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ABSTRACT
We propose an In-Network Data-Centric Storage (INDCS) scheme
for answering ad-hoc queries in sensor networks. Previously pro-
posed In-Network Storage (INS) schemes suffered from Storage
Hot-Spots that are formed if either the sensors’ locations are not
uniformly distributed over the coverage area, or the distribution
of sensor readings is not uniform over the range of possible read-
ing values. Our K-D tree based Data-Centric Storage (KDDCS)
scheme maintains the invariant that the storage of events is dis-
tributed reasonably uniformly among the sensors. KDDCS is com-
posed of a set of distributed algorithms whose running time is
within a poly-log factor of the diameter of the network. The num-
ber of messages any sensor has to send, as well as the bits in those
messages, is poly-logarithmic in the number of sensors. Load bal-
ancing in KDDCS is based on defining and distributively solving
a theoretical problem that we call the Weighted Split Median prob-
lem. In addition to analytical bounds on KDDCS individual algo-
rithms, we provide experimental evidence of our scheme’s general
efficiency, as well as its ability to avoid the formation of storage
hot-spots of various sizes, unlike all previous INDCS schemes.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed
databases, Query processing

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Sensor Network, Power-Aware, Distributed Algorithms

1. INTRODUCTION
Sensor networks provide us with the means of effectively mon-

itoring and interacting with the physical world. As an illustrative
example of the type of sensor network application that concerns
us here, consider an emergency/disaster scenario where sensors are
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deployed in the area of the disaster [17]. It is the responsibility of
the sensor network to sense and store events of potential interest.
An event is composed of one or more attributes (e.g. temperature,
carbon monoxide level, etc.), the identity of the sensor that sensed
the event, and the time when the event was sensed. As first respon-
ders move through the disaster area with hand-held devices, they
issue queries about recent events in the network. For example, the
first responder might ask for the location of all sensor nodes that
recorded high carbon monoxide levels in the last 15 minutes, or
he might ask whether any sensor node detected movement in the
last minute. Queries are picked up by sensors in the region of the
first responder. The sensor network is then responsible for answer-
ing these queries. The first responders use these query answers to
make decisions on how to best manage the emergency.

The ad-hoc queries of the first responders will generally be multi-
dimensional range queries [9], that is, the queries concern sensor
readings that were sensed over a small time window in the near past
and that fall in a given range of the attribute values. In-Network
Storage (INS) is a storage technique that has been specifically pre-
sented to efficiently process this type of queries. INS involves stor-
ing events locally in the sensor nodes. Storage may be in-network
because it is more efficient than shipping all the data (i.e., raw sen-
sor readings) out of the network (for example to base stations), or
simply because no out-of-network storage is available. All INS
schemes already presented in literature were Data-Centric Storage
(DCS) schemes [15]. In any In-Network Data-Centric Storage (IN-
DCS) scheme, there exists a function from events to sensors that
maps each event to an owner sensor based on the value of the at-
tributes of that event. The owner sensor will be responsible for
storing this event. The owner may be different than the sensor that
originally generated the event. To date, the Distributed Index for
Multi-dimensional data (DIM) scheme [9] has been shown to ex-
hibit the best performance among all proposed INDCS schemes in
dealing with sensor networks whose query loads are basically com-
posed of ad-hoc queries .

In DIM [9], the events-to-sensors mapping is based on a K-D tree
[3], where the leaves R form a partition of the coverage area, and
each element of R contains either zero or one sensor. The forma-
tion of the K-D tree consists of rounds. Initially, R is a one element
set containing the whole coverage area. In each odd/even round r,
each region R ∈ R that contains more than one sensor is bisected
horizontally/vertically. Each time that a region is split, each sensor
in that region has a bit appended to its address specifying which
side of the split the sensor was on. Thus, the length of a sensor’s
address (bit-code) is its depth in the underlying K-D tree. When a
sensor generates an event, it maps such event to a binary code based
on a repetitive fixed uniform splitting of the attributes’ ranges in a
round robin fashion. For our purposes, it is sufficient for now to
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consider the cases that the event consists of only one attribute, say
temperature. Then, the high order bits of the temperature are used
to determine a root-to-leaf path in the K-D tree, and if there is a
sensor in the region of the leaf, then this sensor is the owner of this
event. Due to the regularity of regions in this K-D tree, the routing
of an event from the generating sensor to the owner sensor is partic-
ularly easy using Greedy Perimeter Stateless Routing (GPSR) [6].
Full description of DIM is presented in Section 2.

Though it is the best DCS scheme so far, DIM suffers from sev-
eral problems. One problem is that events may well be mapped to
orphan regions that contain no sensors. Thus, DIM requires some
kludge to assign orphan regions to neighboring sensors.

Another major problem in DIM is that of storage hot-spots. Stor-
age hot-spots may occur if the sensors are not uniformly distributed.
A storage hot-spot occurs when relatively many events are assigned
to a relatively small number of the sensors. For example, if there
was only one sensor on one side of the first bisection, then half of
the events would be mapped to this sensor if the events were uni-
formly distributed over the range of possible events. Due to their
storage constraints, the presence of a storage hot-spot leads to in-
creasing the dropping rate of events by overloaded sensors. Clearly,
this has a significant impact on the quality of data (QoD) generated
by the sensor network. Queries for events in a storage hot-spot may
be delayed due to contention at the storage sensors and the sur-
rounding sensors. More critically, the sensors in and near the hot-
spot may quickly run out of energy, due to the high insertion/query
load imposed to them. This results in a loss of the events generated
at these sensors, the events stored at these sensors, and possibly a
decrease in network connectivity. Increased death of sensors results
in decreasing the coverage area and causes the formation of cover-
age gaps within such area. Both of which consequently decrease
QoD. Certainly, it is not desirable to have a storage scheme whose
performance and QoD guarantees rest on the assumption that the
sensors are uniformly distributed geographically.

