
Freshness-Aware Scheduling of Continuous Queries
in the Dynamic Web ∗

Mohamed A. Sharaf, Alexandros Labrinidis, Panos K. Chrysanthis, Kirk Pruhs
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260, USA

{msharaf, labrinid, panos, kirk}@cs.pitt.edu

ABSTRACT
The dynamics of the Web and the demand for new, active ser-
vices are imposing new requirements on Web servers. One such
new service is the processing of continuous queries whose output
data stream can be used to support the personalization of individual
user’s web pages. In this paper, we are proposing a new schedul-
ing policy for continuous queries with the objective of maximiz-
ing the freshness of the output data stream and hence the QoD of
such new services. The proposed Freshness-Aware Scheduling of
Multiple Continuous Queries (FAS-MCQ) policy decides the exe-
cution order of continuous queries based on each query’s properties
(i.e., cost and selectivity) as well the properties of the input update
streams (i.e., variability of updates). Our experimental results have
shown that FAS-MCQ can increase freshness by up to 50% com-
pared to existing scheduling policies used in Web servers.

1. INTRODUCTION
Web databases and HTML/XML documents scattered all over

the World Wide Web provide immeasurable amount of information
which is continuously growing and updated. To keep up with the
Web dynamics, a search engine frequently crawls the web looking
for updates. Then, it propagates the stream of updates to itsinternal
databases and indexes.

The problem of propagating updates gets more complicated when
the Web server provides users with the service of registering con-
tinuous queries. A continuous query is a standing query whose
execution is triggered every time a new update arrives [18].For
example, a user might register a query to monitor news related to
the NFL. Thus, as new sports articles arrive to the server, all the
NFL related ones have to be propagated to that user. As such, the
arrival of new updates triggers the execution of a set of correspond-
ing queries, since portions of the new updates may be relevant to
the query. The output of such a frequent execution of a continuous
query is what we call anoutput data stream (see Figure 1).

An output data stream can be used, for example to continuously
update a user’s personalized Web page where a user logs on and
monitors updates as they arrive. It can also be used to send email
notifications to the user when new results are available [6, 17].

As the amount of updates on the input data streams increases and
the number of registered queries becomes high, advanced query

∗This work is supported in part byNSF ITR Medium Award (ANI-0325353).
The first author is supported in part by the Andrew Mellon Predoctoral
Fellowship.

Copyright is held by the author/owner. Eighth International Workshop
on the Web and Databases (WebDB 2005), June 16-17, 2005, Baltimore,
Maryland.

processing techniques are needed to efficiently synchronize the re-
sults of the continuous queries with the available updates.That is
particularly important when the search engine deploys a continuous
monitoring scheme instead of traditional crawlers [16].

Efficientscheduling of updates is one such query processing tech-
nique, which successfully improves theQuality of Data (QoD) pro-
vided by interactive systems. In this paper, we are focusingon
scheduling continuous queries for improving QoD in the interac-
tive dynamic Web. QoD can be measured in different ways, one
of which is freshness. The objective of our work is to improve the
freshness of the continuous data streams resulting from continu-
ous query execution as opposed to the freshness of the underlying
databases [7, 8], derived views [10] or caches [15]. In this respect,
our work can be regarded as complementary to the current workon
the processing of continuous queries, which considers onlyQuality
of Service metrics like response time and throughput (e.g.,[6, 17,
2, 4, 1]).

Specifically, the contribution of this paper is proposing a policy
for Freshness-Aware Scheduling of Multiple Continuous Queries
(FAS-MCQ). FAS-MCQ has the following salient features:

1. It exploits the variability of the processing costs of different
continuous queries registered at the Web server.

2. It utilizes the divergence in the arrival patterns and frequen-
cies of updates streamed from different remote data sources.

