Quality Contracts for Real-Time Enterprises

Alexandros Labrinidis, Huiming Qu, and Jie Xu

Advanced Data Management Technologies Laboratory
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260, USA
{labrinid, huiming,xujie}@cs.pitt.edu

Abstract. Real-time enterprises rely on user queries being answered in a timely
fashion and using fresh data. This is relatively easy when systems are lightly
loaded and both queries and updates can be finished quickly. However, this goal
becomes fundamentally hard to achieve due to the high volume of queries and
updates in real systems, especially in periods of flash crowds. In such cases, sys-
tems typically try to optimize for the average case, treating all users, queries, and
data equally. In this paper, we argue that it is more beneficial for real-time en-
terprises to have the users specify how to balance such a tradeoff between Qual-
ity of Service (QoS) and Quality of Data (QoD), in other words, “instructing”
the system on how to best allocate resources to maximize the overall user satis-
faction. Specifically, we propose Quality Contracts (QC) which is a framework
based on the micro-economic paradigm and provides an intuitive and easy to use,
yet very powerful way for users to specify their preferences for QoS and QoD.
Beyond presenting the QC framework, we present results of applying it in two
different domains: scheduling in real-time web-databases and replica selection in
distributed query processing.

1 Introduction

Globalization and the proliferation of the Web have forced most businesses to evolve
into real-time enterprises; it is always daytime in some part of the world! Such real-
time enterprises rely on vast amounts of collected data for business intelligence. Data
is processed continuously and typically stored in data warehouses, for further analysis.

Given the real-time nature of businesses in our fast-changing world, getting answers
in a timely fashion and using fresh data is of paramount importance. This is fairly easy
to do in periods of light load, however, it becomes fundamentally hard to achieve in
periods of high volumes of queries (e.g., multiple analysts working towards a deadline
for end of the year reports) or updates (e.g., influx of sales data because of a 3-day
special sale weekend)l. In cases of high load, systems will typically try to optimize for
the average case, treating all user queries and quality metrics equally.

In this paper, we argue that it is more beneficial for real-time enterprises to have their
users (business analysts in this case) supply their preferences on how the system should

! This scenario assumes a complete separation of operational and business analysis information
systems; the situation is even worse if these are coupled together under a single system.

C. Bussler et al. (Eds.): BIRTE 2006, LNCS 4365, pp. 143 2007.
(© Springer-Verlag Berlin Heidelberg 2007

144 A. Labrinidis, H. Qu, and J. Xu

balance the trade-off between Quality of Service (QoS) and Quality of Data (QoD), in
other words, instruct the system on how to best allocate resources in order to maximize
user satisfaction. We propose to do this by utilizing Quality Contracts, a framework for
describing user preferences that is based on a micro-economic model. Quality Contracts
(QCs) empower users to quantify QoS and QoD using their favorite metric(s) of interest
and to specify their preferences (in an intuitive and integrated way) for how the system
should allocate resources in periods of high load.

In order to compete successfully in today’s highly dynamic environments, real-time
enterprises are expected to rely on two types of querying capabilities. First, ad hoc
queries are utilized by business analysts to explore previously collected data; such
queries have been the staple of business intelligence units for decades. Secondly, con-
tinuous queries (CQs) are registered ahead of time and constantly monitor the incoming
data feeds to detect patterns and other precursors of customer behavior. The goal in such
cases is to provide actionable information as soon as possible, by continuously execut-
ing (i.e., re-evaluating) CQs with the arrival of new relevant data. Such CQs belong to
a new data processing paradigm, that of Data Stream Management Systems (DSMSs)
[Z1706/4120]. Clearly, both types of queries are crucial to improving the real-time en-
terprise’s performance.

Although there exist multiple metrics for measuring QoS or QoD for ad-hoc and for
continuous queries, they have two major shortcomings.

(1) Lack of a unified framework that can evaluate quality for both ad-hoc as well
as for continuous queries: Currently, quality measures used for ad-hoc queries (in
DBMSs) are different from those used for continuous queries (in DSMSs). It is not
clear how these two types of quality measures relate to each other in a system that
supports both kinds of queries. Many of these measures do not even have a bounded
domain, which makes comparison impossible. The major problem this limitation cre-
ates is with regards to provisioning of resources: the system does not have a common
framework to compare usage/utility of resources allocated to ad-hoc versus continuous
queries. As such, the system is forced to allocate resources separately to the two types of
queries with the danger of under-utilization and overloading, and all the consequences
that these bring. Another problem is that of usability: users must “learn” two sets of
quality metrics, one for traditional queries and one for continuous queries.

