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Abstract Unstructured P2P systems exhibit a great deal of robustness and self-healing at
the cost of reduced scalability. Resource location is performed using a broadcast-
like process called flooding. The work presented in this paper comprises an ef-
fort to reduce the overwhelming volume of traffic generated by flooding, thus in-
creasing the scalability of unstructured P2P systems. Using a simple hash-based
content categorization method the Ultrapeer overlay network is partitioned into
a relatively small number of distinct subnetworks. By employing a novel index
splitting technique each leaf peer is effectively connected to each different sub-
network. The search space of each individual flooding is restricted to a single
partition, and is thus considerably limited. This reduces significantly the vol-
ume of traffic produced by flooding without affecting at all the accuracy of the
search method. Experimental results demonstrate the efficiency of the proposed
method.
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1. Introduction

Peer-to-peer (P2P) systems have recently gained much popularity in the re-
search community as well as among the general public. Researchers show
increasing interest in this paradigm because of its inherent scalability and ro-
bustness, which promises to enable the development of global-scale, cooper-
ative, distributed applications. Different entities, under different authoritative
control, interconnect and cooperate to offer services to each other, each of them
acting both as a server and as a client, thus the term peers for the participating
entities.

Existing P2P systems fall into two main categories. Structured P2P systems
impose a certain order on the connectivity of the participating peers which is
reflected in the structure of the overall network. All files stored in the system
are indexed in a distributed manner by employing a Distributed Hash Table
(DHT), thus enabling efficient resource location in time usually logarithmic
to the number of peers. The drawback of this method however is that the
maintenance of such a rigid structure limits the ability of P2P systems to heal
themselves efficiently in the face of failures and thus render them less robust,
albeit more scalable.

On the other hand, unstructured P2P systems do not impose a certain struc-
ture to the network. Those systems are aptly named unstructured since each
peer is directly connected to a small set of other peers, called neighbours, mak-
ing the network more ad-hoc in nature. The absence of a structure makes such
systems much more robust and highly self-healing compared to structured sys-
tems, however, at the cost of reduced scalability. To exploit peer heterogeneity
to the system’s benefit, in [13, 4] a distinction between peers was introduced
and a two level hierarchy of peers was constructed. High bandwidth peers,
the Ultrapeers (also known as Superpeers), form an unstructured overlay net-
work, while peers with low bandwidth, the Leaves, are connected only to Ultra-
peers. Each Ultrapeer has an index of all the files contained in its Leaves. This
modification allows the system to retain its simplicity while offering improved
scalability.

Due to the lack of a particular file indexing method, unstructured P2P sys-
tems employ a broadcast-like process called flooding for resource location. A
peer looking for a file issues a query which is broadcast in the network, until
all peers have received the request or until the query propagates a predefined
maximum number of hops away from its source (Time-To-Live hops or TTL).
Flooding generates a large number of messages, reducing the scalability of the
method. Due to the completely decentralized nature of flooding, each peer
may receive the same request through a number of different neighbours. Those
duplicate messages often exceed in number the non-duplicate ones. For a flood
targeting the entire network, the number of duplicate messages is d − 2 times
the number of non-duplicate messages, where d is the degree of the overlay
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network (average number of peers neighbours). Recent work was carried out
in P2P systems with the aim of reducing the number of duplicates generated
[8]. However, even if all duplicate messages are eliminated, flooding would
still not scale well, since the cost of flooding a request to the entire network is
relative to the total number of peers. On the other hand, limiting the number of
hops a query propagates, achieves improved scalability at the cost of reduced
network coverage (defined as the percentage of peers that receive a request).
When a two level hierarchy of peers is involved, any request originating at a
Leaf peer is forwarded through the Ultrapeers it is connected to, while flooding
is performed only at the Ultrapeer overlay network.