3. It considers the impact ofselectivity on the freshness of a
Web output data stream.

To illustrate the last point on the impact of selectivity, let us as-
sume a continuous query which is used to project the number of
trades on a certain stock if its price exceeds $60. Further, assume
that there is a 50% chance that this stock’s price exceeds $60. With
the arrival of a new update, if the new price is greater than $60 then
a new update is added to the continuous output data stream. Oth-
erwise, the update is discarded and nothing is added to the output
data stream. So, in this particular example, the arrival of anew
update renders the continuous output data stream stale withproba-
bility 50%. FAS-MCQ exploits the probability of staleness in order
to maximize the overall QoD.

As our experimental results have shown, FAS-MCQ can increase
freshness by up to 50% compared to existing scheduling policies
used in Web servers. FAS-MCQ achieves this improvement by de-
ciding the execution order of continuous queries based on individ-
ual query properties (i.e., cost and selectivity) as well asproperties
of the update streams (i.e., variability of updates).

The rest of this paper is organized as follows. Section 2 provides
the system model. In Section 3, we define our freshness-basedQoD

Input
Data

Streams

Output Data
Stream D1

1 2 3

Scheduler

Continuous Query Q2

1 2 3

Output Data
Stream D2

Continuous Query Q1

Figure 1: A Web server hosting multiple continuous queries

metrics. Our proposed policy for improving freshness is presented
in Section 4. Section 5 describes our simulation testbed, whereas
Section 6 discusses our experiments and results. Section 7 surveys
related work. We conclude in Section 8.

2. SYSTEM MODEL
We assume a Web server where users register multiple continu-

ous queries over multiple input data streams (as shown in Figure 1).
Data streams consist of updates of remote data sources that are ei-
ther continuously pushed to the Web server or frequently pulled
by the Web server through crawlers. Each updateui is associated
with a timestamp ti. This timestamp is either assigned by the data
source or by the Web server. In the former case, the timestamp
reflects the time when the update took place, whereas in the latter
case, it represents the arrival time of the update at the Web server.

In this work, we assume single-stream queries where each query
is defined over a single data stream. However, data streams can be
shared by multiple queries, in which case each query will operate
on its own copy of the data stream. Queries can also be shared
among multiple users, in which case the results will be shared
among them. Improving the QoD in the context of multi-stream
queries as well shared queries or operators is part of our future
work.

A single-stream query plan can be conceptualized as a data flow
diagram [3, 1] (Figure 1): a sequence of nodes and edges, where
the nodes are operators that process data and the edges represent
the flow of data from one operator to another. A queryQ starts at a
leaf node and ends at aroot node (Or). An edge from operatorO1

to operatorO2 means that the output of operatorO1 is an input to
operatorO2. Additionally, each operator has its own input queue
where data is buffered for processing.

As a new update arrives at a queryQ, it passes through the se-
quence of operators ofQ. An update is processed until it either
produces an output or until it is discarded by some predicatein the
query. An update produces an output only when it satisfies allthe
predicates in the query.

In a query, each operatorOx is associated with two values:

• processing cost (cx), and

• selectivity or productivity (sx).

Recall that in traditional database systems, an operator with selec-
tivity sx producessx tuples after processing one tuple forcx time
units.sx is typically less than or equal to 1 for operators like filters.
Selectivity expresses the behavior or power of a filter. Additionally,
for a queryQi, we define three parameters

1. total cost (Ci),

2. total selectivity or total productivity (Si), and

3. average cost (Cavg
i).

Specifically, for a queryQi that is composed of a single stream
of operators<O1, O2, O3, ...,Or >, Ci, Si andCavg

i are defined
as follows:

Ci = c1 + c2 + ... + cr

Si = s1 × s2 × ... × sr

Cavg
i = c1 + c2 × s1 + c3 × s2 × s1 + ... + cr × sr−1 × ...× s1

The average cost is computed as follows. An update starts going
through the chain of operators withO1, which has a cost ofc1.
With a “probability” of s1 (equal to the selectivity of operatorO1)
the update will not be filtered out, and as such continue on to the
next operator,O2, which has a cost ofc2. Moving along, with a
“probability” of s2 the update will not be filtered out, and as such
continue on to the next operator,O3, which has a cost ofc3. Up
until now, on average, the cost will beCavg = c1 + c2 × s1 +
c3 × s2 × s1. This is generalized in the formula forCavg

i above as
in [19].

