2ND QUARTER 2006, VOLUME 8, NO. 2

|EEE
COMMUNICATIONS

ISURVEYS

The Electronic Magazine of
Original Peer-Reviewed Survey Articles

www.comsoc.org/ pubs/surveys

A DECADE OF DYNAMIC WEB CONTENT:
A STRUCTURED SURVEY ON PAST AND
PRESENT PRACTICES AND FUTURE TRENDS

STAVROS PAPASTAVROU, GEORGE SAMARAS, AND PARASKEVAS EVRIPIDOU, UNIVERSITY OF CYPRUS
PANOS K. CHRYSANTHIS, UNIVERSITY OF PITTSBURGH

ABSTRACT

The shift from static to dynamic Web content has been dramatic.
Dynamic Web content is facilitated by specialized cooperating component
systems better known as content middlewares. Unlike static content, the gen-
eration and delivery of dynamic Web content introduce heavy a workload
on content middlewares. To address this problem, numerous research
approaches have been proposed in the literature, some of which are the
driving force behind popular commercial systems, a fact that stresses the
importance and applicability of this research area. This article surveys the
literature during the period of 1995-2005 on accelerating the generation
and delivery of dynamic Web content. It classifies the proposed approaches
into taxonomies based on their underlying methodologies and practices. In
order to illustrate the evolution of research, we introduce a research-chart-
ing semi-formal framework called the Caching Fragmentation Polymor-
phism (CFP) framework, within which we relate the surveyed approaches

and depict their relationships.

ince 1995, dynamic Web content technology has been

facilitating the adaptation of content on demand, com-

pletely transforming the user interactions and experi-
ences. The dynamic generation of content has allowed Web
services and applications to be personalized with respect to
individual users or customized with respect to groups of users.
Example Web applications of the former case include Internet
banking, online stock exchange, airline ticket reservations, and
e-commerce. Local sport results, news sites, and discussion
groups are examples of the latter case. According to [1], those
two categories of dynamic Web content cover more than 20
percent of Internet traffic each at the turn of the century and
are becoming predominant nowadays.

A wide range of cooperating components, better known as
content middleware systems (or simply content middlewares),
orchestrate a multitier system architecture that enables the
generation and delivery of dynamic content. A typical compo-
nent setup is shown in Fig. 1. Proxies intercept client requests
and deliver cached content, if certain conditions hold. Other-
wise, they route the requests to the appropriate Web server,
which in turn invokes one or more specific application server.
The latter dynamically generate content by processing tem-

plate files and querying local and/or remote databases.

Driven by the massive switch of Web applications from
static to dynamic content, the tasks of generating and deliver-
ing dynamic content raise the need for more computational
and network resources, respectively. Work in [2] identifies
various potential bottlenecks in the n-tier architecture by sim-
ulating typical dynamic content Web applications. Their find-
ings indicate that e-commence and catalog-related Web
applications create bottlenecks at the Web server as well as
the database server. For less processing-hungry applications,
such as regional news and media-related ones, the bottleneck
shifts toward the proxy side.

Following the introduction of the Common Gateway Inter-
face (CGI) a decade ago, the pioneer middleware that made
dynamic content possible, numerous research approaches
have been proposed for accelerating the generation and deliv-
ery of dynamic content. Consequently, state-of-the-art content
middleware technology is found today in many commercial
products.

Motivated by the lack of a comprehensive study on this
research area, our work attempts a complete review and anal-
ysis of the proposed approaches since 1995, and classifies

Atgly:)rized licensed use limited to: University of Pittsblir%gl:g)ﬁ% System. Downloaded on NOYEE@@&ﬁgﬁgﬁ%&%%W&grmﬁ%ﬁﬂo;eznﬁ%tﬂgg?&sm.

Web > Application R%r:tc;te . . .
server server(s) e price/options adjustments. The PC cus-
tomization @ Web page of the
| | www.higrade.com computer retailer contains
HTTP + approximately 2000 lines of script code with
requests more than 20 database queries, distributed
Proxy ngcal_ across fragments. Some script code may not
server application produce any visible HTML output, but is
content DB . .
necessary for performing additional back-
ground tasks such as user cart handling,

W Figure 1. The n-tier system architecture.

them according to their underlying methodologies and prac-
tices. We identify content caching, content fragmentation, and
content polymorphism as the three main principles on which
research has evolved.

Since a performancewise comparison is rather impossible
due to the tremendous number of parameters and their com-
plexity, we compare the surveyed approaches on an abstract
level by using the Caching Fragmentation Polymorphism
(CFP) framework, a theoretical, semi-formal framework for
charting and relating research efforts. This semi-formal frame-
work uses the principles of caching, fragmentation, and poly-
morphism as its base axes by establishing approximate metrics
for each one. We chart the research approaches on the frame-
work and use it as a means of understanding the evolution of
research over the past decade, and to identify current and
future trends. For the rest of this article, we use the abbrevia-
tion DWC to refer to dynamic Web content, and DWP to
refer to dynamic Web pages.

Given the importance and pervasiveness of the Web, and
of dynamic Web content in particular, there are literally hun-
dreds of research contributions addressing different aspects of
DWC. Many of these have been published in conferences
such as WWW, IEEE INFOCOM, ACM SIGMOD, ACM
SIGCOMM, VLDB, IEEE ICDE, and USENIX and in jour-
nals such as IEEE TKDE. For the sake of brevity, we are cit-
ing here only those research works that either introduced key
concepts for the evolution of dynamic content or had a major
practical impact.

The structure of this survey is as follows: the next section
presents preliminary information on modern dynamic Web
content systems, which can be skipped by readers with experi-
ence on this field. We then present the comparative CFP
framework and discuss its abstract metrics, followed by a tax-
onomy of the research approaches. We bring together and
relate the surveyed approaches to the CFP framework, and
then elaborate on future research trends and potential paths
before we conclude the article.