The aim of the work presented in this paper is to improve the scalability of
flooding by reducing the number of peers that need to be contacted on each
request, without decreasing the probability of query success (accuracy of the
search method). The proposed method partitions the Ultrapeer overlay net-
work into distinct subnetworks. Using a simple hash-based categorization of
keywords the Ultrapeer overlay network is partitioned into a relatively small
number of distinct subnetworks. By employing a novel index splitting tech-
nique each Leaf peer is effectively connected to each different subnetwork.
The search space of each individual flooding is restricted to a single partition,
thus the search space is considerably limited. This reduces the overwhelming
volume of traffic produced by flooding without affecting at all the accuracy
of the search method. Experimental results demonstrate the efficiency of the
proposed method.

The remainder of this paper is organized as follows: Following the related
work section, the method used to partition the overlay network is presented
in Section 3. In Section 4 the simulation details along with the experimental
results are presented. We conclude in section 5.

2. Related Work

In an effort to alleviate the large volumes of unnecessary traffic produced
during flooding several variations have been proposed. Schemes like Directed
Breadth First Search (DBFS) [12] forward requests only to those peers that
have often provided results to past requests, under the assumption that they
will continue to do so. Interest-based schemes, like [10] and [5] aim to cluster
together (make neighbours of) peers with similar content, under the assump-
tion that those peers are better suited to provide each other’s needs. Both those
systems try to contact peers that have a higher probability of containing the re-
quested information. Such schemes usually exhibit small gains over traditional
flooding.

Another technique widely used in unstructured P2P systems today, is 1-hop
replication. One-hop replication dictates that each peer should send to all of its
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Figure 1. The Gnutella 2-tier architecture.

immediate neighbours the index of the files it contains. Using this information
during the last hop propagation of a request at the Ultrapeer level, the request
is forwarded exclusively to those last hop Ultrapeers that contain the requested
file. One-hop replication reduces the number of messages generated during the
last hop of flooding [7], which constitutes the overwhelming majority of the
traffic generated during the entire flooding. Simple calculations show that 1-
hop replication requires d times fewer messages to spread to the whole network
compared to naive flooding, where d is the degree of the network. It is easy
to prove that in order to flood an entire, randomly constructed, network that
employs 1-hop replication, one need only reach 3/d of the peers during all hops
but the last. In today’s Gnutella, where the average degree is 30, one would
need to reach 10% of the peers and then use 1-hop replication to forward the
query to the appropriate last hop peers, in order to reach the entire network.

Unstructured P2P systems implement 1-hop replication by having peers ex-
change bloom filters of their indices. A Bloom filter [3] is a space efficient way
to represent a set of objects (keys). They employ one or more uniform hash
functions to map each key to a position in an N -sized binary array, whose bits
are initially set to 0. Each key is mapped through each hash function to an ar-
ray position which is set to 1. To check for the participation of some key in the
set, the key is hashed to get its array position. If that array position is set to 1,
the bloom filter indicates key membership. Bloom filters require considerably
less space than the actual set, which is accompanied by some loss of precision
translated in the possibility of false positives. This means that a bloom filter
may indicate membership for some key that does not belong to the set (more



Partitioning Unstructured Peer-to-Peer Systems 5

than one keys mapped to the same position). It cannot however indicate ab-
sence of a key which is in the set (false negative).

In Gnutella 2 [1] which uses a 2-tier architecture, each Leaf node sends its
“list of keywords" in the form of a bloom filter to all Ultrapeers it is connected
to. Each Ultrapeer produces the OR of all the bloom filters it receives from
its Leaves (approximately 30 Leaf nodes per Ultrapeer) and transmits this col-
lective bloom filter to all its neighboring Ultrapeers to implement the 1-hop
replication. Ultrapeers flood queries to the overlay network on the Leave’s be-
half. Flooding is only performed at the Ultrapeer level where 1-hop replication
is implemented. Whenever an Ultrapeer receives a request this is targetedly
forwarded only down to those Leaves that contain the desired information (ex-
cept in the case of false positives). Fig. 1 shows a schematic representation of
the 2-tier architecture.

