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ABSTRACT

Sensors provide unprecedented access to a wealth of information
from the physical environment in real-time. However, they suf-
fer from a variety of resource limitations, most importantly power
consumption and communication bandwidth. Additionally, envi-
ronmental conditions can contribute to sensor failures, disrupting
the flow of query results. In this paper, we propose new techniques
to deal with sensor failures based on the principles of partition and
single path redundancy. Our experimental results confirm the effi-
ciency of our techniques with respect to different performance met-
rics in general, and, in particular, high quality of data.

Keywords: fault tolerance; sensor networks; multiple routing
trees.

1. INTRODUCTION

In today’s pervasive environments, networked sensors provide
unprecedented access to a wealth of information from the physi-
cal environment in real-time. The application space is very wide,
ranging from habitat to critical device monitoring. The challenge
of meeting the expectations for sensor network applications is com-
pounded by the fact that sensors suffer from various crippling lim-
itations, like power consumption and limited CPU and memory.
Another limitation is the communication bandwidth, which implies
the usage of infrequent and short messages. Lastly, a direct con-
sequence of being exposed to the elements of nature are node and
communication failures. The challenge becomes how to operate the
sensors under these conditions with minimal impact on their use-
fulness, that is quality of data (QoD) and quality of service (QoS).

We assume that sensors are distributed across the area of interest
and before transmitting any results towards the base station (BS),
they self-organize into a hierarchical structure, called routing tree,
in accordance to some query plan. The underlying idea of our fault
tolerant (FT) scheme and proposed FT routing algorithms, called
FDR-SN, is to partition the sensor network into multiple routing
trees (MRT), which will ensure the desired properties of the sen-
sor network (scalability, load balancing, reliability, response time).
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FDR-SN is a single-path redundancy scheme in which data is sent
every round on a different path to increase the chance of the user
obtaining a result, as opposed to multiple path redundancy which
requires the information to be sent on different paths simultane-
ously [4, 12]. FDR-SN takes advantage of the MRT configuration
of nodes to repair local broken communication links by re-routing
query results across partitions whenever necessary. The principles
of (data/query) partition and single-path redundancy [18] are not
necessarily new, but our contribution lies in providing an efficient
means to integrate them to achieve high QoD in the presence of
sensor failures.

In this paper, we focus only on FDR-SN algorithms and specifi-
cally on how to route the data within a single routing tree or among
MRT and how to synchronize the MRT. In [11], we discussed the
issues of partitioning related to our “divide and conquer” approach
to FT, i.e., how many partitions are necessary and what is the opti-
mal placement of the BS for each partition.

The advantages of using our FT scheme include:

e no assumptions on the topology of the network,

e on-demand local and global reconstruction of the MRT (per-
formed when needed, not periodically),

e no additional message overhead compared to basic schemes,
and

e larger query space (no need to worry about duplicate sensi-
tivity of aggregates, as in the case with multiple-path redun-
dancy).

Our experimental results confirm the efficiency of FDR-SN to pro-
vide high QoD under different failure situations.

In the next section we introduce the MRT system model, fol-
lowed by the presentation of FDR-SN in detail. We discuss our
experiments in Section 4 and related work in Section 5.

2. SYSTEM MODEL

We are assume a sensor network consisting of nodes with typical
communication and computation capabilities that process continu-
ous queries (and possibly perform in-network aggregation) with a
specific collection window such as:

SELECT count()

FROM sensors

WHERE Temperature > 10
COLLECTION WINDOW 15

The COLLECTION WINDOW represents the arrival rate of new
results expected by the user. This is what is referred to as EPOCH
DURATION in TAG [9] and as INTERVAL UNIT in Cougar [17].
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Applying the principle of (data/query) partition, our multiple rout-
ing trees (MRT) system architecture configures the sensor network
into multiple disjoint partitions of sensor nodes. Our system as-
sumes an overlay network of base stations (BSs), with one BS for
each partition, that cooperatively process continuous queries. Each
partition is disjoined and within each partition, the query process-
ing is done in a similar fashion as in TAG and Cougar. Each node
sends its most recent reading and processing result during a specific
transmission period or transmission window (called sub-epoch in
TAG and time interval unit in Cougar) which is determined by the
specified query collection window and the node’s level in the rout-
ing tree.