PRELIMINARIES

A chunk or fragment of dynamic Web content (DWC) is a
collection of HTML code, XML data, or media content, gen-
erated on-demand by a content middleware. The generation
of a DWC fragment requires the processing of a block of
script code by the content middleware. The contents of the
script block may also include queries on local databases and
remote data retrieval. An arrangement of these fragments,
according to a template file containing basic HTML, defines a
dynamic Web page (DWP).

For instance, a product-customization DWP from a com-
puter retailer site includes fragments that require the execu-
tion of thousands of lines of script code. The code issues tens
of database queries and several script loops in order to build
complex Web forms for product customization with

credit card verification, and user session
maintenance.

An application server generates a DWP
by parsing its template file and, as mentioned above, by pro-
cessing its embedded script blocks that relate to the DWC
fragments. Template files have extensions such as “.asp,”
“.cfm,” or “.php” that denote different scripting languages
understood by the appropriate application server. The asp
extension stands for Active Server Pages (ASP), a technology
developed by Microsoft Corp. to support the insertion of
Visual Basic code (vbscript) blocks that may generate dynamic
content. The extension “.cfm” is used by ColdFusion, a prod-
uct of Macromedia Inc., which uses a tagged-based script code
for templates. PHP is a project of Apache Software Founda-
tion, that supports a C-like script code.

An expanded n-tier architecture that supports DWC is
shown in Fig. 2. Serving at the front line, a Web server
receives HTTP requests either from proxy servers or directly
from theWeb clients. Requests for static content, such as Style
Sheets, JavaScript, or existing Media files are immediately
served by the Web server. Requests for files (templates) with
extensions that denote a dynamic content vendor (i.e., .asp,
.php, and .cfm) are tunneled to the appropriate running appli-
cation server for parsing. It is a common case for a public
Web hosting service provider to simultaneously run multiple
middlewares in order to support a wider Web developing
community.

The invoked application server parses the requested tem-
plate file and runs every included script code block in it. A
script code block may include access to local or remote con-
tent databases, or calls to procedures provided by third-party
libraries (DLLs). The complete HTML output of a parsed
template file is then transmitted to the client, always through
theWeb server. The application server can refrain from pars-
ing a template file and reuse the output of a previous parse
under certain conditions (we discuss DWC caching below).
For alternative application servers, such as Java Servlets, a
client HTTP request refers directly to a particular “runnable”
object instead of template file. In this case, the object exe-
cutes to either parse an existing template file, or generate all
the contents of a DWP without the existence of a template
file.

THE CFP FRAMEWORK

The majority of the surveyed approaches each employ, to
some extent, three common practices, namely caching, frag-
mentation, and polymorphism, which comprise the three prin-
ciples of the CFP framework. The purpose of the CFP
framework is not to pinpoint the “best” approach, but to assist
the reader in understanding the evolution of research. In the
CFP acronym, caching precedes the other two principles as
the earlier to appear, while polymorphism is the most recent.
The principle of caching suggests a multitier reuse of content
on network sites such as proxies, Web servers, application
servers, or even at the client browser.

The principle of fragmentation suggests the breaking of a

ALi'ﬁ%Eeégﬁ?fi‘ﬁﬁ’iiiH§ﬁ(IJHgtSﬂNéW&WO?IﬁQtS%WGM?E&SZGW' Downloaded on November 11,2025 at 22:23:55 UTC from IEEE Xplore. Restrictions a@})iy.

"}b@

“\0/7, HTTP requests The metric for the principle of
& caching (Fig. 3) is the proximity of
cached documents to the users.
Therefore, we state that an
. Web server ,—> Cached templates approach which supports caching
Invokes Reuses of DWC clpser to Web users is
\ | evaluated higher than others that
H cache content closer to the Web
Application server(s) | server. The highest value for
Parses caching is received by approaches
that provide support for client-side
— b caching. The next highest value
M~ relates to proxy-side caching, and

) teﬂgﬁe then to server-side caching.
Local Script The metric for the principle of
arzglr'ﬁaeﬂ?n <+ SQL bclgglss < has — fragmentation is the degree of sup-
akiElbeE -php .asp port for arbitrary DWC fragments
cfm in a DWP. If an approach supports
~_ the breaking of a Web dynamic
— A p— page down to any number of frag-
N b0 ments of any type, then we assert
b Tevesas that it employs full (or arbitrary)
Remote Lo styles fragmentation. If an approach
i 5G] oemososooed b images allows for any number of frag-
centers ments, but supports a limited num-
g ber of fragments types (i.e., only
- . Dits —H . P XML data or only query results)
' then we assert that it employs

M Figure 2. Expanded n-tier architecture: cooperating system components for DWC genera-

tion.

dynamic Web page down to computationally, but not neces-
sarily semantically, distinct parts. This principle enables finer-
grained caching and concurrency in DWC generation.

Our last principle of polymorphism allows for a dynamic
Web page to be assembled in more than one way without the
redundant generation of content at the server side. More
specifically, the layout of the DWC fragments is decided
dynamically according to, for example, the client’s preferences.

In this way, polymorphism enables another dimension of
content dynamism by allowing the templates to be dynamic
themselves. Polymorphism can be also realized as a stand-
alone practice if the script that generates a dynamic page is
capable of producing the same content under arbitrary
arrangements. A script (e.g., a CGI program) can achieve this
by internally rearranging the layout of the content without
using predefined fragments. At the absence of fragments and
templates, we call this form of polymorphism flaz.

The intuition behind the use of the CFP framework is that
the three principles of the framework can be viewed as
orthogonal dimensions along which different research
approaches can be classified. Thus, the framework can be rep-
resented as a cube, as shown in Fig. 3. The annotations on
every edge of the cube reveal the purpose of employment of
each principle, as well as the outcome of combining them.

METRICS FOR THE CFP FRAMEWORK

We plot a research approach on the CFP framework, given its
corresponding values for each principle. For that purpose, we
define value to be the extend of employment of a particular
principle. Since the three principles are qualitative and subjec-
tive rather than quantitative, this evaluation requires assump-
tions and approximations in order to define the appropriate
metric for each principle. Figure 4 illustrates the basic met-
rics.