Another approach that has been used in the literature to make resource lo-
cation in unstructured P2P systems more efficient is the partitioning of the
overlay network into subnetworks using content categorization methods. A
different subnetwork is formed for each content category. Each subnetwork
connects all peers that posses files belonging to the corresponding category.
Subnetworks are not necessarily distinct. A system that exploits this approach
is the Semantic Overlay Networks (SONs) [6]. SONs use a semantic cate-
gorization of music files based on the music genre they belong to. The main
drawback of this method is the semantic categorization of the content. In file-
sharing systems for instance, music files rarely contain information about the
genre they belong to and when they do so, each of them probably uses a dif-
ferent categorization of music. In SONs, an already existing, online, music
categorization database is used. This database adds a centralized component
in the operation of the network. Notice that 1-hop replication can be employed
in conjunction with this scheme, inside each subnetwork. However, the fact
that each peer may belong to more than one subnetwork, reduces the average
degree of each subnetwork and thus, the efficiency of the 1-hop replication.

3. The Partitions Design

The system we propose in this paper allows for the partitioning of any type
of content. More specifically, we propose the formation of categories based on
easily applicable rules. Such a simple rule is to apply a uniform hash function
on each keyword describing the files. This hash function maps each keyword
to an integer, from a small set of integers. Each integer defines a different
category. We thus categorize the keywords instead of the content (files names)
itself. Given a small set of integers, it is very likely that each peer will contain
at least one keyword from each possible category.
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Figure 2. Illustration of the Gnutella network and the Partitions design.

Figure 3. Gnutella and Partitions bloom filters.

In the Partitions design, each Ultrapeer in the system is randomly and uni-
formly assigned responsibility for a single keyword category, by randomly se-
lecting an integer from the range set of the hash function used to categorize the
keywords. Ultrapeers responsible for the same category form a distinct sub-
network. Leaves connect to one Ultrapeer per subnetwork and send to it all
the keywords belonging to that category. Thus, an innovative index splitting
technique is used. Instead of each Leaf sending its entire index (in the form of
a bloom filter) to an Ultrapeer, each Leaf splits its index (keywords) based on
the defined categories and distributes it to one Ultrapeer per category. Notice
that peers operating as Ultrapeers also operate as Leaves at the same time (have
a dual role). Even though in this design each Leaf connects to more than one
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Ultrapeers, the volume of information it collectively transmits is roughly the
same since each part of its index is send to a single Ultrapeer. Each Ultrapeer
sends to its neighboring Ultrapeers all the aggregate indices of its Leaf nodes to
implement 1-hop replication. In Fig. 2 we can see a schematic representation
of the Partitions design. Fig. 3 illustrates the difference between the Gnutella
and the Partitions bloom filters.

This separation of Ultrapeers from content has the benefit of allowing them
to be responsible for a single keyword category. The benefit of this is two-fold.
First, it reduces the size of the subnetworks since they are completely discrete
(at the overlay level). Secondly, it allows each Ultrapeer to use all its Ultrapeer
connections to connect to other Ultrapeers of the same subnetwork, increasing
the efficiency of 1-hop replication at the Ultrapeer level.

There are, however, two drawbacks to this design. The first one is due to
the fact that each Leaf connects to more than one Ultrapeers, one per content
category. Even though each Leaf sends collectively the same amount of index
data to the Ultrapeers upon connection as before, albeit distributed, however
it requires more keepalive messages to ensure that its Ultrapeers are still op-
erating. Keepalive messages however are very small compared to the average
Gnutella protocol message. In addition, query traffic is used to indicate liveli-
ness most of the time, thus avoiding sending keepalive messages. The second
drawback arises from the fact that each subnetwork contains information for a
specific keyword category. Requests however may contain more than one key-
words and each result should match all of them. Since each Ultrapeer is aware
of all keywords of its Leaves that belong to a specific category, it may forward
a request to some Leaf that contains one of the keywords but not all of them.
This reduces the efficiency of the 1-hop replication at the Ultrapeer level and
at the Ultrapeer to Leaf query propagation. This drawback is balanced as fol-
lows. Even though the filtering is performed using one keyword only, Leaves’
bloom filters also contain one category of keywords only, making them more
sparse and thus reducing the probability of a false positive. Furthermore, the
most rare keyword can be used to direct the search, thus further increasing the
effectiveness of the search method. Finally, we also experimented with send-
ing the bloom filters with all keyword types to every Ultrapeer, regardless of
category, although Ultrapeers still extract and use only keywords of the same
category they belong to form their aggregate bloom filter in order to implement
1-hop replication.