When a query is submitted to the sensor network, it is forwarded
to all BSs. Each BS in our system initiates the construction of a
routing tree. Any routing tree construction algorithm can be used,
from simple schemes such as those used in TAG and Cougar [17]
protocols, to more sophisticated ones as GANC in Tina [14] and
multi-criteria routing protocols [8]. The only possible extension to
these routing protocols is in the selection of a parent from potential
parents belonging to different routing trees (partitions). In such a
case, a node could decide to join a parent which is situated on the
lowest level across MRTs. This will ensure that the MRTs are shal-
lower, which means that the nodes will be allocated larger transmis-
sion periods, hence minimizing the possibility of collisions. Colli-
sions are a source of energy waste as well as of lost readings, since
package collisions impact the quality of data. In any case, by join-
ing a routing tree, a sensor node becomes part of the partition of
the BS at the root of the tree. The cost of constructing an MRT is
the same as for constructing a single larger RT.

The MRT system architecture allows for scalability, for faster
response time (i.e., smaller collection windows) and ensures load
balancing, which decreases the energy consumption per node. Fur-
thermore, besides avoiding a single point of failure, it allows for
faster recovery from failures as we discuss in the next section by
assuming only that the communication links are symmetric, which
means either both communicating sensors or none of them can re-
ceive each other’s messages. Taking in consideration asymmetric
communication links is subject of future research.

3. FAULT DETECTION AND RECOVERY
IN SENSOR NETWORKS (FDR-SN)

The MRT system architecture handles failures dynamically, on
demand in two different ways: using global and local reconstruc-
tion of the MRT. Global reconstruction means that the BSs resyn-
chronize in order to reconstruct the MRT. Local reconstruction, as
we will discuss below, repairs broken links by reconfiguring sub-
trees within a partition or across two neighboring partitions.

3.1 FDR-SN Algorithms

FDR-SN takes advantage of the MRT configuration of nodes by
sending results towards the BSs through one of the sensor’s parents,
cohorts, or neighbors.

DEFINITION 1. Neighbor of a sensor node is any node that lies
in its broadcast range and which belongs to a different routing tree.

DEFINITION 2. Cohort of a sensor node is any node that lies in
its broadcast range and belongs to the same routing tree, but it is
not a child, or parent of the node and also not a sibling, i.e., has a
different parent.

The detailed rules for message handling and forwarding synthe-
size the three algorithms of FDR-SN: Sending/Forwarding Mes-
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sage (Algorithm 1), Reintegrate in the Network (Algorithm 2) and
Process Received Message (Algorithm 3).

FDR-SN functions as follows: every time a sensor has to send
or forward a message towards the BSs, it picks a destination for
the message. First it tries to send data to one of its (possible) par-
ents discovered during the routing tree construction phase, with the
hope that it is still within the node’s broadcast range. All possible
parents of a node belong to the same partition (i.e., have the same
routing tree ID). A node normally has only one active parent, but it
also keeps track of a limited number of possible parents'. During
the next time slot, the node checks if its parent has forwarded any
message or not. If not, the node will consider this parent dead and
it will send its next message to another parent.

Algorithm 1 Sending/Forwarding Message

1: Create message
2: if myNode.number Parents # () then

Select parent as destination for the message
messsage.type = NORMAL_ MESSAGE
Send Message

else

if myNode.numberCohorts # () then
Select cohort as destination for the message
myNode.parentl D = cohortl D

10: messsage.type = COHORT_MESSAGE

R A A

11: Send Message

12:  else

13: if myNode.numberChildren # () then

14: Select child as destination for the message
15: myNode.parentl D = childI D

16: messsage.type = CHANGE_PARENT
17: Send Message

18: else

19: if myNode.number Neighbors # () then
20: Select neighbor as destination for the message
21: myNode.parent] D = neighborI D

22: myNode.numberChildren = 0

23: myNode.level = neighbor.level — 1
24: messsage.type = NEIGHBOR_MESSAGE
25: Send Message

26: else

27: Reintegrate in the network

28: end if

29: end if

30:  endif

31: endif

In the case in which the node has no parents alive that it is aware
of, it will try to send its message in a similar manner through its co-
horts. By having a different parent, a cohort increases the chances
of a node within the same tree to successfully forward the message.
If no cohorts are available either, then it will try to select one of
its children. The last option for choosing a destination is to select
one of its neighbors. Only the nodes located in the vicinity of other
routing trees have neighbors (the system may even have overlap-
ping routing trees, but this is not a requirement).