Storage hot-spots may also occur in DIM if the distribution of
events is not uniform over the range of possible events. It is difficult
to imagine any reasonable scenario where the events are uniformly
distributed over the range of all possible events. Consider the sit-
uation where the only attribute sensed is temperature. One would
expect that most temperature readings would be clustered within a
relatively small range rather than uniform over all possible temper-
atures. Without any load balancing, those sensors responsible for
temperatures outside this range would store no events.

In this paper, we provide a load-balanced INDCS scheme based
on K-D trees, that we, not surprisingly, call K-D tree based DCS
(KDDCS). In our KDDCS scheme, the refinement of regions in the
formation of the K-D tree has the property that the numbers of sen-
sors on both sides of the partition are approximately equal. As a
result of this, our K-D tree will be balanced, there will be no or-
phan regions, and, regardless of the geographic distribution of the
sensors, the ownership of events will uniformly distributed over
the sensors if the events are uniformly distributed over the range
of possible events. We present a modification of GPSR routing,
namely Logical Stateless Routing (LSR), for the routing of events
from their generating sensors to their owner sensors, that is com-
petitive with the GPSR routing used in DIM. In order to maintain
load balance in the likely situation that the events are not uniformly
distributed, we present a re-balancing algorithm that we call K-D
Tree Re-balancing (KDTR). Our re-balancing algorithm guarantees
load balance even if the event distribution is not uniform. KDTR
has essentially minimal overhead. We identify a problem, that we
call the weighted split median problem, that is at the heart of both
the construction of the initial K-D tree, and the re-balancing of the

K-D tree. In the weighted split median problem, each sensor has an
associated weight/multiplicity, and the sensors’ goal is to distribu-
tively determine a vertical line with the property that the aggregate
weight on each side of the line is approximately equal. We give a
distributed algorithm for the weighted split median problem, and
show how to use this algorithm to construct our initial K-D tree,
and to re-balance the tree throughout the network lifetime.

We are mindful of the time, message complexity, and node stor-
age requirements, in the design and implementation of all of our
algorithms. The time for all of our algorithms is within a poly-log
factor of the diameter of the network. Obviously, no algorithm can
have time complexity less than the diameter of the network. The
number of messages, and number of bits in those messages, that
any particular node is required to send by our algorithms is poly-
logarithmic in number of sensors. The amount of information that
each node must store to implement one of our algorithms is loga-
rithmic in the number of sensors.

Experimental evaluation shows that the main advantages of KD-
DCS, when compared to the pure DIM, are:

• Achieving a better data persistence by balancing the storage
responsibility among sensor nodes.

• Increasing the QoD by distributing the storage hot-spot events
among a larger number of sensors.

• Increasing the energy savings by achieving a well balanced
energy consumption overhead among sensor nodes.

The rest of the paper is organized as follows. Section 2 presents
an overview of the differences between DIM and KDDCS. Section
3 describes the weighted split median problem, and our distributed
solution. Section 4 describes the components of KDDCS. Section 5
presents our K-D tree re-balancing algorithm. Experimental results
are discussed in Section 6. Section 7 presents the related work.

2. OVERVIEW OF DIM VS. KDDCS
In this section, we will briefly describe the components of both

schemes, DIM and KDDCS, and highlight the differences between
the two schemes using a simple example.

We assume that the sensors are arbitrarily deployed in the con-
vex bounded region R. We assume also that each sensor is able to
determine its geographic location (i.e., its x and y coordinates), as
well as, the boundaries of the service area R. Each node is assumed
to have a unique NodeID, like a MAC address. Sensor nodes are
assumed to have the capacity for wireless communication, basic
processing and storage, and they are associated with the standard
energy limitations.

The main components of any DCS scheme are: the sensor to
address mapping that gives a logical address to each sensor, and
the event to owner-sensor mapping that determines which sensor
will store the event. The components of DIM and KDDCS are:

• Repetitive splitting of the geographic region to form the un-
derlying K-D tree, and the logical sensor addresses.

• Repetitive splitting of the attribute ranges to form the bit-
code for an event.

• The routing scheme to route an event from the generating
sensor to the owner sensor.

We now explain how DIM implements these components.
Let us start with the formation of the K-D tree in DIM. DIM

starts the network operation with a static node to bit-code mapping
phase. In such phase, each sensor locally determines its binary
address by uniformly splitting the overall service area in a round
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Figure 1: Initial network configuration

Figure 2: DIM K-D tree

robin fashion, horizontally then vertically, and left shifting its bit-
code with every split by 0 (or 1) bit when falling above (or below)
the horizontal split line (similarly, by a 0 bit if falling on the left
of the vertical split line, or a 1 bit otherwise). Considering the
region as partitioned into zones, the process ends when every sensor
lies by itself in a zone, such that the sensor address is the zone bit
code. Thus, the length of the binary address of each sensor (in bits)
represents its depth in the underlying K-D tree. Note that from
a sensor address, one can determine the physical location of the
sensor. In case any orphan zones exist (zones physically containing
no sensors in their geographic area), the ownership of each of these
zones is delegated to one of its neighbor sensors. As an example,
consider the simple input shown in Figure 1. The K-D tree formed
by DIM is shown in Figure 2. In this figure, the orphan zone (01)
is assumed to be delegated to node 001, which is the least loaded
among its neighbors.

We now turn to the construction of an event bit-code in DIM.
The generation of the event bit-code proceeds in rounds. As we
proceed, there is a range Rj associated with each attribute j of the
event. Initially, the range Rj is the full range of possible values for
attribute j. We now describe how a round i ≥ 0 works. Round i,
determines the (i+1)th high order bit in the code. Round i depends
on attribute j = i mod k of the event, where k is the number of
attributes in the event. Assume the current value of Rj is [a, c], and
let b = (a + c)/2 be the midpoint of the range Rj . If the value of
attribute j is in the lower half of the range Rj , that is in [a, b], then
the ith bit is 0, and Rj is set to be the lower half of Rj . If the value
of attribute j is in the upper half of the range Rj , that is in [b, c],
then the ith bit is 1, and Rj is set to be the upper half of Rj .