“high” fragmentation. Finally, we
assert that approaches which, in
one way or another, do not decou-
ple (store separately) the fragments
from the templates employ “low” or “indirect” fragmentation.
We base this decision on that the fragments that are not
stored separately from the template cannot be reused by other
clients.

The metric for polymorphism is the degree of support for
alternative arrangements of the fragments in a DWP. An
approach that provides flexibility and mechanisms for arbi-
trary arrangements of the fragments receives the highest score
for polymorphism. Approaches that provide basic support for
fragment arrangement are evaluated with a lower score.

Consider two examples: The approach “X” plotted on the
framework in Fig. 4 supports proxy-side caching of DWC.
Also, it fully supports fragmentation since DWC fragments
can be of any type and number. The approach “Y” caches
arbitrary DWC fragments at the client side and provides limit-
ed support for different arrangements of the fragments.

TAXONOMY OF APPROACHES

In this section we survey the proposed approaches for acceler-
ating the generation and delivery of DWC, emphasizing only
the most representative work in the literature and commercial
products. We classify these in a manner that can be intuitively
mapped within our CFP framework. Although not all tax-
onomies are directly mapped on the CFP framework, they are
included here so that we can provide a broad spectrum of
research in this field.

EARLY AND ASSORTED SERVER-SIDE RESFARCH

Following the introduction of CGI, the primary dynamic con-
tent middleware developed for the NCSA Web server,
FastCGI [3] provided support for server processes to handle
consequent HTTP requests (process persistence). CGI process-

ALgl&)l’iZEd licensed use limited to: University of Pittsburgh Library System. Downloaded on NOYEE%@&ﬁﬂﬁ?ﬂ%%&%%W&grmﬁ%ﬁiéﬂqelnﬁ%%?&sm'

CONTENT FRAGMENTATION AT THE
SERVER SIDE

An early/indirect form of fragmentation is
encountered in server-side includes (SSI).
According to SSI, certain dynamic parts (frag-
ments) of a page can be isolated and regenerat-
ed every time the page is requested. Example
fragments are counters, the time at the server,
and information about the requested file.
Subsequently, [12] suggested a more general
form of fragmentation that allows the dissection
of a dynamic page into distinct fragments that
are assembled according to a template file. A
fresh version of a fragment is generated every
time its underlying data objects are modified,
using database triggers. With the fresh fragments
in place, a dynamic page can be either immedi-
ately delivered or cached (as discussed next).
More recently, [13] proposed a technique for
accelerating template parsing and execution by
processing the dynamic fragments of the tem-
plate in a concurrent fashion. This approach
achieves increased server throughput and lower

Fragmenting a document
based on a template map
Caching .7 X
document .7
fragments at - .
the client LN
Fragmentation
Server-side
-, dynamic
arrangement
of fragments
Caching
whole
documents at
the client o .
Polymorphism
& \ Flat
‘ " polymorphism:
Caching content
document re-arrangement
fragments at without
the client with fragments
dynamic Caching of and templates
arrangement documents with
flat polymorphism

client response times when the system is not
fully loaded. It is worth mentioning that the

M Figure 3. The CFP framework.

es were designed to terminate right after serving their first
HTTP request. Similarly, [4] proposes persistent database
connections for server processes to the content database.

Performance depends heavily on the middleware’s imple-
mentation. The work in [5] compares various heterogeneous
middlewares and reaches the conclusion that C-based middle-
wares outperform the Java-based ones. It verifies, however,
the programmability and openness of the Java-based middle-
wares for generating DWC. In [6], we find a detailed study of
all the Java-based middlewares for dynamic content and a
thorough comparison in terms of performance and pro-
grammability.

Beyond the well-accepted and practical multi-

identification of the fragments takes place at run

time (during parsing) and requires no a priori

compilation or special handling of the template.
Figure 5 demonstrates a typical implementation of a dynamic
document fragmentation using a template file with simple
HTML commands.

The approach in [12] supports arbitrary fragmentation of
DWC; however, it provides caching only at the granularity of
a page. The approach in [13] supports arbitrary fragmentation
and immediate execution of fragments with no caching. The
former approach is more suitable for less interactive Web
applications such as portals and news sites, since the genera-
tion of content is data driven (i.e., triggered by database
changes). The later approach better suits interactive Web
applications, such as e-commerce, where content generation is

threaded architecture of Web servers, there have
been significant efforts in the development of more
efficient architectures to boost content generation.
Flash, presented in [7], is a portable event-driven
Web server that has been demonstrated to outper-

form both the single-process event-driven ZeusWeb pf(')?(;'gar?mﬁg - High support for
server [8], and the multithreaded/multiprocess and active fragmentation
Apache Web server [9]. Its portability lies in the caching

fact that it uses standard APIs found in any mod-
ern operating system. However, Flash was original-
ly designed to accelerate the delivery of static
content; there has been no adaptation of it for
delivering dynamic content as yet.

More recently, the authors of [10] propose the
use of an event-driven Web server and introduce
the notion of a stage. According to [10], a Web
application (i.e., a Web server) is built as a net-
work of explicit computation stages connected by
explicit queues whose aim is to support massive
concurrency and simplify the construction of Web
services. Similarly, the authors in [11] employ
staged computation in Web servers, which
replaces threads, and introduce a more sophisti-
cated task scheduling mechanism. To the best of
our knowledge, there is no system that uses those

Fine-grained
server-side

Fine-grained
client caching

Client-side J‘

caching

Proxy-side

Arbitrary

caching fragmentation

“— Low or indirect
.. fragmentation

i Server-side
caching

" Increased

caching polymorphism

architectures for DWC generation.

M Figure 4. Approximate metrics on the CFP framework.

ALitﬁg'EeégﬁyleﬂﬁﬁqiHéﬁgﬁgtgg}géw&eﬁwoﬂﬁgts%wem?%ISZGW. Downloaded on November 11,2025 at 22:23:55 UTC from IEEE Xplore. Restrictions a@gy.