In the rest of the paper, we use lower-case symbols to refer to
operators’ parameters and upper-case ones for queries’ parameters.

3. FRESHNESS OF WEB DATA STREAMS
In this section, we describe our proposed metric for measuring

the quality of output Web data streams. Our metric is based on
the freshness of data and is similar to the ones previously used in
[7, 10, 15, 8, 11]. However, it is adapted to consider the nature of
continuous queries and input/output Web data streams.

3.1 Average Freshness for Single Streams
In our system, the output of each continuous queryQ is a data

streamD. The arrival of new updates at the input queue ofQ might
lead to appending a new tuple toD. Specifically, let us assume that
at timet the length ofD is |Dt | and there is a single update at the
input queue; also with timestampt. Further, assume thatQ finishes
processing that update at timet′. If the tuple satisfies all the query’s
predicates, then| Dt′ |=|D | +1, otherwise,| Dt′ |=|D |. In the
former case, the output data streamD is consideredstale during
the interval[t, t′] as the new update occurred at timet and it took
until time t′ to append the update to the output data stream. In the
latter case,D is consideredfresh during the interval[t, t′] because
the arrival of a new update has been discarded byQ. Obviously, if
there is no pending update at the input queue ofD, thenD would
also be consideredfresh.

Formally, to define freshness, we consider each output data stream
D as an object andF (D, t) is the freshness of objectD at timet
which is defined as follows:

F (D, t) =



1 if ∀u ∈ It, σ(u) is false
0 if ∃u ∈ It, σ(u) is true

(1)

whereIt is the set of input queues inQ at timet andσ(u) is the
result of applyingQ’s predicates on updateu.

To measure the freshness of a data streamD over an entire dis-
crete observation period from timetx to time ty , we have that:

F (D) =
1

ty − tx

ty
X

i=tx

F (D, t) (2)

3.2 Average Freshness for Multiple Streams
Having measured the average freshness for single streams, we

proceed to compute the average freshness over all theM data streams
maintained by the Web server. If the freshness for each stream,Di,
is given byF (Di) using Equation 2, then the average freshness
over all data streams will be:

F =
1

M

M
X

i=1

F (Di) (3)

3.3 Fairness in Freshness
Ideally, all data streams in the system should experience perfect

freshness. However, this is not always achievable. Especially when
the Web server is loaded, we can have data streams with freshness
that is less than perfect, because of a “back-log” of updatesthat
cannot be processed in time [10]. In such a case, it is desirable to
maximize the average freshness in addition to minimizing the vari-
ance in freshness among different data streams. Minimizingthe
variance reflects the system’sfairness in handling different contin-
uous queries.

In this paper, we are measuring fairness as in [14]. Specifically,
we compute the average freshness of each output Web data stream.
Then, we measure fairness asthe standard deviation of freshness
measured for each data stream. A high value for the standard de-
viation indicates that some classes of data streams received unfair
service compared to others. That is, they were stale for a longer
intervals compared to other data streams. A low value for thestan-
dard deviation indicates that the difference in service (freshness)
among different data streams is negligible, and, as such, the Web
server handled all streams in a fair manner.

4. FRESHNESS-AWARE SCHEDULING OF
MULTIPLE CONTINUOUS QUERIES

In this section we describe our proposed policy forFreshness-
Aware Scheduling of Multiple Continuous Queries (FAS-MCQ). Cur-
rent work on scheduling the execution of multiple continuous queries
focuses on QoS metrics [2, 4, 1] and exploitsselectivity to improve
the provided QoS. Previous work on synchronizing database up-
dates exploited theamount (frequency) of updates to improve the
provided QoD [7, 15, 8]. In contrast, our proposal,FAS-MCQ, ex-
ploits both selectivity and amount of updates to improve theQoD,
i.e., freshness, of output Web data streams.