To show the events to bit-code mapping in DIM, consider that
the events in our example (shown in Figure 2) are composed of
two attributes, temperature and pressure, with ranges (30, 70) and
(0, 2), respectively. Let an event with values (55, 0.6) be generated
by Node N3(11). The 4 high-order bits of the bit-code for this
event are 1001. This is because temperature is in the top half of
the range [30, 70], pressure is in the bottom half of the range [0, 2],
then temperature is in the bottom half of the range [50, 70], and
pressure is in the top half of the range [0, 1]. Thus, the event should
be routed toward the geometric location specified by code 1001.

In DIM, an event is routed using Greedy Perimeter Stateless
Routing (GPSR) [6] to the geographic zone with an address match-
ing the high order bits of the event bit-code. In our example, the
sensor 10 will store this event since this is the sensor that matches

Figure 3: KDDCS K-D tree

the high order bits of the bit-code 1001. If there is no sensor in this
region, then, the event is stored in a neighboring region.

We now highlight the differences between our proposed KDDCS
scheme, and DIM. The first difference is how the splitting is accom-
plished during the formation of the K-D tree. In KDDCS, the split
line is chosen so that there are equal numbers of sensors on each
side of the split line. Recall that, in DIM, the split line was the ge-
ometric bisector of the region. Thus, in KDDCS, the address of a
sensor is a logical address and does not directly specify the location
of the sensor. Also, note that the K-D tree in KDDCS will be bal-
anced, while this will not be the case in DIM if the sensors are not
uniformly distributed. This difference is illustrated by the K-D tree
formed by KDDCS shown in Figure 3 for the same simple input
shown in Figure 1. The second difference is that in determining the
owner sensor for an event, the range split point b need not be the
midpoint of the range Rj . The value of b is selected to balance the
number of events in the ranges [a, b] and [b, c]. Thus, in KDDCS,
the storage of events will be roughly uniform over the sensors. The
third difference is that, since addressesare not geographic, KDDCS
needs a routing scheme that is more sophisticated than GPSR.

3. THE WEIGHTED SPLIT MEDIAN
PROBLEM

Before presenting our KDDCS scheme,we first define the weighted
split median problem in the context of sensor networks and present
an efficient distributed algorithm to solve the problem. Each sen-
sor si initially knows wi associated values v1, . . . vwi . Let W =Pn

i=1 wi be the number of values. The goal for the sensors is to
come to agreement on a split value V with the property that approx-
imately half of the values are larger than V and half of the values
are smaller than V .

We present a distributed algorithm to solve this problem. The
time complexity of our algorithm is O(log n) times the diameter of
the communication network in general, and O(1) times the diam-
eter if n is known a priori within a constant factor. Each node is
required to send only O(log n) sensor ID’s. The top level steps of
this algorithm are:

1. Elect a leader sensor s�, and form a breadth first search (BFS)
tree T of the communication network that is rooted at s�.

2. The number of sensors n, and the aggregate number of values
W is reported to s�.

3. The leader s� collects a logarithmically-sized uniform ran-
dom sample L of the values. The expected number of times
that a value from sensor si is included in this sample is

Θ
“

wi log n
W

”
.

4. The value of V is then the median of the reported values in
L, which s� reports to all of the sensors.

We need to explain how these steps are accomplished, and why the
algorithm is correct.
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We start with the first step. We assume that each sensor has a
lower bound k on the number of sensors in R. If a sensor has no
idea of the number of other sensors, it may take k = 2.

Then, each sensordecides independently, with probability Θ
`

ln k
k

´
,

to become a candidate for the leader. Each candidate sensor sc ini-
tiates the construction of a BFS tree of the communication graph
rooted at sc by sending a message Construct(sc) to its neighbors.
Assume a sensor si gets a message Construct(sc) from sensor sj .
If this is the first Construct(sc) message that it has received, and
sc’s ID is larger than the ID of any previous candidates in prior
Construct messages, then:

• si makes sj its tentative parent in the BFS tree T , and
• forwards the Construct(sc) message to its neighbors.

If the number of candidates was positive, then, after time pro-
portional to the diameter of the communication network, there will
be a BFS tree T rooted at the candidate with the largest ID. Each
sensor may estimate an upper bound for the diameter of the com-
munication graph to be the diameter of R divided by the broadcast
radius of a sensor. After this time, the sensors know that they have
reached an agreement on T , or that there were no candidates. If
there were no candidates, each sensor can double its estimate of
k, and repeat this process. After O(log n) rounds, it will be the
case that k = Θ(n). Once k = Θ(n), then, with high probability
(that is, with probability 1 − 1

poly(n)
), the number of candidates

is Θ(log n). Thus, the expected time complexity to accomplish
the first step is O(n log n). Assuming that each ID has O(log n)
bits, the expected number of bits that each sensors has to send is
O(log2 n) since there are are likely only O(log n) candidates on
the first and only round in which there is a candidate. A log n fac-
tor can be removed if each sensor initially knows an estimate of n
that is accurate to within a multiplicative constant factor.

The rest of the steps will be accomplished by waves of root-to-
leaves and leaves-to-root messages in T . The second step is easily
accomplished by a leave-to-root wave of messages reporting on the
number of sensors and number of values in each subtree. Let Ti be
the subtree of T rooted at sensor si, and Wi the aggregate number
of values in Ti. The value Wi that si reports to its parents is wi

plus the aggregate values reported to si by its children in T . The
sensor count that si reports to its parents is one plus the sensor
counts reported to si by its children in T .

The third step is also accomplished by a root-to-leaves wave and
then a leaves-to-root wave of messages. Assume a sensor si wants
to generate a uniform random sample of Li of the values stored
in the sensors in Ti. The value of L� for the leader is Θ(log n).
Let si1 , . . . , sid be the children of si in T . Node si generates the
results to Li Bernoulli trials, where each trial has d + 1 outcomes
corresponding to si and its d children. The probability that the
outcome of a trial is si is wi

Wi
, and the probability that the outcome

is the child sij is
wij

Wi
. Then, si informs each child sij how often it

was selected, which becomes the value of Lij ·si, then waits until it
receives samples back from all of its children. si then unions these
samples, plus a sample of values of the desired size from itself, and
then passes that sample back to its parent. Thus, each sensor has to
send O(log n) ID’s.