4. Experimental Results

In this section, we shall present the results from the simulations we con-
ducted, in order to measure both the efficiency of the Partitions scheme in
terms of cost of flooding (in messages) and maintenance costs.
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We assumed a peer population of 2 million, a number reported by LimeWire
Inc [2]. Each Ultrapeer in the Gnutella network serves 30 Leaves, a number
obtained from real-world measurements [11]. In addition, each peer contains a
number of files (and hence keywords) derived from a distribution also obtained
from real-world measurements in [9].

Each Ultrapeer in the Partitions design serves 300 Leaves since we assume
a number of 10 content categories and thus subnetworks. We perform a large
number of floods, each designed to return at least a thousand query results
before terminating. Table 1 shows the ratio of the average number of messages
per flood for the Partitions design over the average number of messages per
flood in Gnutella. Replication means that each Leaf sends all its keywords to all
Ultrapeers it is connected to, regardless of category. For example, in the case of
replication, flooding in the Partitions design generates 5.5 times less messages
than flooding in Gnutella, in order to return the same number of results per
query. We should emphasize that the drawback of filtering using only one
keyword is balanced by the fact that Leaf indices are sparser (since they contain
only one keyword category),thus produce less false positives. The main benefit
comes from the message reduction due to the partitioning of the network and
therefore the reduction of the search space. Each Partitions bloom filter (i.e.
containing keywords of a certain category) has the length of a Gnutella bloom
filter. Thus, one can roughly think of all the bloom filters of a single Partitions
leaf as a (distributed) Gnutella bloom filter of 10 times the length (due to the 10
category types). However the bandwidth needed to transfer such a bloom filter
is not 10 times that of a Gnutella bloom filter, mainly because sparser bloom
filters are compressed more efficiently.

Table 1. Flooding efficiencies.

Ratio

No replication 4.2

Replication 5.5

In order to measure the maintenance cost of Gnutella and Partitions, we
focus on the operation of a single Ultrapeer, because the load of Leaves is
negligible in both systems compared to Ultrapeers load since flooding is per-
formed at the Ultrapeer overlay. In both cases we simulated three hours in the
life of a single Ultrapeer, with Leaves coming and going. Leaves have an av-
erage lifetime of 10 minutes, whereas Ultrapeer neighbours have an average
lifetime of 1 hour. Each time a Leaf is connecting to the Ultrapeer, it sends its
index information, which is propagated by the Ultrapeer to its thirty Ultrapeer
neighbors. In addition, we assumed that, periodically , each Ultrapeer receives
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Figure 4. Maintenance traffic load for
Gnutella and Partitions using Bloom Fil-
ters. Incoming, Outgoing and Total traffic.

Figure 5. Query traffic load for Gnutella
and Partitions using Bloom Filters. Incom-
ing, Outgoing and Total traffic.

Figure 6. Operational traffic load for Gnutella and Partitions using Bloom Filters. Incoming,
Outgoing and Total traffic.

a small keep-alive message from each Leaf and replies with a similar message
to each one of them, unless a query and a reply were exchange during the spec-
ified period. For each communication taking place, we measured the incoming
or outgoing traffic in bytes, in order to estimate the bandwidth requirements.