<html> <head> ® |
<title>A Dynamic Page</title>
</head><body>

<table width=100%>

Address = www.dynamic_page.com

about:blank - Microsoft Internet Explorer

|fi|e Edit View Favorites Tools Help

— g x

60! Links> parts of the dynamic page and, in

extend, does not allow for arbitrary

<Tr><td></td> <td colspan=2>
<!// code block # 1 for top N
»

Top menu bar

| fragmentation.

// menu bar generation
>

A more general and flexible

</td></tr>

<tr><td>

<!// code block # 2 for left
// menu bar generation

>

</td><td>

<table> <tr><td>

Main

article(s)

method for fragment caching that
is also easier to use was introduced
in [18] and studied more thorough-
ly in [19]. According to this
method, caching can be applied to
an arbitrary fragment of a template
by first wrapping it around with the

<1// code block # 3 for main — |

Currency
exchange rates

// article retrieval
>

\ Lef\menu bar

Stock indices

appropriate tags (explicit tagging).
XCache [20] is a commercial prod-

\

<1// code block # 4 for stock _—
// indices retrieval

J Done

uct that installs as a plug-in on pop-

[—) ular dynamic content middlewares,
4

1>
</td> </tr> </table> <td>
<!// code block # 5 for

// exchange rates retrieval
1>
</td></tr>
</table> </body> </html|>

and supports fragment caching of
any type using explicit tagging.
Also, the ColdFusion content mid-
dleware provides tags for explicitly
defining the page fragment to be
cached. For example, the coding
<cf_cache refresh-rate=60>

B Figure 5. Implementing a fragmentation.

user driven.
CONTENT CACHING AT THE SERVER SIDE

Server-side content caching boosts the generation DWC by
eliminating redundant server load. There are many interesting
approaches for server-side caching that vary mostly on the
granularity and level of caching. In [14, 15], the caching of
dynamic documents at the granularity of a page was proposed
for early content middlewares such as CGI, FastCGI, ISAPI,
and NSAPIL.

Extending their work in [15], the authors in [16] propose a
DWC Caching Protocol that can be implemented as an exten-
sion to HTTP. This protocol allows for content middlewares,
such CGI and Java Servlets, to specify full or partial equiva-
lence among different URIs (HTTP GET requests). The
equivalence information is inserted by the content middleware
into the HTTP response header of a dynamically generated
page, and stored at the caching module along with the cached
page. For example, the URI “www.server.com/
LADriveTo.php?DestCity=newyork” instructs the content
middleware to generate a page with driving directions from
Los Angeles to New York. Prior to transmitting the result
page, the middleware inserts the “cache-control: equivalent
result=Dest=queens” attribute in the HTTP response header.
The caching module will cache the page, transmit it to the
client, and store the cache-control directive for future use. A
subsequent client request for the same URL, but for a differ-
ent DestinationCity value, will be evaluated by the cache mod-
ule for a possible match with the value of “queens” or
“newyork”. If a match is found, then the cached page is trans-
mitted to the client.

CACHING CONTENT AT FINER GRANULARITIES

To achieve greater reuse of cached content across both time
and multiple users, caching at finer granularities is proposed.
The authors in [17] suggest the caching of static HTML frag-
ments, XML fragments, and database query results. This
approach, however, applies to Web applications that follow a
strict declarative definition and follow a certain implementa-
tion only. In addition, caching cannot be applied to random

...some script code or HTML...

</cf_cache> caches an arbitrary

fragment that refreshes every 60
seconds. In addition, other scripting languages, such as ASP
and PHP, provide programming-level support for fragment-
level caching at the server.

PROXY CACHING

Proxy caching, better known today as Edge caching, is the
most popular approach for faster delivery of reusable static
content such as static HTML pages and media files [21]. A
Proxy degrades bandwidth consumption by eliminating unnec-
essary traffic between clients and servers, given that it is
strategically located. It has been identified that the usual hit
ratio for proxy caches is around 40 percent [22]. Another
study finds out that even when proxies are employed, approxi-
mately 40 percent of the original volume of Web traffic is still
unnecessarily generated [23].

Despite the location of cached content, server-side and
proxy-side caching have their major implementation differ-
ence in how data consistency between the cached content and
the underlying database objects is enforced. For server-side
caching, consistency is more easily enforced because the
caching module is local to the content middleware (as seen in
[12]). For proxy-side caching, efficient cache invalidation tech-
niques are required, as discussed below.

Early research presented in [16] proposed the caching of
dynamic content at the granularity of a page by using the
abovementioned Dynamic Content Caching Protocol. The
caching protocol is applicable for both server-side and proxy-
based caching, and works by allowing the manipulating of
HTTP header information and URL query string parameters
(GET variables).

Another interesting approach for caching complete dynam-
ic pages is found in [24]. Analogous to the caching protocol
approach discussed above, this one suggests that the proxy
server be allowed to examine the HTTP POST variables that
are submitted as part of a client HTTP request for a URI. In
brief, the proxy server attempts to reuse cached SQL query
results by looking up a predefined mapping. This mapping
relates the HTML form fields that are submitted with a URI
request with the SQL query that uses those form fields as
input. Two strong points of this work are as follows:

*The proxy can extract and reuse portions of cached query

ALgl%orized licensed use limited to: University of Pittsburgh Library System. Downloaded on NOYEE%@&ﬁﬂﬁ?ﬂ%%&%%W&grmﬁ%ﬁiéﬂqelnﬁ%%?&sm'

results, if necessary, to satisfy future requests.
* It can add-on to a cached query result on demand by
negotiating with the Web server.
Since the HTTP post variables are generated from HTML
form fields, this approach is called form-based.

FINE-GRAINED PROXY CACHING

Following proxy-caching content fragmentation, caching at the
granularity of a fragment is proposed for proxy caches.
According to fine-grained proxy caching, the template file is
cached at the proxy server, whereas its dynamic fragments are
either reused from the proxy cache or fetched fresh from the
Web server.