The leader s� then sets V to be the median of the values of the
sample L, then, in a root-to-leaves message wave, informs the other
sensors of the value of V .

We now argue that, with high probability, the computed median
of the values is close to the true median. Consider a value V̂ such
that only a fraction α < 1

2 of the values are less than V̂ . One
can think of each sampled value as being a Bernoulli trial with out-
comes less and more depending on whether the sampled value is

Figure 4: Logical address assignment algorithm

less than V̂ . The number of less outcomes is binomially distributed
with mean αL. In order for the computed median to be less than
V̂ , one needs the number of less outcomes to be at least L/2, or
equivalently ( 1

2
−α)L more than the mean αL. But the probability

that a binomially distributed variable exceeds its mean μ by a factor

of 1+ δ is at most e
−δ2μ

3 . Thus, by picking the multiplicative con-
stant in the sample size to be sufficiently large (as a function of α),
one can guarantee that, with high probability, the number of values
less than the computed median V cannot be much more than L/2.
A similar argument shows that the number more than the computed
median V can not be much more than L/2.

If the leader finds that n is small in step 2, it may simply ask all
sensors to report on their identities and locations, and then compute
V directly.

Now that we solved the weighted split median problem, we present
the components of the KDDCS scheme in the next section.

4. KDDCS
We now present our KDDCS scheme in details. We explain how

the initial K-D tree is constructed, how events are mapped to sen-
sors, and how events are routed to their owner sensors.

4.1 Distributed Logical Address Assignment
Algorithm

The main idea of the algorithm is that the split lines used to con-
struct the K-D tree are selected so that each of the two resulting
regions contain an equal number of sensors. The split line can be
determined using our weighted split median algorithm with each
sensor having unit weight, and the value for each sensor is either
its x coordinate or its y coordinate. The recursive steps of the al-
gorithm are shown in Figure 4. We now describe in some greater
detail how a recursive step works.

The algorithm starts by partitioning the complete region R hor-
izontally. Thus, the distributed weighted split median algorithm
(presented in section 3) is applied for R using the y-coordinates of
the sensors to be sent to the BFS root. Upon determining weighted
split median of R, sensors having lower y-coordinate than the me-
dian value (we refer to these sensors as those falling in the lower
region of R) assign their logical address to 0. On the other hand,
those sensor falling on the upper region of R assign themselves a 1
logical address. At the end of the first recursive step, the terrain can
be looked at as split into two equally logically loaded partitions (in
terms of the number of sensors falling in each partition).

At the next step, the weighted split median algorithm is applied
locally in each of the sub-regions (lower/upper), while using the
sensors’ x-coordinates, thus, partitioning the sub-regions vertically
rather than horizontally. Similarly, sensors’ logical addresses are
updated by left-shifting them with a 0 bit for those sensors falling
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in the lower regions (in other words, sensor nodes falling on the
left of the weighted median line), or with a 1 bit for sensor nodes
falling in the upper regions (i.e., sensor nodes falling on the right
of the weighted median line).

The algorithm continues to be applied distributively by the dif-
ferent subtrees until each sensor obtains a unique logical address,
using x and y coordinates of sensors, in a round robin fashion, as
the criterion of the split. The algorithm is applied in parallel on
the different subtrees whose root nodes fall at the same tree level.
At the ith recursive step, the algorithm is applied at all intermediate
nodes falling at level i−1 of the tree. Based on the definition of the
weighted split median problem, the algorithm results in forming a
balanced binary tree, such that sensors represent leaf nodes of this
tree (intermediate nodes of the tree are logical nodes, not physical
sensors). The algorithm terminates in log n recursive steps. At the
end of the algorithm, the size of the logical address given to each
sensor will be log n bits.

Recall that the time complexity of our weight split median algo-
rithm is O(d log n), where d is the diameter of the region. Thus,
as the depth of our K-D tree is O(log n), we get that the time com-
plexity for building the tree is O(d log2 n). If the sensors are uni-
formly distributed, then, as the construction algorithm recurses, the
diameters of the regions will be geometrically decreasing. Thus,
in the case of uniformly distributed sensors, one would expect the
tree construction to take time O(d log n). As our weighted split
median algorithm requires each sensor to send O(log n) ID’s, and
our K-D tree has depth O(log n), we can conclude that during the
construction of our K-D tree, the number of ID’s sent by any node
is O(log2 n).

4.2 Event to Bit-code Mapping
In this section, we explain how the event to bit-code mapping

function is determined. Recall that the main idea is to set the split
points of the ranges so that the storage of events is roughly uniform
among sensor nodes. To construct this mapping requires a proba-
bility distribution on the events. In some situations, this distribution
might be known. For example, if the network has been operational
for some period of time, a sampling of prior events might be used
to estimate a distribution. In cases where it is not known, say when
a network is first deployed, we can temporarily assume a uniform
distribution.

In both cases, we use the balanced binary tree as the base tree
to overlay the attribute-specific K-D tree on (Recall that a K-D tree
is formed by k attributes). This is basically done by assigning a
range for each of the k attributes to every intermediate node in the
tree. Note that the non-leaf nodes in the K-D tree are logical nodes
that do not correspond to any particular sensor. One may think of
non-leaf nodes as regions. Any split point p of a node x of tree
level l, where l%k = i, represents a value of attribute i. Such split
point partitions the range of attribute i falling under responsibility
of node x into two subranges such that the the subrange lower than
p is assigned to the left child of x, while the other range is assigned
to x’s right child. Note that the other k − 1 ranges of node x,
corresponding to the remaining k−1 attributes, are simply inherited
by both children of x.