The nodes dynamically update their parents, neighbors, children
and cohorts lists, based on the messages they hear transmitted in
the network. At any given point, the choice of destination is made
randomly, but it can be based on multiple criteria which are used

!Fractional TAG [9] protocol also keeps track of several parents, but unlike
FDR-SR, it sends to each parent a fraction of its result.



Algorithm 2 Reintegrate in the Network

1: Snoop incoming messages for a period of time

2: if  (possibleParent == @) or

possible Parent.numberChildren > threshold) then
Go to sleep

else
Select parent as destination for message
myNode.parent] D = message.nodel D
myNode.level = message.level + 1
message.type = NEW_PARENT
Send message

: end if

(all
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Algorithm 3 Process Received Message

1: Receive message

2: if message.type == CHANGE_PARENT then

3 Remove message.n from myNode.parents

4 if message.parent] D == myNode.nodel D then

5: Add message.nodelD to myNode.children

6: endif

7: else

8: if message.type == COHORT_MESSAGE then
9: if message.cohort] D == myN ode.nodel D then
10: Remove message.nodelD from myNode.cohorts
11: Add message.nodelD to myNode.children

12: end if

13:  endif

14: else

15:  if message.type == NEIGHBOR_MESSAGE then

16: if message.neighborI D == myN ode.nodel D then
17: Remove message.nodelD from myNode.neighbors
18: Add message.nodelD to myNode.children

19: end if

20:  endif

21: else

22:  if message.type == NEW _PARENT then

23: Add message.nodelD to myNode.children

24:  endif

25: end if

26: Update myNode.parents, myNode.children, myNode.cohorts,

myNode.neighbors lists

27: Apply Sending/Forwarding message algorithm

in a general routing construction [14, 8]. Having a randomly se-
lected, variable destination for the messages, FDR-SN ensures a
higher probability to meet the randomness of the failures in a sen-
sor network, while achieving better load balancing under normal
conditions.

3.2 Implementation of FDR-SN

In this section, we discuss the key issues for implementing FDR-
SN.

3.2.1 Message Overhead

Under all protocols, in each message, nodes always transmit their
node ID and their readings. Our scheme needs to transmit the fol-
lowing information in each message: node ID, parent ID, level ID
and tree ID. The sender’s parent ID is needed to make the distinc-
tion among children, parents and cohorts for a node, all of them
having the same tree ID. Compared to Cougar or TAG, our routing
protocol transmits two additional pieces of information:
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(1) the tree ID and (2) one of the two variables, either parent ID or
level ID.

In order to make message transmission more efficient, we pro-
pose to compact different pieces of information into a single mes-
sage of normal size, instead of sending several messages. For ex-
ample, the standard length of a message for the Mica motes is 36
bytes [16], from which 14 bytes represent the header (it can slightly
vary with the TinyOS version and platform used). We can utilize
the remaining 22 bytes as follows: the node ID and parent ID can
be encapsulated in the message header. The tree ID, level ID can
fit in one-two bytes, for a reasonable size network.

3.2.2  Routing loops

A key concern with the dynamic selection of destinations in the
presence of failures is the construction of routing loops as in Fig. 1.
In this example, node 1 transmits its message to node 2, node 2
chooses to forward it to node 3, one of its parents. Assuming node
3’s parents are experiencing failures, node 3 has only two choices
to forward the message, either to node 2 or to node 4. Because it
does not want to send back messages to their originator, the only
valid choice is node 4. In the same manner, node 4 forwards the
message to its original source, node 1. Node 1 is now forced to find
other path to send its message or to drop it. Even if node 4 would
have selected node 2, its cohort, as the destination for its message,
a routing cycle would have appeared anyway.

Figure 1: Forwarding Messages - Loops

One approach to prevent routing loops is by using a data cache
in each node, which records the recently seen data items [7]. In-
stead of keeping an expensive data cache, we decided to modify
the routing of the messages in order to avoid the routing cycles, so
we do not need to keep an expensive data cache. In our case, the
problem may appear whenever a node in the sensor network can-
not forward the data to its parents and a local repair of the routing
tree must take place if possible. We solve this potential problem by
having a strict order in which a node tries to send its reading and
special messages that inform a node that its parent has just became
its child and it needs to find a new parent. These steps are shown
in Algorithms 1-3. In short, a sensor will try to send its result to
one of its possible parents. If none of its potential parents is alive,
it will try recursively to select as destination for its message one of
its cohorts, children or neighbors, in this order.