(2) Limited consideration of user preferences in evaluating QoS/QoD: The most
important deficiency of the current approaches to QoS/QoD is that they do not have
strong support for user preferences. In typical DBMSs (i.e., for ad-hoc queries), qual-
ity is simply reported as an overall system property (even if both QoS and QoD are
reported as separate measures); user preferences are not even considered. There are a
few exceptions to this. Work on real-time databases [12I1912] typically considers user
preferences on a single QoS metric (in this case: preference on response time by means
of a deadline) while attempting to maximize QoD. Our work on database-driven web
servers [16/T514]), balances the trade-off between QoS and QoD, while considering
user preferences on one of the two measures: given an application-specified QoD re-
quirement, the proposed system adapts to improve the overall QoS. Finally, as part of
our preliminary work (presented in the previous section), we extended the work of [12]

Quality Contracts for Real-Time Enterprises 145

to consider both QoS user requirements (i.e., deadlines) and QoD user requirements
(i.e., freshness threshold).

In DSMSs, user preferences are indeed considered to some degree. Looking at the
Borealis project [[1]] (which corresponds to the state of the art), we can see that a “Di-
agram Administrator” can provide QoS functions that could correspond to user pref-
erences (in the same way as in the Aurora project [3]). However, the different compo-
nents of the QoS (i.e., the Vector of Metrics) are aggregated into a single, global QoS
score, using universal weights. In other words, the same QoS components are used for
all queries and the same relative importance to each QoS component is assigned for
all queries via system-wide weights. This system-based approach has another negative
side-effect: the benefit of the overall system can often overweigh the benefit of the in-
dividual user or query (even by just a little), who/which can be “penalized” repeatedly
for the benefit of the others, thus leading to starvation.

Desired Properties. Given the previously mentioned deficiencies, we believe that an
effective framework for measuring QoS and QoD must have the following primary
properties:

— handle ad-hoc queries and continuous queries at the same time,

— allow the user to choose from an array of QoS/QoD metrics in order to specify
quality requirements/preferences,

— allow the user to combine multiple QoS/QoD metrics and indicate the relative im-
portance of each individual metric (as a component of the overall Quality for the
user),

— allow the user to specify the relative importance of different queries,

— do all of the above in a “democratic” way: it should not be that a user can always
specify his/her queries to be more important than everybody else’s, thus monopo-
lizing system resources.

In the next section, we describe the proposed Quality Contracts Framework that ad-
dresses all of the above challenges.

2 Quality Contracts Framework

We propose a unified framework for specifying QoS/QoD requirements in systems that
support both ad-hoc queries and continuous queries. Our proposed framework, Quality
Contracts, is based on the micro-economic paradigm [222118]]. In our framework, users
are allocated virtual money, which they spend in order to execute their queries. Servers,
on the other hand, execute users’ queries and get virtual money in return for their ser-
vice. In order to execute a query however, both the user and the server must agree on a
Quality Contract (QC). The QC essentially specifies how much money the server which
executes the query will get. The amount of money allocated for the query is not fixed
(as was the case in [21]]). Instead, the amount of money the server receives depends on
how well it executes the user’s query. In fact, in the general case, QCs can even include
refunds; a very poorly executed query can result in the user being reimbursed instead of
paying for its execution (accumulated refunds can improve the odds of the user’s query
executing properly later).

146 A. Labrinidis, H. Qu, and J. Xu

worth

period of max
to user 4 worth to user
)

max #i g period of some

worth to user

'
1 point of zero
1 worth to user N - -
; + quality metric #i
N >

zero >

min #i ==
period of some
refund for user ' period of max

\ refund for user

Fig. 1. General form of a Quality Contract

Under the proposed scheme, a user can specify how much money he/she thinks the
server should get at various levels of quality for the posed query, whereas the server, if
it accepts the query and the QC, essentially “commits” to execute the queries, or face
the consequences. In this model, servers try to maximize their income, whereas users
try to “stretch” their budget to run successfully as many queries as they can.