Knowing the data distribution, the split points of the tree should
be predefined in a way to cope with any expected irregularity in
the load distribution among the K-D tree leaf nodes. For example,
given an initial temperature range (30, 70) and knowing that 50%
of the events will fall in the temperature range (65, 70), the root
split point should be defined as 65 (assuming that the temperature
is the first attribute in the event). Therefore, based on the selected
root split point, the left child subtree of the root will be respon-

sible of storing events falling in the temperature range (30, 65),
while the right child subtree will store events falling in the range
(65, 70). Figure 3 gives an example of non-uniform initialization
of split points.

We finish by describing what information is stored in each sensor
node. Each sensor node corresponds to a leaf in the K-D tree. Each
sensor knows its logical address in the tree. Further, each leaf in
the K-D tree knows all the pertinent information about each of its
ancestors in the tree. The pertinent information about each node is:

• The geographic region covered.
• The split line separating its two children.
• The attribute range, and attribute split point, associated with

this region.

From this information, each leaf/sensor can determine the range of
events that will be stored at this sensor. Note that each sensor only
stores O(log n) information about the K-D tree.

4.3 Incremental Event Hashing and Routing
Strictly speaking, the events-to-sensors mapping in DIM actually

produces a geographic location. GPSR routing can then be used to
route that event towards that geographic location. If the destination
is contained in a leaf region with one sensor, then that sensor stores
the event. If the leaf region is an orphan, then one of the sensors in
the neighboring regions will store this event.

In our scheme, the events-to-sensors mapping provides a logical
address. Essentially, all that the sensor generating the event can
determine from this logical address is a general direction of the
owner sensor. Thus, our routing protocol, which we call Logical
Stateless Routing (LSR), is in some sense less direct.

LSR operates in O(log n) rounds. We explain how a round
works. Assume that a source sensor with a logical address s wants
to route an event e to a sensor with logical address t. However,
s does not know the identity of the sensor t. Recall that s knows
the pertinent information about its ancestors in the K-D tree. In
particular, s knows the range split values of its ancestors. Thus, s
can compute the least common ancestor (LCA) of s and t in the
K-D tree. Assume that the first bit of disagreement between s and
t is the �th bit. So, the least common ancestor (LCA) of s and t
in the K-D tree has depth �. Let R be the region corresponding to
the LCA of s and t, L the split line corresponding to this region,
and R0 and R1 the two subregions of R formed by L. Without
loss of generality, assume that s ∈ R0 and t ∈ R1. From its own
address, and the address of t, the sensor s can conclude that t is in
the region R1. Recall that s knows the location of the split line L.
The sensor s computes a location x in the region R1. For concrete-
ness here, let us assume that x is some point in R1 that lies on the
line intersecting s and perpendicular to L (Although there might be
some advantages to selecting x to be the geometric center of the re-
gion R1). LSR then directs a message toward the location x using
GPSR. The message contains an additional field noting that this is
a �th round message. The �th round terminates when this message
first reaches a sensor s′ whose address agrees with the address of t
in the first � + 1 bits. The sensor s′ will be the first sensor reached
in R1. Round �+1 then starts with s′ being the new source sensor.

We explain how range queries are routed by means of an exam-
ple. This example also essentially illustrates how events are stored.
Figure 5 gives an example of a multi-dimensional range query and
shows how to route it to its final destination. In this example, a
multi-dimensional range query arises at node N7(111) asking for
the number of events falling in the temperature range (30, 32) and
pressure range (0.4, 1) that were generated throughout the last 2
minutes. Node N7 knows that the range split point for the root
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Figure 5: Example of routing a query on KDDCS

was temperature 40, and thus, this query needs to be routed to-
ward the left subtree of the root, or geometrically toward the top
of the region, using GPSR. The first node in this region that this
event reaches is say N3. Node N3 knows that the first relevant
split point is pressure = 0.5. Thus, the query is partitioned into two
sub-queries, ((30, 32), (0.4, 0.5)) and ((30, 32), (0.5, 1)). When
processing the first subquery, node N3 forwards it to the left using
GPSR. N3 can then tell that the second query should be routed to
the other side of its parent in the K-D tree since the range split for
its parent is temperature 34. The logical routing of this query is
shown on the right in Figure 5, and a possible physical routing of
this query is shown on the left in Figure 5.

As LSR does not initially know the geometric location of the
owner sensor, the route to the owner sensor cannot possibly be as
direct as it is in DIM. But, we argue that the length of the route in
LSR should be at most twice the length of the route in DIM. As-
sume for the moment that all messages are routed by GPSR along
the direct geometric line between the source sensor and the destina-
tion location. Let us assume, without loss of generality, that LSR is
routing horizontally in the odd rounds. Then, the routes used in the
odd rounds do not cross any vertical line more than once. Hence,
the sum of the route distances used by LSR in the odd rounds is
at most the diameter of the region. Similarly, the sum of the route
distances used by LSR in the even rounds is at most the diameter of
the region. Thus, the sum of the route distances for LSR, over all
rounds, is at most twice the diameter. The geometric distance be-
tween the source-destination pair in DIM is obviously at most the
diameter. So we can conclude that the length of the route found by
LSR is at most twice the length of the route found by DIM, assum-
ing that GPSR is perfect. In fact, the only assumption that we need
about GPSR to reach this conclusion is that the length of the path
found by GPSR is roughly a constant multiple times the geomet-
ric distance between the source and destination. Even this factor
of two can probably be improved significantly in expectation if the
locations of the sensors are roughly uniform. A simple heuristic
would be to make the location of the target x equal to the location
of the destination sensor t if the sensors in R1 where uniformly dis-
tributed. The location of x can easily be calculated by the source
sensor s given information local to s.

5. KDTR: K-D TREE RE-BALANCING
ALGORITHM

Based on the KDDCS components presented so far, KDDCS
avoids the formation of storage hot-spots resulting from skewed
sensor deployments, and from skewed events distribution if the dis-
tribution of events was known a priori. However, storage hot-spots
may be formed if the initial presumed events distribution was not
correct, or if events distribution evolves over times. We present a
K-D tree re-balancing algorithm, KDTR, to re-balance the load.