There are two modifications in this scenario, between Gnutella and Parti-
tions. In Partitions, the number of Leaves per Ultrapeer is 300. In addition,
the process of computing the size of the index information sent to the Ultra-
peer differs greatly. For Gnutella, we have used the code by LimeWire [2], the
most popular Gnutella client, to construct the bloom filter of each Leaf. We
randomly decided on the number of files shared by each Leaf, based on the file
sharing distribution per peer presented in [9]. We then extracted this number of
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files from a list of filenames obtained from the network by a Gnutella crawler
developed in out lab. Those filenames were fed to the LimeWire bloom filter
generation code, which produced the corresponding bloom filter in compressed
form, i.e., the way it is sent over the network by LimeWire servents. Thus we
constructed the actual bloom filter, although what we really need in this case is
just its size. In the case of Partitions, we likewise computed the number of files
to be shared by each Leaf. We extracted again the same number of filenames
from the list of available filenames.

In addition to simulations for the Partitions scheme, we also run simula-
tions for a modified version called Replication. In the Partitions scheme, each
bloom filter sent to an Ultrapeer only contained appropriate keywords (of the
same category as the corresponding Ultrapeer). In the Replications scheme, we
used replication, i.e. each bloom filter contained all the keywords of the Leaf,
regardless of category. In addition, positions of keywords of the correspond-
ing category as the Ultrapeer were set in the bloom filter to the value of two
instead of one. (This bloom filter essentially distinguishes between keywords
of the appropriate category and the rest of the categories).

Fig. 4 shows the results of the simulation for the cost of maintaining the
structures of Gnutella and Partitions, without any query (flood) traffic. From
this figure it is obvious that, as expected, the maintenance cost of partitions
is higher than that of Gnutella, but not that much. As we will see in the next
paragraph the gains incurred during the operational phase of the two systems
outweighs the increased maintenance costs.

We then focused our attention to the query traffic load. Measurements con-
ducted in our lab showed that, on the average, each Ultrapeer generates 36
queries per hour (i.e., queries initiated by itself or its Leaves). This adds up
to approximately 2000 queries per second generated anywhere in the Gnutella
network. In addition, we observed a large number of Gnutella queries in order
to find the distribution of the number of keywords in each query. Thus, accord-
ing to those observations, during the simulations we assumed that 20% of the
queries contain 1 keyword, 30% contain two, another 20% contain three and
finally a 30% contain 4 keywords.

In our simulation, we assumed that the aim of each flood (both in Gnutella
and Partitions) is to reach the entire network, or produce a fixed number of
results, whichever comes first. As we mentioned before, such a flood that
aims to reach the entire network would need to reach 1

10 th of the Gnutella’s
network (or a Partitions’ subnetwork) during all hops of flooding except the
last. This means that the Ultrapeer in our simulations has a probability of
0.1 to receiving each query. In addition, every time this does not occur, it
has another opportunity to receive the query during the last hop, depending
on its bloom filter (in case the searched keywords match in the bloom filter).
Should the Ultrapeer receive a query, it is assumed to propagate it to its Leaves,
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again depending on their bloom filters or index (again depending on a possible
keyword match by the bloom filter). Fig. 6 shows the comparison in the traffic
load of Gnutella and Partitions, including maintenance and query traffic. We
used a size of 40 bytes for each query. In reality, the size of a query can be
up to a few hundred bytes, if XML extensions are used. This means that the
performance gains described here are smaller compared to the ones we expect
to see in the real world. In addition, for every 1400 bytes for each message sent,
we added 40 bytes for the TCP and IP header. From these figures it is evident
that Partitions outperform Gnutella in operational costs, in every case. Finally
in Fig. 5 one can see the query traffic load alone (without the maintenance
traffic) for both the Gnutella and the Partitions Ultrapeer.

5. Conclusions

In this paper, we have described a novel approach to reducing the message
cost of querying an unstructured P2P ork. A simple model has been described
to illustrate that the benefits obtained from our scheme can be as high as an
order of magnitude. Work is being carried out to measure the performance of
our scheme, while varying the number of partitions. Furthermore, the benefit of
Leaves communicating their full index (actual keywords) to Ultrapeers instead
of bloom filter is currently exploited.
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