure 9(a)-(c) plot the actual and maximal profit of sub-
mitted queries over time. As expected, the maximal line in (b)
shows the QoS profit trend along time: low-high-low-high, and the
maximal line in (c) shows the QoD profit trend along time: high-
low-high-low. The maximal line in (a) shows the total maximal
profit which is the sum of the profits from (b) and (c). The solid
line in all three figures are actual profit ”made” by QUTS, which
is closely following the maximal line (sometimes higher due to the
late completion of former submitted queries.) Note that the figure

is plotted after applying a low-pass filter with the moving-window
size of 6s, to smoothen the data. The actual incoming queries with
different quality contracts are much more bursty. Despite of the
burliness, QUTS performs very close to the optimal one.

Figure 10 shows the ρ vs. time. ρ is the current probability of
queries having higher priority than updates. According to the solu-
tion to optimize the total actual profit given by Equation 2, ρ should
be a number between 0.5 and 1. It should increase with the total
maximal QoS profit increasing, and decrease with the total maxi-
mal QoD profit increasing. In Figure 10, it is very easy to observe
four regions where the ρ follows the QoS profit trend: low-high-
low-high, and it ranges from around 0.6 to around 1. When ρ equals
1, it does not mean the system will not execute updates at all, it is
because with QoS profit extremely higher than QoD profit (5 times
higher in this case), the system chooses to run updates only when
no queries are waiting. This automatic adaptation behavior agrees
with the actual scenarios.

6.3 Sensitivity Test
Experiment Design: In this section, we evaluate the impact of two
system parameters, atom time and adaptation period of QUTS. We
use the same trace which was used for the QUTS adaptability test.

The default settings for atom time was 10ms, and for the adapta-
tion period was 1,000ms. In this section, we give the result of the
sensitivity test on these parameters and provide guidelines of how
to set them.

ω 100ms 1,000ms 10,000ms 100,000ms
TPP .81 .92 .89 .88

Table 5: adaptation period

6.3.1 Sensitivity of adaptation period ω
The adaptation period determines how often the top-level reschedul-
ing of QUTS occurs. Intuitively, if the adaptation period is too
small, there will not be enough queries and updates for QUTS to
make statistically sound decisions, which may lower the perfor-
mance (see Table 5 at adaptation period = 100 ms). Likewise, if
too large, the rescheduling will happen too infrequent to adapt to
the current workload (see Table 5 at adaptation period = 100 s).



Nevertheless, the performance varies very small for a wide range
of adaptation periods.

6.3.2 Sensitivity of Atom Time τ
Atom time is the minimal time unit before the system can switch
between the query queue and the update queue. The experiments
in this subsection aim to answer the following two questions: (1)
How does the atom time change affect the profit earning of the
system; and (2) How does the atom time change affect the overhead
associated with multiversion concurrency control?

Question (1) is answered in Figure 11. We vary the atom time from
1 to 1000 ms. The TPP begins to decrease very slowly as we in-
crease the atom time (see Figure 11). We see that the smaller the
atom time, the more flexible the scheduling is. However, extremely
small atom times may incur a lot of overhead for multiversion con-
currency control. The reason is due to many unfinished queries
holding extra versions of data while updates are processed. As we
answer Question (2) in Figure 12, we can see, fortunately, that the
overhead drops quickly as the atom time increases. With more than
4000 data items, keeping around 100 total extra versions (when τ
is 10ms to 50ms) is a negligible overhead. Thus, the rule of thumb
is that atom time should be set at least larger than the average query
execution time (12ms in the experiment). However, the exact value
of atom time does not affect the performance much.
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multi-version concurrency control.

7. CONCLUSIONS
In this paper we addressed the problem of scheduling queries and
updates in a data-intensive web site. We introduced the concept
of Quality Contracts, which is a powerful unifying framework for
specifying user preferences over multiple quality metrics. In the
presence of QCs, we have proposed a two-level scheduling algo-
rithm, QUTS, that allocates CPU resources in order to maximize
the overall system profit (and as such, the overall user-satisfaction).
We compared QUTS with a global priority policy and the update-
high policy, using real traces collected from a popular stock market
information web site. Our extensive experimental study has shown
that QUTS outperforms all competitor algorithms under the entire
spectrum of Quality Contracts, it has very little sensitivity to its
parameters and adapts very well under changing workloads.

8. FUTURE WORK
In the future, we can extend our work from three aspects. First, on
concurrency control. We use the existing multiversion concurrency
control to combine with our CPU scheduling. Further exploration
on a new concurrency control could be the next step. Second, on
QoD metrics. We adopt the lag-based metric. Whereas divergence-
based and time-based are also widely used QoD metrics and de-
serve to look into. Third, on combining QoS/QoD functions in
quality contracts. We use the fully-independent to combine the two
functions for the sake of maximal flexibility. In the future, we may
investigate more varieties of combinations.
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