4.1 Scheduling without Selectivity
Assume two queriesQ1 andQ2, with output Web data streams

D1 andD2. Each query is composed of a set of operators, each
operator has a certain cost, and the selectivity of each operator is
one. Hence, we can calculate for each queryQi its total costCi

as shown in Section 2. Moreover, assume that there areN1 and
N2 pending updates for queriesQ1 andQ2 respectively. Finally,
assume that the current wait time for the update at the head ofQ1 ’s
queue isW1, similarly, the current wait time for the update at the
head ofQ2 ’s queue isW2.

Next, we compare two policiesX andY . Under policyX , query
Q1 is executed before queryQ2, whereas under policyY , queryQ2

is executed before queryQ1.
Under policyX , where queryQ1 is executed before queryQ2,

the total loss in freshness,LX , (i.e., the period of time whereQ1

andQ2 are stale) can be computed as follows:

LX = LX,1 + LX,2 (4)

whereLX,1 andLX,2 are the staleness periods experienced byQ1

andQ2 respectively.
SinceQ1 will remain stale until all its pending updates are pro-

cessed, thenLX,1 is computed as follows:

LX,1 = W1 + (N1C1)

whereW1 is the current loss in freshness and(N1×C1) is the time
required until applying all the pending updates.

Similarly, LX,2 is computed as follows:

LX,2 = (W2 + N1C1) + (N2C2)

whereW2 is the current loss in freshness plus the extra amount of
time (N1 × C1) whereQ2 will be waiting for Q1 to finish execu-
tion.

By substitution in Equation 4, we get

LX = W1 + (N1C1) + (W2 + N1C1) + (N2C2) (5)

Similarly, under policyY in which Q2 is scheduled beforeQ1,
we have that the total loss in freshness,LY will be:

LY = (W1 + N2C2) + (N1C1) + W2 + (N2C2) (6)

In order forLX to be less thanLY , the following inequality must
be satisfied:

N1C1 < N2C2 (7)

The left-hand side of Inequality 7 shows the total loss in fresh-
ness incurred byQ2 whenQ1 is executed first. Similarly, the right-
hand side shows the total loss in freshness incurred byQ1 when
Q2 is executed first. Hence, the inequality implies that between the
two alternative execution orders, we select the one that minimizes
the total loss in freshness.

4.2 Scheduling with Selectivity
Assume the same setting as in the previous section. However,

assume that the productivity of each queryQi is Si which is com-
puted as in Section 2. The objective when scheduling with selec-
tivity is the same as before: we want to minimize the total loss in
freshness. Recall from Inequality 7 that the objective of minimiz-
ing the total loss is equivalent to selecting for execution the query
that minimizes the loss in freshness incurred by the other query. In
the presence of selectivity, we will apply the same concept.

We first compute for each output data streamDi its staleness
probability (Pi) given the current status of the input data stream.
This is equivalent to computing the probability that at least one
of the pending updates will satisfyQi ’s predicates. Hence,Pi =
1−(1−Si)

Ni , where(1−Si)
Ni is the probability that all pending

updates do not satisfyQi ’s predicates.
Now, if Q2 is executed beforeQ1, then the loss in freshness

incurred byQ1 only due to the impact of processingQ2 first is
computed as:

LQ1
= P1 × N2 × Cavg

2

whereN2 × Cavg
2

is the expected time thatQ1 will be waiting for
Q2 to finish execution andP1 is the probability thatD1 is stale
in the first place. For example, in the extreme case ofS1 = 0, if
Q2 is executed beforeQ1, it will not increase the staleness ofD1

since all the updates will not satisfyQ1. However, atS1 = 1, if
Q2 is executed beforeQ1, then the staleness ofD1 will increase by
N2 × Cavg

2
with probability one.