In the next subsections, we first explain how to determine the

roots of the subtrees that will re-balance, and then show how a re-
balancing operation on a subtree works. We assume that this re-
balancing is performed periodically with a fixed period.

5.1 Selection of Subtrees to be Re-Balanced
The main idea is to find the highest unbalanced node in the K-

D tree. A node is unbalanced if the ratio of the number of events
in one of the child subtrees over the number of events stored in
the other child subtree exceeds some threshold h. This process of
identifying nodes to re-balance proceeds in O(log n) rounds from
the leaves to the root of the K-D tree.

We now describe how round i ≥ 1 works. Intuitively, round i
occurs in parallel on all subtrees rooted at nodes of height i + 1
in the K-D tree. Let x be a node of height i + 1. Let the region
associated with x be R, the split line be L, and the two subregions
of R be R0 and R1. At the start of this round, each sensor in R0

and R1 knows the number of stored events C0 and C1 in R0 and
R1, respectively. The count C0 is then flooded to the sensors in
R1, and the count C1 is flooded to the sensors in R0. After this
flooding, each sensor in R knows the number of events stored in R,
and also knows whether the ratio max(C0

C1
, C1

C0
) exceeds h.

The time complexity per round is linear in the diameter of a re-
gion considered in that round. Thus, the total time complexity is
O(D log n), where D is the diameter of the network, as there are
O(log n) rounds. The number of messages sent per node i in a
round is O(di), where di is the degree of node i in the communi-
cation network. Thus, the total number of messages sent by a node
i is O(di log n).

Re-Balancing is then performed in parallel on all unbalanced
nodes, that have no unbalanced ancestors. Note that every leaf
knows if an ancestor will re-balance, and is so, the identity of the
unique ancestor that will balance. All the leaves of a node that will
re-balance, will be aware of this at the same time.

5.2 Tree Re-balancing Algorithm
Let x be an internal node to the K-D tree that needs to be re-

balanced. Let the region associated with x be R. Let the attribute
associated with node x be the j’th attribute. So, we need to find a
new attribute split L for the j’th attribute for node x. To accom-
plish this, we apply the weighted split median procedure, where the
weight wi associated with sensor i is the number of events stored
at sensor i, and the values are the j’th attributes of the wi events
stored at that sensor. Thus, the computed attribute split L has the
property that, in expectation, half of the events stored in R have
their j’th attribute larger than L, and half of the events stored in R
have their j’th attribute smaller than L.

Let R0 and R1 be the two subregions of R. Eventually, we want
to recursively apply this process in parallel to the regions R0 and
R1. But before recursing, we need to route some events from one
of R0 or R1 to the other. The direction of the routing depends on
whether the attribute split value became larger or smaller. Let us
assume, without loss of generality, that events need to be routed
from R0 to R1. Consider an event e stored at a sensor s in R0 that
needs to be routed to R1. The sensor s picks a destination logical
address t, uniformly at random, from the possible addresses in the
region R1. The event e is then routed to t using the routing scheme
described in section 4.3. The final owner for e in R1 cannot be
determined until our process is recursively applied to R1, but this
process cannot be recursively applied until the events that should
be stored in R1 are contained in R1. The fact the the destination
addresses in R1 were picked uniformly at random ensures load bal-
ance.

This process can now be recursively applied to R0 and R1.
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Figure 6: KDDCS original K-D tree

We now discuss the complexity of this procedure. We break the
complexity into two parts: the cost of performing the weighted split
median operation, and the cost of migrating the events. One appli-
cation of the weighted split median has time complexity O(D log n),
where D is the diameter of the region, and messages sent per node
of O(log2 n) messages. Thus, we get time complexity O(D log2 n)
and messages sent per node of O(log3 n) for all of the applications
of weighted split median. Every period re-balance requires each
event to travel at most twice the diameter of the network (assuming
that GPSR routes on a direct line). The total number of events that
can be forced to migrate as a result of k new events being stored
is O(k log k). Thus, the amortized number of migrations per event
is logarithmic, O(log k) in the number of insertions. This amount
of re-balancing per insertion is required for any standard dynamic
data structure (e.g. 2-3 trees, AVL trees, etc.).

Figures 6 and 7 show a detailed example illustrating how KDTR
works. Continuing on the same example we presented in Section
4.2, we monitor how KDTR maintains the K-D tree balancing in
the course of successive insertions. Starting with an equal number
of 3 events stored at each sensor, a storage hot-spot arises in node
N7 after 6 event insertions. By checking the ratio of N7 storage
to that of N7, KDTR identifies the subtree rooted at node 11 as
an unbalanced subtree. As none of node 11’s ancestors is unbal-
anced at this point, KDTR selects 11 to be re-balanced. However,
the storage load remains skewed toward subtree 1, thus, after an-
other 6 insertions, KDTR re-balances the subtree rooted at 1. After
12 more insertions aiming the right subtree of the root, KDTR re-
balances the root of the tree, basically changing the attribute-based
split points of almost all internal nodes, in order to maintain the bal-
ance of the tree. Note that, as long as the average loads of sensors
which are falling outside the hot-spot area increases, the frequency
of re-balancing decreases.

We digress slightly to explain a method that one might use to
trigger re-balancing, as opposed to fixed time period re-balancing.
Each sensor si knows the number of events that are stored in each
region corresponding to an ancestor of si in the K-D tree when this
region was re-balanced. Let Cj be the number of events at the last
re-balancing of the region Rj corresponding to node of depth j on
the path from the root to si in the K-D tree. Assume that the region
Rj has elected a leader sj . Then, the number of events that have
to be stored in Rj , since the last re-balancing, to cause another re-
balancing in Rj is something like hCj , where h is the unbalancing
ratio that we are willing to tolerate. Then, each insertion to si is

reported by si to sj with probability something like Θ
“

log n
hCj

”
.