3.2.3  Synchronization of MRT

The two traditional synchronization protocols between parents
and children in a routing tree are TAG [9] and Cougar [17]. TAG
uses the notion of epoch (which corresponds to our collection win-
dow defined above), which represents the arrival rate of new results
expected by the user. Nodes at a given level (depth) of the rout-
ing tree transmit their messages during a pre-defined period called
sub-epoch.

Cougar delays the sending of a node’s reading until it receives
the values from its children nodes or its wait time interval expires.



The amount of time waited by a parent node is directly related to
node’s level in the network, with nodes close to the roots waiting
a longer period of time than leaf nodes. The overall time between
which readings are produced and propagation begins is defined by
the collection window (as specified by the requested query).

While these synchronization schemes work well for individual
routing trees, they cannot be used to synchronize MRT because
the transmission periods in both schemes are directly related to the
depth of the trees. If the routing trees have different depths, then
it is not possible to communicate between trees easily. The pur-
pose of synchronizing the MRT is not only to allow communication
among them without inducing extra collisions, but also to present to
the user data from the same collection window. Ensuring data con-
sistency in sensor networks is as important as the very existence of
the responses.

We have identified two ways to achieve the desired synchro-
nization among nodes from MRT. First one is to choose a com-
mon collection window. The second way is to find a relation-
ship between the transmission windows (i.e., TAG’s sub-epoches or
Cougar’s time subintervals) available for nodes in different routing
trees and use it when necessary. We will call these two approaches
collection window synchronization and hiccup method for special
cases. The*hiccup” method is less restrictive than the synchroniza-
tion one, it allows the MRT to run with different response windows,
as long as all the trees transmit their results within the same collec-
tion window.

We have also identified several different methods to implement

the “collection window synchronization” approach. The most promis-

ing solution is:

Common_response_window = Min(response_window_i).
In this case, all the trees act as if they have the same number of lev-
els. Consequently, some trees might be inactive some short periods
of time, because they do not have as many levels as others, but the
overall expected response time will be the same as for the single
tree.

The “hiccup” method can also be implemented in a number of
different ways, all of which are based on the observation that all
the trees loosely synchronize at the beginning of every collection
window (more details in [1]). We assume that the leaf nodes of
each routing tree are in the communication range of some of the
leaf nodes from other routing trees (we have previously defined
these nodes as neighbor nodes).

The proposed solutions are:

1. Every leaf node stores the response window values for its
tree and its neighboring trees in the MRT construction phase.
Based on that, it knows when to try to transmit its message to
the neighboring nodes. Because the nodes store information
only about the neighboring trees, not about all the routing
trees in the network, the overhead required to store the addi-
tional information is insignificant.

2. Every leaf node that wants to transmit to a neighboring node
listens until it hears it transmitting its message. This implies
that the first node is able to transmit its message to the second
node. The maximum wait time before transmitting a message
is twice the value of the biggest response window of the two
nodes.

3.2.4 Applying FDR-SN to TAG and Cougar
FDR-SN can be can be seamlessly integrated with Cougar and

applied on top of TAG. Every node keeps only a short list of par-

ents, children, cohorts and neighbors for routing purposes>. This

2Not all of the parents, children, cohorts and neighbors are kept in the lists,
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list represents the next possible hop list.

FDR-SN-Cougar has all the information needed when the rout-
ing trees are constructed: children send special messages to the
chosen active parent node to confirm their selection as parents. For
the rest of the parents, children are on one level lower than the
parents, in the same routing tree. Neighbors are easy to detect be-
cause they have a different tree ID number. The distinction between
cohorts and possible parents can be made based on the level ID in-
cluded in the message. The potential parent is situated on a lower
level than the cohort. Because we also send the parent ID with the
message, it is easy to detect the nodes which belong to the same
tree, but have the same active parent , i.e., are not cohorts.

In Cougar, there is no expicit transmitting and listensing only
phases, so it is not hard for the node to snoop and detect if the
destination node of its most recent transmission has forwarded any
message or not. If this destination is not active any more, it removes
it from its next possible hop list and in the future it will choose
another node as the destination for its message.