A Quality Contract (QC) is essentially a collection of graphs, like the one in Figure[Tl
Each graph represents a QoS/QoD requirement from the user. The X-axis corresponds
to an attribute that the user wants to use in order to measure the quality of the results
(e.g., response time or delay). The Y-axis corresponds to the virtual money the user
is willing to pay to the server in order to execute his/her query. Notice that in order
to specify more than one QC (i.e., to judge the quality of the results using more than
one metric) the user must provide additional virtual money to the server. Put simply:
the server can hope to receive the sum of all max amounts of the different QC graphs
that a user submits along with a query. Of course, the level of money the server gets
is differentiated according to the value of the quality metric for the results. There is
also the possibility of the server having to issue “refunds” for queries that were not
satisfactory completed. Next, we present examples of QC graphs in order to illustrate
their features and advantages. For simplicity, we will use the dollar sign ($) to refer to
virtual money for the remainder of this paper.

2.1 Quality Contracts Examples

Figure [2| is an example of Quality Contract (QC) for an ad-hoc query submitted by
a user. This QC consists of two graphs: a QoS graph (Figure 2h) and a QoD graph
(Figure Pb). We see that QCs allow users to combine different aspects of quality. In
this example, the user has set the budget for the query to be $100; $70 are allocated
for optimal QoS, whereas $30 are allocated for optimal QoD. This allocation is one
important feature of the QC framework: users can easily specify the relative importance
of each component of the overall quality by allocating the query budget accordingly.
In the nextexample, we have QCs for two different continuous queries, Q1 (Figures[3h
&[Bb) and Q) (FiguresBk &[Bl), issued either by the same user or by two different users.
In addition to highlighting different types of QC graphs (including more complicated

Quality Contracts for Real-Time Enterprises 147

worth o of worth o of
A period of max A period of max
to user worth to user to user worth to user
$70= period of some $30 period of some

worth to user worth to user

| point of zero | point of zero

; : worth to user ¢+ worth to user
$0 ‘ ' > $0 >
' ' response . L - data
Osec 60sec 150sec time Omin 5min 30 min staleness
(a) QoS graph ($0 to $70) (b) QoD graph ($0 to $30)

Fig.2. QC example for one ad-hoc query. The QoS metric is response time, whereas the QoD
metric is data staleness. Data staleness is measured as the time between the last instant when the
physical world has changed and the instant when the the local storage has been updated (i.e., time
since the last update on a data item access by the query).

quality metrics such as those expressed by virtual attributes), this example also illustrates
another important feature of the QC framework: users can easily specify the relative
importance of each query by allocating their budgets accordingly. In our example, Q01
has a total budget of $100 (with the most important quality metric being QoD, allocated
$80 out of $100), and Q)2 has a total budget of $150 (with the most important quality
metric being QoS, allocated $120 out of $150). Finally, this relative importance can also
be evaluated over different types of queries altogether (e.g., the ad-hoc query of Figure[2]
can be executed at the same time as the continuous queries of Figure [3)).

2.2 Quality Contracts Implementation

We envision that a system which supports Quality Contracts (QCs) will provide a wide
assortment of possible types of QoS/QoD metrics to the users. Examples of such QoS
metrics include response time (esp. in connection with a soft or hard deadline), delay,
stretch (average, maximum), etc. Examples of QoD metrics in the presence of ad-hoc
updates include time-based, lag-based, and divergence-based definitions. Additionally,
examples of QoD metrics for continuous queries include drop-based (like the example
in Figure Bb), or value-based (i.e., assign worth to the user based on the values of the
result, as in Aurora [3]]).

Payment Stream. For continuous queries, QCs can be seen as a guarantee for a pay-
ment stream. In other words, the min/max virtual money values on the Y-axis corre-
spond to a rate of payment rather than a one-time payment amount, which is the case
for ad-hoc queries.