Similarly, if Q1 is executed beforeQ2, then the loss in freshness
incurred byQ2 only due to processingQ1 first is computed as:

LQ2
= P2 × N1 × Cavg

1

In order forLQ2
to be less thanLQ1

, then the following inequal-
ity must be satisfied:

N1C
avg
1

P1

<
N2C

avg
2

P2

(8)

Thus, in our proposed policy, each queryQi is assigned a priority
valueVi which is the product of its staleness probability and the
reciprocal of the product of its expected cost and the numberof its
pending updates. Formally,

Vi =
1− (1− Si)

Ni

NiC
avg
i

(9)

4.3 The FAS-MCQ Scheduler
The FAS-MCQ schedulerselects for execution the query with the

highest priority value at eachscheduling point. A scheduling point
is reached when: (1) a query finishes processing an input update,
or (2) when a new update arrives at the system.

In the second case, the scheduler has to decide whether to resume
executing the current query or preempt it. A query is preempted if a
new update has arrived at a query with priority higher than the one
currently executing. Thus, we need to recompute the priority of the
currently executing query based on the position of the processed
update along the query operators. For example, if the processed
update is at the input queue of some operatorOx along the query,
then the current priority of the query is computed as:

1 − (1 − Sx)

Cavg
x

whereSx andCavg
x are the expected productivity and expected cost

of the segment of operators starting atOx all the way to the root. If
Ox has been processing the tuple forδx time units, then the current
priority is computed as above by replacingcx with cx − δx.

4.4 Discussion
It should be noted that under our policy, the priority of a query

increases as the processing of an update advances. For instance, let
us assume that a query has just been selected for execution. At that
moment, the priority of the query is equal to the priority of its leaf
node or leaf operator. After the leaf finishes processing theupdate,
the priority of the next operator, sayOx, is computed as shown
earlier. Intuitively,Sx andCavg

x are greater thanS andCavg of
the leaf operator because the remaining processing cost decreases
and the expected productivity might increase too. Additionally, Nx

is equal to one and our priority function monotonically decreases
with the increase inN . Thus, overall, the priority ofOx is higher
than that of the leaf node. Similarly, the priority of each operator
in the query is higher than the priority of the operator preceding it.
As such, a queryQi is never preempted unless a new update arrives
and that new update triggers the execution of a query with a higher
priority thanQi.

Also note that under our priority function (Equation 9),FAS-
MCQ behaves as follows:

1. If all queries have the same number of pending tuples and
the same selectivity, then FAS-MCQ selects for execution
the query with the lowest cost.

2. If all queries have the same cost and the same selectivity,then
FAS-MCQ selects for execution the query with less pending
tuples.

3. If all queries have the same cost and the same number of
pending tuples, then FAS-MCQ selects for execution the query
with high staleness probability.

In case (1),FAS-MCQ behaves like theShortest Remaining Pro-
cessing Time policy. In case (2),FAS-MCQ gives lower priority to
the query with high frequency of updates. The intuition is that when
the frequency of updates is high, it will take a long time to establish
the freshness of the output Web data stream. This will block other
queries from executing and will increase the staleness of their out-
put Web data streams. In case (3),FAS-MCQ gives lower priority
to queries with low selectivity as there is a low probabilitythat the
pending updates will “survive” the filtering of the query operators
and thus be appended to the output Web data stream.

5. EVALUATION TESTBED
We have conducted several experiments to compare the perfor-

mance of our proposed scheduling policy and its sensitivityto dif-
ferent parameters. Specifically, we compared the performance of
our proposedFAS-MCQ policy to a two-level scheduling scheme
from Aurora where Round Robin is used to schedule queries and
pipelining is used to process updates within the query. Collectively,
we refer to the Aurora scheme in our experiments asRR. In addi-
tion, we considered a FCFS policy where updates are processed
according to their arrival times. Finally, we adapted the Shortest
Remaining Processing Time (SRPT) policy, where the priority of a
query is the reciprocal of its total cost (i.e.,1/C). The SRPT policy
has been shown to work very well for scheduling requests at a Web
server when the performance metric is response time [9].