Edge side includes (ESI) was introduced as a standard for
caching page templates along with their fragments on proxy
servers [25]. According to ESI, the dynamic fragments of a
page are explicitly marked using tag-based macrocommands
inside the page’s template file. An ESI-compliant proxy server
must provide support for parsing the cached template file and
executing macros that dictate whether a fragment should also
be retrieved from the cache, or pulled from the original serv-
er. ESI macros have access to a client’s HTTP request
attributes (cookies, URL string, and browser used) in order to
choose between fragment alternatives. An example of this
would be the identification of the client’s browser version or
vendor in order to pick the appropriate fragment that meets
the browser’s capabilities.

ESI is a key component for Content Distribution Networks
(CDNs), a popular caching approach that supports the leasing
of cache space on a service-based network of interconnected
proxy servers. A typical CDN employs a set of proxy servers
strategically arranged by geographical or network location. It
is noteworthy that for a Web site to be registered and served
by a CDN network, an offline procedure of updating the tem-
plates of the Web site is required. A thorough survey on the
procedures, practices, and performance of CDNs can be
found in [26].

We state that ESI extends the approaches that support
arbitrary server-side caching ([18, 19] and scripting languages
such as PHP, ASP, and ColdFusion) by moving fragment
caching from servers to proxies. ESI also provides some basic
support for dynamic fragment arrangements through the use
of a tag-based scripting language, a practice that we identify
subsequently as polymorphism.

A more recent study in [27] proposes a different approach
to content fragmentation and its caching. Instead of using
explicit fragmentation techniques such as tagging (ESI, Cold-
Fusion), it proposes an automatic fragment detection frame-
work which isolates the “most beneficial” content in terms of
caching. More specifically, the fragmentation is based on the
nature and the pattern of the changes occurring in dynamic
Web pages, and its potential use across consecutive accesses
by all users. According to the authors, this approach improves
the efficiency of disk-space utilization at the proxies and
reduces the load on the network and the origin server.

FINE-GRAINED CACHING AT THE CLIENT SIDE

Surprisingly, the notion of assembling a dynamic page away
from the original content middleware was firstly introduced in
[28] not for proxy caches, but for client browsers. The pro-
posed technique, called HPP (HTML preprocessing), requires
from the client browsers the extra functionality of caching and
processing a template file, containing blocks of macro-com-
mands, prior to rendering a dynamic page. Each macro-com-
mand block generates from scratch a page fragment by

manipulating local variables and strings. This idea can be
viewed as the client-side equivalent to the SSI discussed
above.

Extending their early work in [28], the authors of [29] pro-
pose the client-side includes (CSI) by merging HPP and ESI.
In order to provide support for CSI in the Internet Explorer
Web browser, the authors propose a generic downloadable
wrapper (plug-in) that uses JavaScript and ActiveX. The
wrapper pulls and caches at the client side the template and
fragments that are associated with a requested DWP, assem-
bles them together according to the ESI directives in the tem-
plate, and finally renders the page. According to the authors,
CSI is suitable for “addressing the last mile” and it better suits
low-bandwidth dial-up users.

The original CSI approach, as proposed in [28], employs
full caching and targets low-bandwidth clients. However, this
approach does not provide full fragmentation, since the
cached parts of a document cannot be reused by other ones.
The improved version, as proposed in [29], supports full frag-
mentation by allowing arbitrary content fragments to be
cached and reused by any templates at the client browser.

POLYMORPHISM: A SECOND DIMENSION OF
CONTENT DYNAMISM

As discussed above, caching at the fragment level requires the
existence of a page layout/template that dictates a strict
arrangement for cached DWC fragments. If we loosen up this
restriction by allowing for arbitrary arrangements of frag-
ments, we introduce polymorphism (in Greek: the ability of
something to show different phases/morphs) in DWC caching.

The approach found in [30] provides full support for proxy-
side arbitrary polymorphism by switching between a list of
available templates for a specific dynamic page. According to
this approach, a client request for a dynamic page (e.g.,
www.server.com/pagel.php?id=2) is always routed to the ori-
gin Web server and causes the execution of the original script
(in this case the homepage.php). This execution is necessary
for determining the desired template for pagel.php at run
time. The selected template is then pushed to the proxy server
(if not cached there) and parsed for identifying which frag-
ments should be reused from cache and which ones should be
requested fresh from the server. The performance analysis
conducted in [30] demonstrated solid bandwidth reductions
when applying fragment caching; however, performance analy-
sis for other critical metrics, such as scalability and responsive-
ness, remains to be seen. We believe that both the necessary
routing of each request to the origin content server and the
invocation of the original script can hurt client response time
and server scalability, respectively. Nevertheless, the tech-
niques introduced in this approach are an excellent starting
point for further research.

We also find limited support for polymorphism in ESI.
Instead of choosing from the template pool, basic ESI branch-
ing commands can reorganize parts of the layout inside a tem-
plate, according to client preferences. In [30], ESI is extended
by providing arbitrary support for polymorphism at the proxy.
This support, however, is achieved through vendor-specific
code.

As we stated earlier, polymorphism can be realized as a
standalone practice without the use of content fragments with
a dynamic arrangement, a practice that we call flat polymor-
phism. In this case, the script that generates an entire dynamic
page must provide the right mechanisms that internally rear-
range the layout of the content according to, for example, the
client’s needs and expectations. Unlike the approach discussed
in [30], flat polymorphism is not suitable for content caching

ALi'ﬁ%Eeégﬁ?ﬂﬁﬁ’iiib'éﬁ(IJHgtSﬁNéW&WO?IﬁQtS%WGM?EXISZGW' Downloaded on November 11,2025 at 22:23:55 UTC from IEEE Xplore. Restrictions a@;}y.