Virtual Attributes. One important aspect of QCs that we plan to explore further is
the ability to specify arbitrary quality metrics, in the form of virtual attributes that are
computed over other attributes, possibly including statistics of the entire system. We
have already seen an example of this in Figure Bk where the user specified QoS as the
delay his/her queries received when compared to the average delay in the system. We
expect such “comparative” QoS metrics to be rather frequent: it is probably harder for

148 A. Labrinidis, H. Qu, and J. Xu

worth
to user

$20

stretch

s [100% :80°/ 20 :0°/
o o 180% TN | 0%

-$20

% tuples delivered

(a) QoS graph for Q1 (-$10 to $20) (b) QoD graph for Q1 (-$20 to $80)
worth worth
to user to user“
-« $30 =

stretch - AVG(stretch)
STDDEV(stretch)

- $80 > 0 : :
100% 75% 50% 10% 0%

% tuples delivered

(c) QoS graph for Q2 (-$80 to $120) (d) QoD graph for Q2 ($0 to $30)

Fig. 3. QC example for two continuous queries)1 and (2. The QoS metric for Q1 is stretch,
or the factor by which a job is slowed down relative to the time it would have taken to execute if
it where the only job in the system, where as the QoS metric for Q2 is a virtual attribute. Virtual
attributes are computed over the entire system rather than just using the performance statistics of
the individual query. In this example, the user simply wants to guarantee that his/her queries are
not delayed more than average: the stretch observed for his/her queries needs to be at most one
standard deviation away from the average stretch of the entire system for maximum payoff at the
server ($120). The QoD metric for both Q1 and Q2 is the percentage of tuples delivered.

a user to specify exact timing requirements, but it is easier to specify that he/she wants
the submitted query to be executed within the top 20% of the fastest queries in the entire
system.

Parameterized QCs. Making QCs easy to configure is fundamental to their acceptance
by the user community. Towards this we plan on providing parameterized versions of
QC graphs that the users can easily instantiate. For example, we can have a parameter-
ized QoD function based on tuples dropped (similar to Figure 3b) with four parameters:
maximum worth (e.g., $80), maximum refund (e.g., -$20), percentage point beyond
which QoD drops below maximum (e.g., 80%), and percentage point after which user
is entitled to a refund (e.g., 20%). We can assume a piece-wise linear curve and allow
the user to specify more intermediate points. We can also assume a predetermined curve
and allow the user to specify even less parameters (e.g., only the maximum worth). Fi-
nally, parameterized QCs could also reduce the overhead of evaluating the QCs in the
system (by essentially “compiling” their definitions).

Contract Clauses. A simple form of a parameterized QC is that of a “contract clause”.
This is the case when the user essentially promises a “bonus” to the server when a

Quality Contracts for Real-Time Enterprises 149

certain quality metric is met (e.g., response time less than 30 minutes for a long analysis
query), but no virtual money otherwise. The QC graph in this case is a simple step
function, and the parameterized version needs two values: the maximum worth and the
turnover threshold.

QC Classes. Another way to increase usability of QCs and also reduce the overhead of
evaluating them is to introduce differentiated levels of service using different “contract
classes”. In this way, users simply assign queries to a predefined class with specific
characteristics (expressed by QCs) without having to specify a complicated QC. This
approach is also more scalable, since it reduces the overhead of evaluating the QC for
each query independently.

Overhead. We expect the overhead of evaluating different QCs to vary significantly.
For example, evaluating the delay observed by tuples is fairly easy to compute (e.g.,
Figure3b), whereas computing the average stretch and its standard deviation (e.g., Fig-
ure Bk) should be considerably more expensive. As such, we propose that the cost of
computing the QC is also included in the “price” that the user is supposed to pay to the
server for successful execution of his/her query under the given QC. This is a departure
from current practices (where most quality metrics were very simple and therefore of
similar cost), but is necessitated by the complexity of new, sophisticated quality metrics
whose overhead would unfairly burden the system, but they would still be attractive
to users. Given this setup, users still have a choice over a wide assortment of quality
metrics for QCs, but essentially they have to pay a “commission” if they want to use a
sophisticated metric.

2.3 Usability of Quality Contracts

The usability of the QCs must be address for the QC framework to be successful. Mak-
ing QCs easy to configure is fundamental to their acceptance by the user community. To-
wards this we expect service providers to support parameterized versions of QC graphs
(as mentioned earlier) that the users can easily instantiate. In fact, a simpler scheme is
one where the service provider has already identified a certain class of QCs for each
type of user (such as a pre-determined cell phone plan) and a user will simply have to
turn a “knob”” on whether she prefers higher QoS or higher QoD (a local plan with more
minutes or a national plan with fewer minutes under the same budget). In this way, us-
ing QCs service providers can better provision their systems, provide different classes
of service, and allow end users to specify their preferences with minimal effort.
Although in this paper we align QoS to response time and QoD to data freshness, the
Quality Contracts framework is general enough to allow for any quality metric. An
example of this is the concept of virfual attributes that was introduced earlier, where
a user-defined function is used as the quality metric. Furthermore, we believe that the
notion of Quality of Data can be extended in multiple ways. First of all, it can be used
to measure the level of precision of the result (i.e., similar to data freshness, but us-
ing the values to determine the amount of deviation from the ideal, instead of time
since last update). Similarly, we can use approximate data to answer questions and this
can be “penalized” accordingly by the user (while it also poses a clear trade-off be-
tween response time and accuracy of results). Secondly, it can be used in systems that