Queries: We simulated a Web server that hosts 250 registered
continuous queries. The structure of the query is adapted from [5,
13] where each query consists of three operators: two predicates
and one projection. All operators that belong to the same query
have the same cost, which is uniformly selected from three possible
classes of costs. The cost of an operator in classi is equal to:2i

time units, wherei is 0, 1, or 2.

Selectivities: In any query, the selectivity of the projection is set
to 1, while the two predicates have the same value for selectivity,
which is uniformly selected from the range [0.1, 1.0].

Streams: The number of input data streams is set to 10 and
the length of each stream is set to 10K tuples. Initially, we gener-
ate the updates for each stream according to a Poisson distribution,
with its mean inter-arrival time set according to the simulated sys-
tem utilization (or load). For a utilization of 1.0, the inter-arrival
time is equal to the exact time required for executing the queries
in the system, whereas for lower utilizations, the mean inter-arrival
time is increased proportionally. To generate a back-log ofupdates
[10], we have a parameterB which controls the number ofbursty
streams. A bursty stream is created by adapting the initially gen-
erated Poisson stream using two parameters:burst probability (p)
andburst length (l). Specifically, we traverse the Poisson stream
and at each entry/update we toss a coin, if the tossing resultis less
than thep, then the arrival timeAb of that update is the beginning
of a new burst. Then, the arrival times of each of the nextl updates
are adjusted so that the new arrival time,A′

i, of an updateui is set
to (Ai − Ab) ∗ p, whereAi is the arrival time computed originally
under the Poisson distribution. We have conducted several exper-
iments with different settings of thep, l andB parameters. Due
to lack of space, we will present the simulation results where p is
equal to 0.5,l is equal to 50 updates andB is in the range [0, 10]
with the default being 5.

Server Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

sh
ne

ss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

RR
FCFS
SRPT
FAS-MCQ

Figure 2: freshness vs. load (selectivity=1.0)

6. EXPERIMENTS

6.1 Impact of Utilization
In this experiment, the selectivity for all operators is setto 1,

whereas the processing costs are variable and are generatedas de-
scribed earlier. Figure 2 depicts the average total freshness over all
output Web data streams as the load at the Web server increases.
In this experiment 5 out of the 10 input data streams are bursty.
The figure shows that, in general, the freshness of the outputWeb
data streams decreases with increasing load. It also shows that the
FAS-MCQ policy provides the highest freshness all the time.The
freshness provided by SRPT is equal to that of FAS-MCQ for uti-
lizations up to 0.5. After that point, with increasing utilization,
queues start building up. That is when FAS-MCQ gives higher
priority to queries with shorter queues and low processing cost in
order to maximize the overall freshness of data, thus outperform-
ing SRPT. At 95% utilization, FAS-MCQ has 22% higher fresh-
ness than SRPT. If we report QoD as staleness (i.e., the opposite of
freshness [15]), then FAS-MCQ is 41% better than SRPT, with just
a 20% overall average staleness.

6.2 Impact of Bursts
The setting for this experiment is the same as the previous one.

However, the utilization at all points is set to the default value of
90%. In Figure 3, we plot the average total freshness as the number
of input data streams that are bursty increases. At a value of0, all
the arrivals follow a Poisson distribution with no bursts, whereas at
10, all input data streams are bursty as described in Section5.

Figure 3 shows how the total average freshness decreases when
the number of bursty data streams increases. It also shows that
FAS-MCQ provides the highest freshness compared to the other
policies. Notice the relation between FAS-MCQ and SRPT: as the
number of bursty streams increases, the difference in freshness pro-
vided by FAS-MCQ compared to SRPT increases up until there are
5 bursty streams. At that point, FAS-MCQ has 20% higher fresh-
ness than SRPT. At the same time, FAS-MCQ has 1.8 the freshness
of the RR policy and 3.6 the freshness of the FCFS policy.