Thus, after seeing Θ(log n) such notifications, the leader sj can be
confident that there have been very close to hCj insertions into the
region Rj , and a re-balancing might be warranted. Note that the
role of leader requires only receiving O(log n) messages.

Figure 7: KDTR example

6. EXPERIMENTAL RESULTS
In order to evaluate our KDDCS scheme, we compared its per-

formance with that of the DIM scheme, that has been shown to be
the best among current INDCS schemes [9].

In our simulation, we assumed having sensors of limited buffer
and constrained energy. We simulated networks of sizes ranging
from 50 to 500 sensors, each having an initial energy of 50 units,
a radio range of 40m, and a storage capacity of 10 units. For sim-
plicity, we assumed that the size of a message is equal to the size
of a storage unit. We also assumed that the size of a storage unit
is equal to the size of an event. When sent from a sensor to its
neighbor, a message consumes 1 energy unit from the sender en-
ergy and 0.5 energy unit from the receiver energy. The service area
was computed such that each node has on average 20 nodes within
its nominal radio range.

As each sensor has a limited storage capacity, it is assumed to
follow a FIFO storage approach to handle its cache. Thus, a sen-
sor replaces the oldest event in its memory by the newly incoming
event to be stored in case it is already full when receiving this new
event.

We modeled a network of temperature sensors. The range of pos-
sible reading values was [30, 70]. We modeled storage hot-spots by
using a random uniform distribution to represent sensors’ locations,
while using a skewed distribution of events among the attributes
ranges. Note that the regular sensor deployment assumption does
not affect our ability to assess the effectiveness of KDDCS as the
storage hot-spot can result from either skewed sensor deployments,
or skewed data distributions, or both. The storage hot-spot size is
characterized by the skewness dimensions, which are the percent-
age of the storage hot-spot events to the total number of events
generated by the sensor network and the percentage of the read-
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Figure 8: Number of dropped events for networks with a 80%-
10% hot-spot
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Figure 9: Number of dropped events for networks with a 80%-
5% hot-spot

ings’ range in which the hot-spot events fall to the total possible
range of temperature readings. We assumed that a single storage
hot-spot is imposed on the sensor network. To follow the behavior
of KDDCS toward storage hot-spots of various sizes, we simulated,
for each network size, a series of hot-spots where a percentage of
10% to 80% of the events fell into a percentage of 5% to 10% of
the reading’ range. Note that we always use the term x%-y% hot-
spot to describe a storage hot-spot where x% of the total generated
events fall into y% of the readings’ range.

We used a uniform split points initialization to setup the attribute
range responsibilities of all internal nodes of the K-D tree. For the
re-balancing threshold, we used a value of 3 to determine that a
specific subtree is unbalanced. Node failures were handled in the
same way as DIM. When a node fails, its stored events are consid-
ered lost. Futher events directed to the range responsibility of such
node are directed to one of its close neighbors.

We ran the simulation for each network size and storage hot-spot
size pair. Each simulation run consisted of two phases: the inser-
tion phase and the query phase. During the insertion phase, each
sensor generates (i.e. reads) 5 events, according to the predefined
hot-spot size and distribution, and forward each of these event to
its owner sensor. In the query phase, each sensor generates queries
of sizes ranging from 10% to 90% of the [30, 70] range. The query
phase is meant to measure the damages, in terms of QoD and en-
ergy losses, caused by the storage hot-spot.

The results of the simulations are shown in the Figures 8 to 17. In
these figures, we compare the performance of our KDDCS scheme
versus that the DIM scheme with respect to various performance
measures. Note that we only show some of our findings due to
space constraints.

R1. Data Persistence: Figures 8 and 9 present the total number
events dropped by all network nodes in networks with 80%-10%
and 80%-5% hot-spots, respectively. By analyzing the difference
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Figure 10: Query size of a 50% query for networks with a 80%-
10% hot-spot
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Figure 11: Query size of a 80% query for networks with a 80%-
5% hot-spot

between KDDCS and DIM, we can find out that the number of
dropped events in the first is around 40% to 60% of that in the
second. This can be interpreted by the fact that KDDCS achieves
a better load balancing of storage among the sensors. This leads to
decreasing the number of sensors reaching their maximum storage,
and decreasing the total number of such nodes compared to that in
the pure DIM. This directly results in decreasing the total number
of dropped events and achieving a better data persistence.

Another important remark to be noted based on the two figures is
that decreasing the size of the hot-spot by making the same number
of events to fall into a smaller attributes’ range does not highly
affect the overall performance of KDDCS compared to that of DIM.

R2. Quality of Data: Figures 10 and 11 show the average query
sizes of 50% and 80% of the attribute ranges for networks with
a 80%-10% and 80%-5% hot-spots, respectively. It is clear that
KDDCS remarkebly improves the QoD provided by the sensor net-
work. This is mainly due to dropping less information (as pointed
at in R1), thus, increasing the number of events resulting in each
query. The gap between DIM and KDDCS, in terms of resulting
query sizes, is really huge for in both graphs, which indicates that
KDDCS outperforms DIM for different storage hot-spot sizes.

This result has a very important implication on the data accu-
racy of the sensor readings output from a network experiencing a
hot-spot. The success of the KDDCS in avoiding hot-spots results
in improving the network ability to keep a higher portion of the
hot-spot data. This ameliorates the degree of correctness of any ag-
gregate functions on the network readings, for example, an average
of the temperature or pressure values where a high percentage of
the data is falling within a small range of the total attributes’ range.
We consider this to be a good achievement compared to the pure
DIM scheme.