Automatic fragment detection: [27]

Oonn - -

More recent

|Server-side DCCP: [1 6]|

JFragmentation + server-side caching: [12]|

found in [33] piggybacks a Java
object into a dynamically generated

| Active caching: [33, 34] | — >

Fragmentation: [13, XCache, Cold Fusion]

Server-side fragment caching: [18, 19]

document, which is then cached at
the proxy. The proxy provides a
Java runtime environment in which

Server-side fragment caching: [1 7]|

that object executes in order to

| HPP: [28] |

| Proxy-side DCCP [16]

modify the dynamic parts of the
cached document according to a
client’s preferences. Examples of
document modifications include
advertising banner rotation, log-
ging user requests, SSI execution

Support by modern
scripting languages
(ASP, PHP, CFM

CGl: pioneer
method with no

Delta encoding: [32]

_,i_polymorphism/V
supported by:

Flat optimizations

and even Delta compression.
Besides these general types of

Form-based caching: [24]

modification, the Java object can
personalize cached documents by
retrieving personal information
from the application database at

C: Caching
F: Fragmentation
P: Polymorphism

B Figure 6. The CFP framework with the plotted proposed approaches and technologies. The

numbers relate to the reference numbers in the bibliography.

and reuse, since the entire script must execute each time a
client request arrives and content chunks are not stored sepa-
rately. Support for this form of polymorphism is provided by
any scripting language.

CACHING WITH DELTA ENCODING

Delta encoding is a popular technique for efficiently com-
pressing a file relatively to another one called the “base” file
[31]. This is achieved by computing and storing the difference
between the file being compressed and the base file. Stream-
ing media compression, displaying differences between files
(the UNIX diff command) and backing-up data are common
applications of Delta encoding.

Under the assumption that consecutive client requests for
a specific URI would generate a sequence of moderately dif-
ferent dynamic pages, Delta encoding can be exploited as an
alternative for caching dynamic content. In [32], the caching
of a base file for each group (also called Class) of correlated
documents (i.e., pages that share a common layout) is pro-
posed. With the base file cached, the next client request
would force the content middleware to compute the Delta
between the new dynamic page that the client would normally
receive and the base file. The computed Delta is then trans-
mitted from the content middleware to the side where the
base file is cached for computation of the new dynamic page.
Eventually, the result is transmitted to the client. An interest-
ing feature of this “class-based delta-encoding” approach is
that the base file can be cached either at the server-side, at
the proxy-side, or even at the client browser itself, as long as
the required infrastructure exists. In the latter case, Delta
encoding could benefit low-bandwidth users. Solid bandwidth
savings and reduced client perceived latency are demonstrated
in [32]; however, those performance gains reduce the average
system throughput to 75 percent due to the increase of the
CPU overhead for computing the Deltas. Nevertheless, we
consider Delta encoding, in association with fine-grained
caching, for caching DWC as an exciting open topic of
research.

ACTIVE CACHING
The notion of active caching refers to the ability possessed by

a caching middleware to manipulate cached content instead of
requesting fresh versions of it from the server. The approach

the server side. Data chunks of per-
sonal information are kept by the
object for future reuse.

Building upon this approach, a
more general form of DWC caching using active caching is
suggested in [34]. This one is very similar to the “form-based”
approach discussed above in the sense that the Java object
manipulates the HTTP post variables (the Form input) for
filling the dynamic parts of the cached document.

Both active-caching approaches combine the advantages of
proxy-side caching while providing some support for fragmen-
tation. They do not employ full fragmentation, since the frag-
ments are not decoupled from the template (i.e., are not
stored separately), and therefore cannot be cached and
reused.

ACTIVE XML

An approach similar to active caching is Active XML (AXML)
[35]. A template file designed according to AXML employs
calls/references to Web Services, that look like <sc>rent
dvd.com/getPoPularDvdList () </sc>, and return the
dynamic parts of the template. A runtime is required at the
location where the templates are cached that parses the tem-
plates and triggers the calls to Web services.

AXML is an alternative form of fragmentation in which
the template of the dynamic page is cached at the proxy, but
the fragments themselves are substituted by function calls.
Another strong point of AXML is that the references to XML
services embedded in a template can be reused by other tem-
plates, in this wayallowing for arbitrary fragmentation.

CAPTURING DWC APPROACHES WITHIN THE

CFP FRAMEWORK

We plot on the CFP framework the surveyed approaches and
technologies that employ at least one of the three principles
(Fig. 6). This allows for a high-level comparison, as well as
identification of the evolution of research.

In order to put these approaches in a chronological per-
spective, a relative time dimension is indicated through a
gray-scale background. The darker the background of an
approach, more recent the approach is. At the heart of the
framework, with null values for each principle and a white
background, we place CGI as the primary middleware that
employs no optimizations.

An immediate observation from Fig. 6 is that the evolution
of research with regard to DWC has been toward refining the

Atgly)rized licensed use limited to: University of Pittsburgh Library System. Downloaded on NOYEE%@&ﬁ%ﬂ%%&%%W&grmﬁ%iéﬂo;eznﬁe@tﬂa@&sm.

employment of the three principles, and finding ways of com-
bining them. In other words, DWC tends to be cached closer
to clients (for faster response times) at finer granularities (for
higher caching reuse), and served to clients under various pos-
sible arrangements (to support personalization). It seems that
this evolution parallels that of other interactive, online sys-
tems such as operating systems and database servers.

The evolution in caching arises first in response to the
increasing processing bottleneck caused by redundant genera-
tion of content at the server side, and then the increasing num-
ber mobile users with limited bandwidth. Advances in
fragmentation arise mainly in response to the diversity and
complexity of content that modern Web applications support.
For example, a typical online booking Web page may include
information for all alternative flights itineraries, recommended
hotels and upcoming events at the destination, currency
exchange rates and car rentals for the country being visited,
and excursion packages. Consequently, this diversity requires
the dissection of a dynamic page down to content fragments
with different caching characteristics. Another important rea-
son for the introduction of fragmentation is performance, since
the fragments can be concurrently processed at the server side.
Finally, polymorphism is driven by the need to further person-
alize dynamic pages with fragments of personal interest under
user-selected layout. Examples can be found in the Yahoo!
Web site and, more recently, in Google’s News section.