After there are 7 bursty input streams, the performance of the
FAS-MCQ and SRPT policies get closer. The explanation is that at
a lower number of bursty streams, FAS-MCQ has a better chanceto
find a query with a short queue of pending updates to schedule for
execution. As the number of bursty streams increases, the chance
of finding such a query decreases, and as such, SPRT is performing
reasonably well. At 10 bursty streams, FAS-MCQ has only 16%
higher freshness than SRPT.

Number of Bursty Streams (B)

0 1 2 3 4 5 6 7 8 9 10

F
re

sh
ne

ss

0.0

0.2

0.4

0.6

0.8

1.0

RR
FCFS
SRPT
FAS-MCQ

Figure 3: freshness vs. number of bursty streams

6.3 Impact of Selectivity
In this experiment, the cost for all operators is set to 1 timeunit.

However, the selectivity is chosen uniformly from the range[0.0,
1.0]. Figure 4 depicts how the freshness decreases with increasing
load at the Web server. The figure also shows that FAS-MCQ still
provides the highest freshness, as it considers the probability that an
update will affect the freshness of the corresponding data stream.
That is opposite to SRPT which will give a higher priority to a
query with low selectivity since a low selectivity will provide a low
value forCavg. Hence, SRPT will spend time executing queries
that will only append fewer updates to their corresponding output
data streams.

In this experiment, RR behaves better than SRPT at high utiliza-
tions. At a 95% utilization, FAS-MCQ gives 50% higher freshness
than RR and 63% higher than SRPT.

Server Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

sh
ne

ss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

RR
FCFS
SRPT
FAS-MCQ

Figure 4: freshness vs. load (variable selectivity)

Figure 5 shows the standard deviation of freshness for the same
experiment setting. The figure shows that for all policies, the devia-
tion increases with increasing load where some output data streams
are stale for longer times compared to other data streams. However,
FAS-MCQ provides the lowest standard deviation for most values
of utilization. As the utilization approaches 1 (i.e., whenthe Web
server is about to reach its capacity), the fairness provided by FAS-
MCQ gets closer to that of FCFS. Thus, FAS-MCQ is at least as
fair as FCFS, even at very high utilizations.

However, the FCFS policy behaves poorly if we look beyond
fairness and into the average total freshness: as shown in Figure 4,
FAS-MCQ provides 96% higher average freshness compared to
FCFS, despite having the same fairness.

Server Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 F

re
sh

ne
ss

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

RR
FCFS
SRPT
FAS-MCQ

Figure 5: standard deviation of freshness

7. RELATED WORK
The work in [7, 8] provides policies for crawling the Web in

order to refresh a local database. The authors make the observation
that a data item that is updated more often should be synchronized
less often. In this paper, we utilize the same observation, however,
[7, 8] assumes that updates follow a mathematical model, whereas
we make our decision based on the current status of the Web server
queues (i.e., the number of pending updates). The same observation
has been exploited in [15] for refreshing distributed caches and in
[12] for multi-casting updates.

The work in [10] studies the problem of propagating the up-
dates to derived views. It proposes a scheduling policy for applying
the updates that considers the divergence in the computation costs
of different views. Similarly, our proposedFAS-MCQ considers
the different processing costs of the registered multiple continuous
queries. Moreover,FAS-MCQ generalizes the work in [10] by con-
sidering updates that are streamed from multiple data sources as
opposed to a single data source.

Improving the QoS of multiple continuous queries has been the
focus of many research efforts. For example, multi-query optimiza-
tion has been exploited in [6] to improve the system throughput in
an Internet environment and in [13] for improving the throughput
of a data stream management system. Multi-query schedulinghas
been exploited by Aurora to achieve better response time or to sat-
isfy application-specified QoS requirements [2]. The work in [1]
employs a scheduler for minimizing the memory utilization.To the
best of our knowledge, none of the above work provided techniques
for improving the QoD provided by continuous queries.