FDR-SN-Tag is mostly the same, except that children do not
send confirmation messages to their parents. However, when they
broadcast their parent advertisement, they include their parent ID,
so that the actual parent can recognize its ID and add them to its
children list. The problem here is how a node detects that its mes-
sages were not forwarded on a specific path, because the destina-
tion node has failed. In FDR-SN-Tag children sample the medium
often enough so they can detect if the parent has transmitted a mes-
sage or not. Another solution is to extend the notion of snooping
in TAG in a way similar to FDR-SN-Cougar (mentioned above). In
TAG, snooping is used by node to monitor its siblings to decide if
it makes sense to transmit its value after a collision.

In implementing FDR-SN-Tag and FDR-SN-Cougar, we encoun-
tered the interesting issue of how long will the sensors wait for in-
coming messages when the routing tree is unbalanced or skewed.
Neither Tag nor Cougar handle unbalanced trees very well. In
FDR-SN-Cougar or FDR-SN-Tag, this problem is even more chal-
lenging because the nodes can receive a message from a potential
child that it is not currently in their children list or even from their
parent, cohorts or neighbors. Our solution is that each node has an
estimate (count) of not only their immediate neighboring nodes, but
also of the size of their sub-trees. This information can be transmit-
ted along with the message.

Another interesting situation is when one sensor alone gets moved.
In such case, it can be quickly reintegrated into the network. The
node that needs to be reintegrated should snoop the packages sent
in the network for a period of time, select a destination and send
a message to it with its reading and NEW_PARENT header. The
node can set its own level and tree ID based on the message it in-
tercepted before, selecting the transmitting node as parent node.
When receiving a NEW_PARENT message, a node should add this
node to its children list and treat it accordingly. We do not intro-
duce any further acknowledgments between the new parent node
and its child in order to keep the number of messages sent in the
network as low as possible.

4. EXPERIMENTAL EVALUATION

In our experiments, we adopted Cougar as the underlying syn-
chronization scheme for data aggregation throughout the network.
Notice, however, that our proposed routing scheme actually works
independently of Cougar and will thus work with any synchroniza-
tion scheme built on the parent/child concept. For the synchroniza-
tion of the MRT, we used the epoch synchronization method (de-

just a fixed number of each type.



fined in Sec 3.2.3). We evaluated four protocols: Cougar (original
protocol), Fractional Cougar, a variant of Cougar where nodes
send partial data to each parent, Fractional Cougar with Recon-
struction, a variant of the previous protocol that performs routing
trees reconstruction periodically (every 10 epochs), and FDR-SN-
Cougar, our proposed scheme (or FDR-SN for short).

Network We created a simulation environment using CSIM [13].
We experimented with grid topologies of different sizes (from 25%25
to 45*45). Due to space limitations, we are going to show only the
results for the 45%45 network, the rest of the simulations on differ-
ent size networks were similar. For collision avoidance, we used a
contention-based MAC protocol (PAMAS)[15]. In this protocol, a
sender node will perform a carrier sensing before initiating a trans-
mission. If a node fails to get the medium, it goes to sleep and
wakes up when the channel is free.

Topology In [11] we showed the numerous benefits obtained by
using MRTs. Adding our routing scheme to the system architecture
improves the fault tolerance of the system and extends over exist-
ing benefits. However, our fault tolerant routing is not dependent
on the MRT topology; it functions equally well on a single rout-
ing tree system architecture. Our experiments in [11] concluded
that four root nodes placed in the middle of the borders of the grid
configuration give us the best case scenario for our given topology.

Metrics In this paper, we use the quality of the reported data as
our performance metric. The relative error metric (REM) is a mea-
sure of how close the reported answer is to the exact answer, based
only on the nodes that are still alive. We use REM as indication of
the quality of data (QoD), where a high REM reflects a low QoD,
while a low REM corresponds to a high QoD. Hence, we will be
using both terms interchangeably.

We did not use energy as a performance metric in these exper-
iments because FDR-SN has comparable energy consumption as
Cougar. FDR-SN does not add any extra message transmissions,
nor increases message size. The only penalty in energy FDR-SN
has is due to the need to stay awake for snooping, i.e., incurring
only listening cost, rather than transmitting cost. All intermediate
nodes need to stay awake only an extra time slot. The leaf nodes
also stay awake to hear any possible message from their neighbors.
They will stay awake for as many time slots as the max difference
in level between them and their neighbors.