150 A. Labrinidis, H. Qu, and J. Xu

support online aggregation[[10], where user queries can return results at various level
of confidence. In such a case, QoD can be represented as a function over the confi-
dence metric. Finally, QoD can be used to refer to Quality of Information, where, for
example, a measure of trustworthiness of the provided information can be computed
and users may express how much they are willing to “pay” for high-quality results.

2.4 Quality Contracts — Discussion

The proposed QC framework meets all the challenges set forth at the introduction. It is
able to handle ad-hoc queries and continuous queries at the same time; by using virtual
money as the underlying principle, different metrics can easily be compared. The pro-
posed framework enables users to choose from a wide assortment of QoS/QoD metrics
in order to specify quality requirements/preferences. QCs allow the user to combine
multiple quality metrics for a single query and indicate their relative importance; the
same applies for multiple queries. By employing a virtual money economy, users can-
not monopolize resources (by falsely advertising their queries to be the most important),
but at the same time users are safe from starvation (by accumulating virtual money when
not “paying” for queries that executed below the acceptable quality level).

The proposed QC framework also introduces the following salient features. Indi-
vidual users, not system administrators, are those specifying user preferences; the vir-
tual money scheme is inherently intuitive and easy for users to grasp. To further in-
crease usability, parameterized and class-based QCs are introduced. A wide assortment
of QoS/QoD metrics (for both ad-hoc and continuous queries) is possible. The set of
Qo0S/QoD metrics is enhanced by allowing for virtual attributes, which enable compari-
son of the performance to the individual query to system-wide measures. To counteract
the evaluation cost of such sophisticated metrics, the overhead of computing them is in-
clude in the “price” of the query. The notion of refunds is introduced; this helps further
towards eliminating starvation.

3 Transaction Scheduling Under Quality Contracts

In the first application of Quality Contracts, we considered a web-database server (for
example, a stock quote information server) that answers user-submited ad hoc queries,
while it processes updates in the background. Clearly, in this environment, high volumes
of queries and/or updates can wreck havoc in the allocation of resources and result in
many queries having unpredictable response time and/or returning stale data. In such an
environment, the QC framework provides an intuitive way to express user preferences
(in terms of response time and freshness requirements for queries) and thus enable the
systtem to do a “better” job at allocating resources.

3.1 QUTS Scheduling Algorithm

We proposed the Query Update Time Share (QUTS) scheduling algorithm to op-
timize the system profit in the presence of QCs. QUTS is a two-level scheme that can
dynamically adjust the query and update share of the CPU, so as to maximize the overall

Quality Contracts for Real-Time Enterprises 151

Table 1. Quality Contracts Used in Performance Comparison

Varying ps pd rd uu
ps(® {1,2...,10} 50 50 0
pd ($) 5 {1,2,...,10} 50 O

system profit. At the high level, it dynamically allocates CPU to either the query queue
or the update queue according to a profit. At the lower level, queries and updates have
their own priority queues and potentially different scheduling policies. Specifically, we
adopted Profit over Relative Deadline (PRD) [9] for queries and FIFO for updates. We
used multiversion concurrency control to allow for maximal concurrency.

3.2 QUTS Experimental Evaluation

We compared QUTS with two baseline algorithms (Updated-High and Global-Priority),
using both real and synthetic trace data. Our experiments showed that Quality Contracts
are able to capture a wide spectrum of user preferences and that QUTS consistently out-
performs existing methods, under the entire spectrum of quality contracts.

Baseline Algorithms:

— Update High (UH). UH has a dual priority queue where update queue has higher
priority than query queue [3]]. Priority schemes within each queue are same with
QUTS. Two Phase Lock - High Priority (2PL-HP) is used for the concurrency con-
trol, where low priority transaction is aborted and hands the lock to high priority
transactions. UH guarantees the highest data freshness, but it may waste a lot time
updating data that have no contribution to the system profit.