8. CONCLUSIONS
Motivated by the need to support active Web services which in-

volved the processing of update streams by continuous queries, in
this paper we studied the different aspects that affect the QoD of
these services. In particular, we focused on the freshness of the
output data stream and identified that both the properties ofqueries,
i.e., cost and selectivity, as well as the properties of the input up-
date streams, i.e., variability of updates, have a significant impact
on freshness. For this reason, we have proposed and experimen-
tally evaluated a new scheduling policy for continuous queries that
exploits all of these aspects to maximize the freshness of the output
data stream. Our proposed Freshness-Aware Scheduling of Multi-
ple Continuous Queries (FAS-MCQ) policy can increase freshness
by up to 50% compared to existing scheduling policies used inWeb
servers. Our next step is to study the problem when MCQ plans in-
clude shared operators as well as join operators.

Acknowledgments: We would like to thank the anonymous re-
viewers for their thoughtful and constructive comments.

9. REFERENCES
[1] B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain:

Operator scheduling for memory minimization in data
stream systems. InSIGMOD, 2003.

[2] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik,
M. Cherniack, and M. Stonebraker. Operator scheduling in a
data stream manager. InVLDB, 2003.

[3] D. Carney, U. Getintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.
Monitoring streams: A new class of data management
applications. InVLDB, 2002.

[4] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
V. R. S. Madden, F. Reiss, and M. A. Shah. TelegraphCQ:
Continuous Dataflow Processing for an Uncertain World. In
CIDR, 2003.

[5] J. Chen, D. J. DeWitt, and J. F. Naughton. Design and
evaluation of alternative selection placement strategiesin
optimizing continuous queries. InICDE, 2002.

[6] J. Chen, D. J. DeWitt, F. Tian, and Y. .Wang. NiagaraCQ: A
scalable continuous query system for internet databases. In
SIGMOD, 2000.

[7] J. Cho and H. Garcia-Molina. Synchronizing a database to
improve freshness. InSIGMOD, 2000.

[8] J. Cho and H. Garcia-Molina. Effective page refresh policies
for web crawlers.ACM Transactions on Database Systems,
28(4):390–426, 2003.

[9] M. Harchol-Balter, B. Schroeder, N. Bansal, and
M. Agarwal. Size based scheduling to improve web
performance.Transactions on Computer Systems,
21(2):207–233, 2003.

[10] A. Labrinidis and N. Roussopoulos. Update propagation
strategies for improving the quality of data on the web. In
VLDB, 2001.

[11] A. Labrinidis and N. Roussopoulos. Exploring the tradeoff
between performance and data freshness in database-driven
web servers.VLDB J., 13(3):240–255, 2004.

[12] W. Lam and H. Garcia-Molina. Multicasting a changing
repository. InICDE, 2003.

[13] S. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over streams. In
SIGMOD, 2002.

[14] M. Mehta and D. J. DeWitt. Dynamic memory allocation for
multiple-query workloads. InVLDB, 1993.

[15] C. Olston and J. Widom. Best-effort cache synchronization
with source cooperation. InSIGMOD, 2002.

[16] S. Pandey, K. Ramamritham, and S. Chakrabarti. Monitoring
the dynamic web to respond to continuous queries. InWWW,
2003.

[17] J. Shanmugasundaram, K. Tufte, D. J. DeWitt, J. F.
Naughton, and D. Maier. Architecting a network query
engine for producing partial results. InWebDB, 2002.

[18] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki.
Continuous queries over append-only databases. In
SIGMOD, 1992.

[19] T. Urhan and M. J. Franklin. Dynamic pipeline scheduling
for improving interactive query performance.VLDB, 2001.