R3. Load Balancing: Figures 12 and 13 show the average node
storage level for networks with 70%-10% and 60%-5% hot-spots,
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Figure 12: Average node storage level for networks with a 70%-
10% hot-spot (numbers rounded to ceiling integer)
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Figure 13: Average node storage level for networks with a 60%-
5% hot-spot (numbers rounded to ceiling integer)

respectively. By a node storage level, we mean the number of
events stored in the node’s cache. The figures show that KDDCS
has a higher average storage level than DIM, especially for less
skewed hot-spots. This can be interpreted as follows. When a stor-
age hot-spot arises in DIM, the hot-spot load is directed to a small
number of sensors. These nodes rapidly reach their storage maxi-
mum, while almost all other sensor nodes are nearly empty. There-
fore, the load distribution is highly skewed among nodes leadind to
a low average storage level value. However, in KDDCS, the num-
ber of nodes effectively storing events increases. Subsequently, the
average storage load value increases. This gives us a truthful figure
about the better storage balancing the network. It is worth mention-
ing that each of the values in both figures is rounded to the ceiling
integer. Thus, in both cases, the average in DIM does not exceed
one event per sensor for all network sizes.

R4. Energy Consumption Balancing: Figures 14 and 15 show
the average node energy level at the end of the simulation for net-
works with 70%-10% and 50%-5% hot-spots, respectively. The
figures show that this average generally decreases with the increase
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Figure 14: Average sensors’ energy levels for networks with a
70%-10% hot-spot
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Figure 15: Average sensors’ energy levels for networks with a
50%-5% hot-spot
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Figure 16: Number of event movements for networks with a
x%-10% hot-spot

of the network size for both schemes. The interesting result that
these figures show is that both KDDCS and DIM result in fairly
close average energy consumption among the sensors. However,
as we mentioned in R3 and based on the way DIM works, most of
the energy consumed in DIM is effectively consumed by a small
number of nodes, namely those falling in the hot-spot region. On
the other hand, the number of nodes consuming energy increases in
KDDCS due to the better load balancing KDDCS achieves, while
the average energy consumed by each sensor node decreases. Thus,
although the overall energy consumption is the same in both KD-
DCS and DIM, this result is considered as a positive result in terms
of increasing the overall network lifetime, as well as avoiding the
early death of sensor nodes, which leads to avoid network parti-
tioning.

R5. Events Movements: Figures 16 and 17 show the number of
migrated events for networks with x% − 10% and x% − 5% hot-
spots, respectively, where x varies from 40 to 80. For both sets of
hot-spot sizes, the number of event movements lineraly increases
with the network size. The important result to be noted in both
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Figure 17: Number of event movements for networks with a
x%-5% hot-spot

325



figure is that the total number of movements is not highly depen-
dent on the hot-spot size. This is mainly because KDDCS avoids
storage hot-spots in their early stages instead of waiting for a large
storage hot-spot to be formed, and then try to decompose it. There-
fore, most of the event movements are really done at the start of
the formation of the storage hot-spot. This leads to the fact that,
for highly skewed data distributions, (i.e. large hot-spot sizes), the
number of event movements does not highly change with changing
the exact storage hot-spot size.

7. RELATED WORK
Many approaches have been presented in literature defining how

to store the data generated by a sensor network. In the early age of
sensor networks research, the main storage trend used consisted of
sending all the data to be stored in base stations, which lie within,
or outside, the network. However, this approach may be more ap-
propriate to answer continuous queries, which are queries running
on servers and mostly processing events generated by all the sensor
nodes over a large period of time [4, 10, 18, 14, 12, 11].

In order to improve the lifetime of the sensor network, as well
as the QoD of ad-hoc queries, INS techniques have been proposed.
All INS schemes presented so far were based on the idea of DCS
[15]. These INDCS schemes differ from each other based on the
events-to-sensors mapping used. The mapping was done using hash
tables in DHT [15] and GHT [13], or using K-D trees in DIM [9].

The formation of storage hot-spots due to irregularity, in terms of
sensor deployment or events distribution, represent a vital issue in
current INDCS techniques [5]. Some possible solutions for irreg-
ular sensors deployments were highlighted by [5], such as routing
based on virtual coordinates, or using heuristics to locally adapt to
irregular sensor densities. Recently, some load balancing heuris-
tics for the irregular events distribution problem were presented
by [2, 8]. Such techniques were limited in their capability to deal
with storage hot-spots of large sizes as they were basically acting
like storage hot-spots detection and decomposition schemes, rather
than storage hot-spots avoidance schemes like KDDCS. To the best
of our knowledge, no techniques have been provided to cope with
both types of irregularities at the same time. A complentary work
to our paper is that on exploting similarities in processing queries
issued by neighboring sensors in a DCS scheme [16].

Query Hot-Spots is another important problem that is orthogonal
to the storage hot-spots problem. The problem arizes when a large
percentage of queries ask for data stored in few sensors. We iden-
tified the problem in an earlier paper [1] and presented two algo-
rithms, Zone Partitioning (ZP) and Zone Partial Replication (ZPR),
to locally detect and decompose query hot-spots in DIM. We be-
lieve that KDDCS is able to cope with query hot-spots provided
minor changes are added to the scheme. We aim at addressing this
problem in the KDDCS testbed that we plan to develop.

Recently, Krishnamurthy et al. [7] presented a novel DCS scheme,
called RESTORE, that is characterized by real time event correla-
tion. It would be interesting to compare the performance of both
KDDCS and RESTORE in terms of load balacing.

8. CONCLUSIONS
Sensor databases are becoming embedded in every aspect of our

life from merchandise tracking, healthcare, to disaster responds. In
the particular application of disaster management, it has been ar-
gued that it is more energy efficient to store the sensed data locally
in the sensor nodes rather than shipping it out of the network, even
if out-of-network storage is available.

The formation of Storage Hot-Spots is a major problem with the

current INDCS techniques in sensor networks. In this paper, we
presented a new load-balanced INDCS scheme, namely KDDCS,
that avoids the formation of storage hot-spots arising in the sensor
network due to irregular sensor deployment and/or irregular events
distribution. Further, we proposed a new routing algorithm called
Logical Stateless Routing, for routing events from the generating
sensors to the storage sensors, that is competitive with the popular
GPSR routing. Our experimental evaluation has confirmed that our
proposed KDDCS both increases the quality of data and the en-
ergy savings by distributing events of the storage hot-spots among
a larger number of sensors.
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