— Global Priority (GP). GP is a preemptive scheduling scheme with a single-priority
queue. The priority scheme for updates is High QoD Profit (HDP) which uses the
sum of QoD maximal profit from the relative queries. Query priority scheme is
HP (High Profit) which uses the sum of QoS maximal profit and QoD maximal
profit. 2PL-HP is used for concurrency control. GP automatically pushes behind
the updates which may not be contributing to the data quality of the queries, but it
may still lead to query starvation when a surge of “good” updates arrives.

Experimental Setup. We used query traces from a stock market information web site
and update traces from NYSE to drive our experiments. As part of the experimental
setup, we attach a QC t o every query before it is submitted to our system. The QC is
in the form of a positive, linear, monotonically decreasing function. Such QCs can be
defined by four parameters: ps (the QoS profit if the query is return before deadline), rd
(relative deadline which is the difference between deadline and query arrival time), pd
(the QoD profit if the query is return with data meet the freshness requirement), and uu
(number of unapplied updates which measures the maximal staleness allowed). Since
there are four parameters in a quality contract, we vary one and fix the others to median
values to see how the performance changes. Due to the space limitations, we only show

152 A. Labrinidis, H. Qu, and J. Xu

0o +—F————T——T—T T 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
ps ($) pd ($)
(a) vary QoS max (ps) (b) vary QoD max (pd)

Fig. 4. QUTS performs best for all settings. UH performs worst because too many unnecessary
updates execute and starve most of the queries; GP avoids those unnecessary updates. However,
due to the global prioritization, starvation on queries or updates can easily occur, which jeopar-
dizes the performance. QUTS works best because the time share scheme successfully avoids the
starvation problem of GP.

two cases here (Figure[I)). We measure the performance by computing how much profit
has the system gained, normalized by dividing the actual gained profit over the maximal
possible profit, or what we call the Total Profit Percentage (TPP).

Experimental Results. Figure[d(a) shows the TPP as a function of ps. QUTS performs
the best among the three which almost reaches the maximum TPP. Note that the per-
formance gap is bigger for smaller pd (when the QoS constraint is more important than
the QoD constraint), which is usually of more interests in real applications. Likewise,
Figure[d(b) plots TPP vs. pd. Again, QUTS outperforms all others.

4 Distributed Query Processing Using Quality Contracts

In the second application of Quality Contracts, we considered a distributed query pro-
cessing environment, such as those that could be in place by a collaborative business
intelligence application, where data is replicated across multiple nodes. On the one
hand, data replication in this context is expected to improve reliability, expedite data
discovery, and increase performance (i.e., Quality of Service, or QoS). On the other
hand, however, it is also expected to have a negative impact to the Quality of the Data
(QoD) that are being returned to the users. Getting results fast is crucial of course, but
usually a limit to the degree of “staleness” is needed to make the results useful.

4.1 Replication-Aware Query Processing Scheme

We proposed Replication-Aware Query Processing (RAQP) [23]], to address the prob-
lem of replica selection in the presence of user preferences for Quality of Service and
Quality of Data (expressed as QCs).

Using the Quality Contracts framework as a natural and integrated way to guide
the system towards efficient decisions, the RAQP scheme optimizes query execution

Quality Contracts for Real-Time Enterprises 153

Table 2. Default System Parameters in Experiments

Simulation Parameter Default Value
Core Node Number 100
Edge Node Number 1000
Unique Data Source 1000
Unique Data Number Per Data Source U(10, 100)
Data Size U(20, 200Mb)
of Replicas Per Data u(10, 30)

Bandwidth between each pair of Nodes U(1, S0Mbps)

plans for distributed queries with Quality Contracts, in the presence of multiple repli-
cas for each data source. Our scheme follows the classic two-step query optimization
[2IUTTUT3]): we start from a statically-optimized logical execution plan and then apply
a greedy algorithm to select an execution site for each operator and also which replica
to use. The overall optimization goal is expressed in terms of “profit” under the QC
framework (i.e., the approach balances the trade-off between QoS and QoD).

4.2 RAQP Experimental Evaluation

We evaluated our proposed replication-aware query processing algorithm experimen-
tally by performing an extensive simulation study using the following algorithms:

Exhaustive Search (ES): Explore the whole search space exhaustively, thus guar-
anteeing to find the optimal allocation.