Failures We have considered different distributions of the failed
nodes. We studied different possible fail-stop sensor node failures,
because node failures implicitly cover the case of communication
failures and are more difficult to deal with. We varied the number
of nodes that fail as a percentage over the total number of nodes
(from 1% to 10%). In order to provide a complete analysis of the
types of failures sensors suffer from and their effects upon the sen-
sor network, we varied the distribution of failed nodes in two other
ways: space and time. The distribution of node failures in space
is achieved considering two possible cases: all failed nodes are in
the same geographical area (area case) or the failed nodes are scat-
tered through the network (point case). For the distribution of node
failures in time we have also examined two cases: all nodes fail-
ing concurrently (simultaneous case) versus nodes failing over a
period of time (incremental case). We performed experiments with
all possible combinations of these parameters for all four protocols
(Normal Cougar, Fractional Cougar, Fractional Cougar with Re-
construction and FDR-SN protocols). The experiments confirmed
our intuition that the type of node failures influences significantly
the performance of the sensor network.
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Table 1 summarizes the system parameters used in our experi-
ments whose results are reported next.

\ Parameter | Value [ Default |
Grid Size 25%25 to 45%45 45%45
Number BSs Ttod 1
Type of Area, Point,
Node Failure Simultaneous,
Incremental
Percent of Node Failed 1%, 5% and 10%
Query Type SUM, MAX, AVG SUM

00to 1.0 0.5
10% of domain
280 - 1700 mSec
100 Epochs
10 Epochs

Randomness Degree
Random Step Size Limit
Epoch Durations
Number of Epochs
Reconstruction Period

1500 mSec

Table 1: System Parameters

4.1 Experiments: Area vs. Point Failures

We conducted our experiments for two different network layouts:
grid network with one BS placed in the center of the grid (Fig. 2
and Fig. 3) and four BSs placed in the middle of the borders of the
grid (Fig. 4, 5, 6, and 7, 8 and 9). For each column in the graphs,
we executed five experiments and report the average value of REM.

If we compare the errors reported in Fig. 2 and Fig. 3 (single
BS), with the corresponding results in Fig. 4 and Fig. 7 (four BSs),
we can easily see that having an MRT architecture (bottom plots)
helps Fractional Cougar protocol in any circumstance and Cougar
protocol in most of the cases, especially for larger fractions of failed
nodes. Fractional Cougar with Reconstruction protocol displays a
spiky behavior, with peak values reaching the 100% error limit ev-
ery time the routing trees are reconstructed and almost constant av-
erage REM. During the two cycles spent with the MRT reconstruc-
tion, the user cannot obtain any useful information from the system,
therefore the error is maximum and it ends up out-weighting most
of the benefits obtained by the reconstruction in the first place. As
we had expected, FDR-SN out-performs all other routing proto-
cols no matter what is the underlying network topology. In fact,
the REM for FDR-SN is hardly noticeable on the plots (rightmost
columns).

From the graphs presented in this paper and the additional ex-
periments performed, we can also conclude that the system reacts
much better to the area distribution for a given percentage of failed
nodes (Fig. 3, Fig. 6 and Fig. 7) than to the point distribution of
the same number of failed nodes (Fig. 2, Fig. 4 and Fig. 5). The
explanation of this phenomena resides in the fact that for area fail-
ures, the failures are contained and have minimum effect over the
other sensors in the network, whereas for point failures, the fail-
ures are scattered all over the network and more functional sensors
find themselves unable to transmit their values towards the BS(s).
If the number of failed nodes increases, then the differences dis-
appear, because the percentage of failed nodes is so big, that the
distribution of nodes cannot make a difference any more.

Another interesting question that we tried to answer is how does
Cougar perform compared to Fractional Cougar. For simultaneous
failures, Fractional Cougar performs better than Cougar. If failures
are also point failures, than the difference between the REM is sig-
nificant, whereas for the area failures, the difference in the reported
REM is not that significant any more. Since Fractional Cougar (or
TAG) was proposed as a solution to deal with failures in the net-
work, this result is exactly what we had expected. However, the
performance results are reversed in the case of incremental fail-
ures, when Cougar performs better than Fractional Cougar. This
result should not be surprising either, because by sending the result
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Figure 2: Simultaneous Point Failures under 1 Base Station
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Figure 4: Simultaneous Point Failures under 4 Base Stations
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Figure 6: Simultaneous Area Failures under 4 Base Stations
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Figure 3: Incremental Area Failures under 1 Base Station
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Figure 5: Incremental Point Failures under 4 Base Stations
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Figure 7: Incremental Area Failures under 4 Base Stations
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Figure 8: Network Adaptation under Simultaneous Point
Failures (4 Base Stations, 10% failed nodes)

on multiple paths, more nodes may loose a fraction of their trans-
mitted result, even though they still have a functional path to the
BS. Therefore, Fractional Cougar is not the best way to deal with
sensor failures in general.