WHAT’S NEXT? FUTURE TRENDS

Over the past ten years, DWC technology has evolved across

the three dimensions of caching, fragmentation, and polymor-

phism. During the early stages, the need for increased
response times and reduced network utilization motivated the
evolution of caching strategies, while the diversity of modern

Web applications stimulated the research on fragmentation

and polymorphism. Modern Web applications, however, are

always in need of more efficient and sophisticated means of

DWC delivery. Two open challenges that can stimulate fur-

ther research, in our opinion, are the following:

* More Efficient User Authentication: The procedure of user
authentication is a typical application of DWC that has
the overhead of secured server-side communication and
computation. A possible optimization would be the
migration of the authentication procedure from the serv-
er side closer to the client side. Still, this requires the
secure shipping and hosting of vendor code and applica-
tion data from the server to (for example) the proxy side.
As we have seen in the “Taxonomy of Approaches” sec-
tion, there exist a number of approaches that are a few
steps away from achieving this. Nevertheless, an open-
standard middleware that migrates both code and data to
proxies, or even to the client itself, remains to be seen.

* Cached Web Transactions: Since data replication at the
proxy side is currently exploited for read-only purposes,
client requests for data updates (i.e., an order placement
or a message post) require server-side processing, proxy
cache invalidation, and database update. The open chal-
lenge of supporting cached transactions without the
immediate intervention of the server and the database
extends the user-authentication example by requiring
that the cached data be writable and that cached vendor
code implements the appropriate database consistency
model between cached and server-side data. Potential
solutions must challenge important issues, such as limited
service availability, imposed by a strong consistency
model.

Other future research paths are identified by combining or
refining the proposed techniques. For instance, we have seen
above that Delta encoding is a promising approach toward
DWC caching, especially for low-bandwidth users; still, it does
not support content fragments. Consequently, a fine-grained
adaptation of Delta encoding to meet modern Web applica-
tions should prove to be an interesting research topic.

CONCLUSION

This survey has brought together a decade of research on
dynamic Web content (DWC), and compared it in a struc-
tured and abstract manner with the use of the CFP frame-
work. The framework is based on the principles of DWC
caching, fragmentation, and polymorphism as the three main
paths on which research has evolved. Based on our survey
findings, future trends and paths in this research have been
discussed and two open challenges, namely, efficient user
authentication and caching of Web transactions, have been
identified. In the near future, we expect to see a new wave of
research proposals on this very interesting topic of dynamic
Web content acceleration. We hope that this survey can serve
as a point of reference for these proposals and new research
studies.

REFERENCES

[1] A. Feldmann et al., “Performance of Web Proxy Caching in
Heterogeneous Bandwidth Environments,” IEEE INFOCOM
Conf., 1999, pp. 107-16.

[2] C. Amza et al., “Specification and Implementation of Dynamic
Web Site Benchmarks,” IEEE 5th Annual Wksp. Workload Char-
acterization, 2002.

[3] Fastcgi white paper from open market, Inc, http://www.fast
cgi.com/devkit/doc/fastcgi-whitepaper/fastcgi.htm

[4] Y.-H. Liu et al., A Distributed Scalable Web Server and Its Pro-
gram Visualization in Multiple Platforms,” IEEE ICDCS Conf.,
1996, pp. 665-72.

[5] E. Cecchet et al., "Performance Comparison of Middleware
Architectures for Generating Dynamic Web Content,” Middle-
ware Conf., 2003, pp. 282-304.

[6] S. Papastavrou et al., “An Evaluation of the Java-Based
Approaches to Web Database Access,” Int’l. J. Cooperative
Info. Sys., vol. 10, no. 4, 2001, pp. 401-22.

[7] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Flash: An Efficient
and Portable Web Server,” Proc. USENIX 1999 Annual Techni-
cal Conf., 1999, pp. 199-212.

[8] The NCSA Zeus Web server, http://www.zeus.com

[9] The Apache Web server, http://www.apache.org

[10] M. Welsh et al., “SEDA: An Architecture for Well-Condi-
tioned, Scalable Internet Services,” Symp. Operating Systems
Principles, 2001, pp. 230-43.

[11]). R. Larus and M. Parkes, “Using Cohort Scheduling to
Enhance Server Performance,” LCTES/OM, 2001, pp. 182-87.
[12] J. Challenger et al., “A Publishing System for Efficiently Creat-
ing Dynamic Web Content,” IEEE INFOCOM Conf., 2000, pp.

844-53.

[13] S. Papastavrou et al., “Fine-Grained Parallelism in Dynamic
Web Content Generation: The Parse Dispatch and Approach,”
CooplS/DOA/ODBASE Conf., 2003, pp. 573-88.

[14] A. lyengar and J. Challenger, “Improving Web Server Perfor-
mance by Caching Dynamic Data,” USENIX Symp. Internet
Technologies and Systems, 1997.

[15] V. Holmedahl, B. Smith, and T. Yang, “Cooperative Caching
of Dynamic Content on A Distributed Web Server,” IEEE Int’l.
Symp. High-Performance Distributed Computing, 1998, p. 243.

[16] B. Smith et al., “Exploiting Result Equivalence in Caching
Dynamic Web Content,” USENIX Symp. Internet Technologies
and Systems, 1999.

[17]1 K. Yagoub et al., “Caching Strategies for Data-Intensive Web
Sites,” VLDB, 2000 pp. 188-99.

ALI'E%'Eeééiﬁ’?ﬂﬁﬁ’i‘ib‘éﬁ&ﬂétsﬁNé%‘&eﬁ%ﬁﬁé‘ﬁ%@b@ﬁ?fxﬁetﬁsﬂ- Downloaded on November 11,2025 at 22:23:55 UTC from IEEE Xplore. Restrictions a%y.

[18] A. Datta et al., “A Comparative Study of Alternative Middle
Tier Caching Solutions to Support Dynamic Web Content
Acceleration,” VLDB, 2001, pp. 667-70.

[19] A. Datta et al., “Dynamic Content Acceleration: A Caching
Solution to Enable Scalable Dynamic Web Page Generation,”
SIGMOD Conf., 2001, p. 616.

[20] Xcache: The Cache Management Solution, http://
www.xcache.com

[21] J. Wang, “A survey of Web Caching Schemes for the Inter-
net,” ACM Comp. Commun. Review, vol. 25, no. 9, 1999, pp.
36-46.

[22] A. Wolman et al., “On the Scale and Performance of Cooper-
ative Web Proxy Caching,” Symp. Operating Systems Principles,
1999, pp. 16-31.