RAQP-G: Greedy replication-aware initial allocation plus iterative improvement.
— RAQP-L: Bottleneck breakdown, local exhaustive search & iterative improvement.
Rand(k): Random initial allocation plus k steps of iterative improvement (used as
a “sample” of the search space).

Experimental results. One of the important features Quality Contracts hold is that
users can easily specify the relative importance of each component of the overall qual-
ity by allocating the query budget accordingly. In order to observe the algorithm per-
formance under different environments, we classify the users’ quality requirements into
6 classes. We have three values for QoS and QoD: high (75), low (25), same (50) and
two types of slope for the QC function: small and large, which produce 6 seperate
classes. We report our results in Figure 3l Since our allocation initialization algorithm
was aimed at response time improvement, QoS got more improvement than QoD in all
the cases. Especially when QoS was assigned a higher budget, the effect on both QoS
and total profit were obvious. When QoD was assigned a higher budget, the relative
improvement of QoD also increased compared to the lower budget case. Our results
clearly confirmed the functionality of Quality Contracts and our RAQP algorithm. As-
signing higher “budget” to a quality dimension ends in that dimension achieving better
performance by our optimization algorithm. The larger the budget difference the larger
the difference in the resulting quality. This behavior is unique to our algorithm and
allows the system to tailor its behavior according to the preferences of its users.

154 A. Labrinidis, H. Qu, and J. Xu

Profit
@
g

Profit

60 60
2 BQoS 2 BQos

0 0
Rand(1) Rand(5) RAQP-G RAQP-L ES Rand(1) Rand(5) RAQP-G RAQP-L ES

(a) QoS > QoD, QCslope:Large (b) QoS = QoD, QCslope:Large

Profit
@
g

Profit
@
g

% BQos © maos

0
Rand(1) Rand(5) RAQP-G RAQP-L ES Rand(1) Rand(5) RAQP-G RAQP-L ES

() QoS < QoD, QCslope:Large (d) QoS > QoD, QCslope:Small

Profit
@
g

Profit
@
g

P mQos w© BQos

0 o
Rand(1) Rand(5) RAQP-G RAQP-L ES Rand(1) Rand(5) RAQP-G RAQP-L ES

(e) QoS = QoD, QCslope:Small (f) QoS < QoD, QCslope:Small

Fig. 5. Total profit of the algorithms under different classes

5 Conclusions and Future Work

In this work, we presented the Quality Contracts (QCs) framework that can be used
to express user preferences for the QoS and QoD of submitted queries. QCs are based
on the micro-economic paradigm and allow users to choose from a wide spectrum of
QoS/QoD metrics, while, at the same time, indicating their relative importance. The
QC framework is very intuitive, from a user perspective, and also provides a “clean”
way for the system to quantify user preferences and allocate resources accordingly. It
also integrates handling of both ad hoc and continuous queries that are crucial for real-
time enterprises. Finally, we applied the QC framework in two different application
domains: transaction scheduling in web databases and distributed query processing.
For both cases, we introduced new algorithms that utilize the QC framework and also
presented experimental results that illustrate the applicability of QCs and the high per-
formance of our proposed algorithms.

Acknowledgments

This work was funded in part by NSF ITR Award ANI-0325353 and by NSF Award IIS-
0534531. The authors also thank the anonymous referees for their helpful comments.

Quality Contracts for Real-Time Enterprises 155

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.-H., Lind-
ner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The Design
of the Borealis Stream Processing Engine. In: Proceedings of the 2nd Biennial Conference
on Innovative Data Systems Research (CIDR 2005), Asilomar, CA (January 2005)

Abbott, R.K., Garcia-Molina, H.: Scheduling real-time transactions: a performance evalua-
tion. ACM Transactions on Database Systems 17(3), 513-560 (1992)

Adelberg, B., Garcia-Molina, H., Kao, B.: Applying update streams in a soft real-time
database system. In: Proc. of the 1995 SIGMOD conference, pp. 245-256, San Jose, Cal-
ifornia, United States (1995)

Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Cherniack, M., Convey, C.,
Galvez, E., Salz, J., Stonebraker, M., Tatbul, N., Tibbetts, R., Zdonik, S.: Retrospective on
aurora. The. VLDB Journal 13(4), 370-383 (2004)