4.2 Experiments: Adaptation over Time

Fig. 8 and Fig. 9 present the adaptation in time to the environ-
ment of all protocols. The graphs show the case of 10% of the
nodes failures, distributed randomly in the network. For simulta-
neous failures, there is a big REM reported immediately after the
simultaneous failure of the nodes, because nodes are not expecting
the destination of their message to be dead. FDR-SN adapts over
time, and learns by snooping that the destinations are not func-
tional any more, so that the nodes pick another destination next
time. The time needed by the network to stabilize is very short.
For load-balancing purposes, the algorithm does not pick the same
destination all the time, so mistakes may still appear and we see a
slight variation of the reported REM. For the incremental failures
case, the REM increases until we finish introducing failures in the
network and the network can stabilize. Nevertheless, the error does
not increase linearly, because nodes have a chance to learn which
nodes are faulty on the fly. If we look at the other protocols, Cougar
or Fractional Cougar protocols do not adapt in time.

5. RELATED WORK

Fault tolerance in sensor networks has been investigated with dif-
ferent approaches which can broadly be classified into single-path
redundancy (SPR) and multiple-path redundancy (MPR). Besides
Cougar with local repairs[ 18], another early SPR scheme is [5]. In
this scheme, the exact locations where the sensors should be placed
are computed in order to have maximum impact and a minimum
number of sensors required, while supporting gracefully a number
of K node failures.

A representative MPR scheme is “fractional parents” [9] which
works by dividing the aggregate into fractions and sending each
one to a different parent. Among the most successful MPR schemes
are Sketches [4] and Synopsis [12], which use duplicate-insensitive
multi-path forwarding. The main disadvantage of these approaches
is that the communication cost and computation time requirements
implied are very high for most of the aggregate functions. Even
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Figure 9: Network Adaptation under Incremental Area
Failures (4 Base Stations, 10% failed nodes)

though both Sketches and Synopsis have a very low error rate, the
results presented to the user always include an error, even when the
network does not suffer from failures.

Tributaries and Deltas [10] have been proposed as an improve-
ment over Synopsis, which are potentially very expensive and al-
ways return approximate answers, even in the absence of failures.
Tributaries and Deltas use a hybrid of single-path and multi-path
approaches, having the goal of combining the best of the two worlds.
Whenever the number of participating nodes exceeds a threshold,
the BS informs the rest of the network to expand or shrink the delta
region. This scheme still suffers from some drawbacks: the BS is a
single point of failure, the expansion and shrinkage of the delta re-
gion (similar with routing tree reconstruction) happens in a central-
ized fashion and during this period the user is unable to get results
from the network. The initial performance of the scheme is highly
dependent on the percentage of single-path to multi-path nodes in
the network. Furthermore, if some failures happen at the leaves
level in the routing tree, all the tree must become multi-path to deal
with these failures. Even though the authors have proposed two
variants of the scheme to cope with these problems, these either
have limited applicability or require keeping track of huge amounts
of information.

In order to put our contribution into perspective, we classified
the related fault tolerant schemes across nine dimensions, capturing
both functional and perfomance characteristics[1]. Due to space
limitations, we did not include this taxonomy in this paper.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new technique, FDR-SN, to han-
dle sensor failures efficiently without much overhead or loss in
quality of data. Our proposed scheme is based on the principles
of data/query partitioning and single-path redundancy. We have
shown how our scheme can be integrated with TAG and with Cougar.
As a case study, we have experimentally shown that FDR-SN will
outperform current extensions to Cougar for dealing with fault tol-
erance using single-path redundancy.

We envision FDR-SN working complementary to existing multi-
path schemes, because the application space for which each scheme
performs better is different, and intend to further study this as part
of our future work.



The only underlying assumption of FDR-SN is that the com-
munication links are symmetric. We are currently working on a
scheme that handles asymmetric communication links where a sen-
sor node can receive messages from another node, but the second
node cannot receive from the first one.
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