[23] N. T. Spring and D. Wetherall, “A Protocol-Independent Tech-
nique for Eliminating Redundant Network Traffic,” ACM SIG-
COMM Conf., 2000, pp. 87-95.

[24] Q. Luo and J. F. Naughton, “Form-Based Proxy Caching For
DatabaseBacked Web Sites,” VLDB, 2001, pp. 191-200.

[25] The Edge-Side Includes Initiative, http://www.esi.org

[26] B. Krishnamurthy, C. E. Wills, and Y. Zhang, “On the Use and
Performance of Content Distribution Networks,” Internet Mea-
surement Wksp., 2001, pp. 169-82.

[27] L. Ramaswamy et al., “Automatic Fragment Detection in
Dynamic Web Pages and Its Impact on Caching,” IEEE Trans.
Knowl. Data Eng., vol. 17, no. 6, 2005, pp. 859-74.

[28] F. Douglis, A. Haro, and M. Rabinovich, “HPP: HTML Macro-
Preprocessing To Support Dynamic Document Caching,”
USENIX Symp. Internet Technologies and Systems, 1997.

[29] M. Rabinovich et al., “Moving Edge-Side Includes to the Real
Edge — The Clients,” USENIX Symp. Internet Technologies and
Systems, 2003, pp. 87-95.

[30] A. Datta et al., “Proxy-based Acceleration of Dynamically
Generated Content on the World Wide Web: An Approach and
Implementation,” SIGMOD Conf., 2002, pp. 97-108.

[31] J. J. Hunt, K.-P. Vo, and W. F. Tichy, “Delta Algorithms an
Empirical Analysis,” ACM Trans. Software Eng. and Methodolo-
gy, vol. 7, no. 2, 1998, pp. 192-214.

[32] K. Psounis, “Class-Based Delta-Encoding: A Scalable Scheme
for Caching Dynamic Web Content,” IEEE ICDCS Wksps., 2002,
pp. 799-805.

[33] P. Cao, J. Zhang, and K. Beach, “Active Cache: Caching
Dynamic Contents on the Web,"” Distributed Systems Eng., vol.
6, no. 1, 1999, pp. 43-50.

[34] Q. Luo et al., "Active Query Caching for Database Web
Servers,” WebDB, 2000, pp. 92-104.

[35] S. Abiteboul et al., “Active XML: Peer-to-Peer Data and Web
Services Integration,” VLDB, 2002, pp. 1087-90.

BIOGRAPHIES

STAVROS PAPASTAVROU (stavrosp@ucy.ac.cy) is a full-time teacher at
St Barnabas School for the Blind in Nicosia and a Ph.D. Student at
the University of Cyprus. His current research focuses on acceler-
ating Dynamic Web Content practices, Proxy Caching, Mobile

Agents and Java Middleware Technology. In 1999, his Bachelors
Thesis received the Best Paper Award in IEEE's International Con-
ference in Data Engineering. He has also published a number of
papers in journals and peer-reviewed conferences. He has worked
as a senior Web developer for the United States Chamber of Com-
merce. He is currently developing new techniques for making
computer technology and programming interfaces accessible to
visually impaired people.

GEORGE SAMARAS (cssamara@ucy.ac.cy) undertook undergraduate
studies at the University of Athens (B.Sc. in Mathematics,
1982)and graduate studies at the Rensselaer Polytechnic Institute,
USA (M.Sc., 1982, and Ph.D., 1989, in Computer Science). He has
worked in the applied research program of IBM,s Communica-
tions and Networks Centre at Research Triangle Park, North Car-
olina (1990-1993), and has taught at the University of North
Carolina at Chapel Hill (Visiting Assistant Professor, 1990-1993).
He was also a member of IBM’s International Standards Commit-
tees for issues related to distributed transaction processing
(OSI/TP, XOPEN,OMG). His research interests are concerned with
relational and object orient ed databases, distributed transaction
processing, commit protocols and mobile computing.

Paraskevas Evripidou (skevos@ucy.ac.cy) undertook undergradu-
ate studies in Electrical Engineering at the Higher Technical Insti-
tute of Cyprus (H.N.D. in 1981) and University of Southern
California (B.Sc. in 1985). He undertook graduate studies at the
University of Southern California (M.Sc. in 1986 and Ph.D in 1990
in Computer Engineering). He has taught at the University of
Southern California, USA (part-time faculty, 1989-1990) and at
the Southern Methodist University, USA (Assistant Professor,
1990-1994). His research interests are: Parallel Processing and
Computer Architecture, Data-Flow Systems, and Functional Pro-
gramming and Parallelizing Compilers.

PANOS K. CHRYSANTHIS (panos@cs.pitt.edu) is a Professor of Com-
puter Science at the University of Pittsburgh and an Adjunct Pro-
fessor at Carnegie Mellon University. He received his B.S. from the
University of Athens, Greece and his M.S. and Ph.D. from the Uni-
versity of Massachusetts at Amherst. His current research focus is
on mobile and pervasive data management including sensor net-
works and data streams. In 1995, he was a recipient of the
National Science Foundation CAREER Award for his investigation
on the management of data for mobile and wireless computing.
His research accomplishments have been published in over 100
papers in journals and peer-reviewed conferences and workshops
in the field of data management. In addition, his publications
include a book and book chapters on transaction processing and
data access in distributed, mobile and web databases. He is on
the editorial board of the VLDB Journal, and was program chair
of several workshops and conferences related to data manage-
ment and databases. More recently, he was the IEEE ICDE 2004
PC Chair for the area of distributed, parallel and mobile databas-
es, the PC Co-chair for ACM MobiDE 2006 and the General Chair
of MobiDE 2003 and MDM 2005. He is a member of ACM, IEEE
and USENIX.

ALéla)rized licensed use limited to: University of Pittsburgh Library System. Downloaded on NOYEE%@&ﬁﬂﬁ?ﬂ%%&%%W&grw%iéﬂqelnﬁ%qﬁ%&sﬂ%%