Carney, D., Getintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker,
M., Tatbul, N., Zdonik, S.: Monitoring streams: A new class of data management applica-
tions. In: Proc. of the 28th VLDB conference, pp. 215-226 (2002)

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong,
W., Krishnamurthy, S., Madden, V.R.S., Reiss, F., Shah, M.A.: TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World. In: Proceedings of the 1st Biennial Conference
on Innovative Data Systems Research (CIDR 2003), Asilomar, CA (January 2003)

Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: Niagaracq: a scalable continuous query system for
internet databases. In: Proc. of the 2000 ACM SIGMOD Conference, pp. 379-390, Dallas,
Texas, United States (2000)

Ferguson, D.F., Nikolaou, C., Sairamesh, J., Yemini, Y.: Economic models for allocating
resources in computer systems. In: Market-based control: a paradigm for distributed resource
allocation, pp. 156—183. World Scientific Publishing Co. Inc., River Edge, NJ, USA (1996)
Haritsa, J.R., Carey, M.J., Livny, M.: Value-based scheduling in real-time database systems.
The. VLDB Journal 2(2), 117-152 (1993)

Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: Proc. of the 1977 ACM
SIGMOD Conference, pp. 171-182, Tuscon, Arizona, United States (1997)

Hong, W., Stonebraker, M.: Optimization of parallel query execution plans in xprs. In: Proc.
of PDIS, pp. 218-225. IEEE Computer Society Press, Los Alamitos (1991)

Kang, K.-D., Son, S.H., Stankovic, J.A.: Managing deadline miss ratio and sensor data
freshness in real-time databases. IEEE Transactions on Knowledge and Data. Engineering
(TKDE) 16(10), 1200-1216 (2004)

Kossmann, D.: The state of the art in distributed query processing. ACM Computing Surveys
(CSUR) 32(4), 422-469 (2000)

Labrinidis, A., Roussopoulos, N.: Webview materialization. In: Proc. of the 2000 ACM SIG-
MOD Conference, pp. 367-378, Dallas, Texas, United States (2000)

Labrinidis, A., Roussopoulos, N.: Balancing performance and data freshness in web database
servers. In: Proc. of the 29th VLDB Conference, pp. 393—-404 (September 2003)

Labrinidis, A., Roussopoulos, N.: Exploring the tradeoff between performance and data
freshness in database-driven web servers. The. VLDB Journal 13(3), 240-255 (2004)
Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G., Olston,
C., Rosenstein, J., Varma, R.: Query processing, resource management, and approximation
in a data stream management system. In: Proceedings of the 1st Biennial Conference on
Innovative Data Systems Research (CIDR 2003), Asilomar, CA (January 2003)

Qu, H., Labrinidis, A.: Preference-aware query and update scheduling in web-databases. In:
Proceedings of the, International Conference on Data Engineering (2007)

156 A. Labrinidis, H. Qu, and J. Xu

19. Ramamritham, K., Stankovic, J.: Scheduling algorithms and operating systems support for
real-time systems. In: Proceedings of the IEEE, vol. 82(1), pp. 55-67 (1994)

20. Sharaf, M., Chrysanthis, P.K., Labrinidis, A., Pruhs, K.: Efficient scheduling of heteroge-
neous continuous queries. In: Proc. of 32nd VLDB Conference, Seoul, Korea (2006)

21. Stonebraker, M., Aoki, P.M., Litwin, W., Pfeffer, A., Sah, A., Sidell, J., Staelin, C., Yu, A.:
Mariposa: a wide-area distributed database system. The. VLDB Journal 5(1), 48-63 (1996)

22. Sutherland, L.LE.: A futures market in computer time. Communications of the ACM 11(6),
449-451 (1968)

23. Xu,J., Labrinidis, A.: Replication-aware query processing in large-scale distributed informa-
tion systems. In: Proc. of the Nineth International ACM Workshop on the Web and Databases
(WebDB’06), Chicago, IL, United States (2006)

	Quality Contracts for Real-Time Enterprises
	Introduction
	Quality Contracts Framework
	Quality Contracts Examples
	Quality Contracts Implementation
	Usability of Quality Contracts
	Quality Contracts -- Discussion

	Transaction Scheduling Under Quality Contracts
	QUTS Scheduling Algorithm
	QUTS Experimental Evaluation

	Distributed Query Processing Using Quality Contracts
	Replication-Aware Query Processing Scheme
	RAQP Experimental Evaluation

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

