Freshness-Aware Scheduling

of Continuous Queries

in the Dynamic Web

Mohamed A. Sharaf, Alexandros Labrinidis, Panos K. Chrysanthis, Kirk Pruhs
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260, USA
{msharaf, labrinid, panos, kirky@cs.pitt.edu

ABSTRACT

The dynamics of the Web and the demand for new, active ser-

processing techniques are needed to efficiently synchednéere-
sults of the continuous queries with the available updatésit is

vices are imposing new requirements on Web servers. One suchParticularly important when the search engine deploys éiwoous

new service is the processing of continuous queries whotgibu
data stream can be used to support the personalizationieitingl
user's web pages. In this paper, we are proposing a new sehedu
ing policy for continuous queries with the objective of nraki-

ing the freshness of the output data stream and hence the QoD o
such new services. The proposed Freshness-Aware Schgdiilin
Multiple Continuous Queries (FAS-MCQ) policy decides tixee
cution order of continuous queries based on each queryfsepties

(i.e., cost and selectivity) as well the properties of thmiinupdate
streams (i.e., variability of updates). Our experimerdalits have
shown that FAS-MCQ can increase freshness by up to 50% com-
pared to existing scheduling policies used in Web servers.

INTRODUCTION

Web databases and HTML/XML documents scattered all over
the World Wide Web provide immeasurable amount of infororati
which is continuously growing and updated. To keep up with th
Web dynamics, a search engine frequently crawls the webrigok
for updates. Then, it propagates the stream of updatesimdtaal
databases and indexes.

The problem of propagating updates gets more complicatedwh
the Web server provides users with the service of regigieon-
tinuous queries. A continuous query is a standing query whose
execution is triggered every time a new update arrives [Ejr
example, a user might register a query to monitor news ikiate
the NFL. Thus, as new sports articles arrive to the server, all the

1.

monitoring scheme instead of traditional crawlers [16].
Efficientscheduling of updates is one such query processingtech-
nigue, which successfully improves teality of Data (QoD) pro-
vided by interactive systems. In this paper, we are focusimg
scheduling continuous queries for improving QoD in theriate
tive dynamic Web. QoD can be measured in different ways, one
of which isfreshness. The objective of our work is to improve the
freshness of the continuous data streams resulting frortineon
ous query execution as opposed to the freshness of the yimderl
databases [7, 8], derived views [10] or caches [15]. In thépect,
our work can be regarded as complementary to the currentevork
the processing of continuous queries, which considers@Qublity
of Service metrics like response time and throughput (§6g17,
2,4, 1)).
Specifically, the contribution of this paper is proposingoéiqy
for Freshness-Aware Scheduling of Multiple Continuous Queries
(FASMCQ). FAS-MCQ has the following salient features:

1. It exploits the variability of the processing costs ofefiént
continuous queries registered at the Web server.

2. It utilizes the divergence in the arrival patterns andfien-
cies of updates streamed from different remote data sources

3. It considers the impact adelectivity on the freshness of a
Web output data stream.

To illustrate the last point on the impact of selectivity, Us as-

NFL related ones have to be propagated to that user. As such, thesume a continuous query which is used to project the number of

arrival of new updates triggers the execution of a set ofespond-
ing queries, since portions of the new updates may be retiévan
the query. The output of such a frequent execution of a coatis
query is what we call anutput data stream (see Figure 1).

An output data stream can be used, for example to continyousl

trades on a certain stock if its price exceeds $60. Furtlssyrae
that there is a 50% chance that this stock’s price exceeds/8B0

the arrival of a new update, if the new price is greater thahtién

a new update is added to the continuous output data stream. Ot
erwise, the update is discarded and nothing is added to tipeiou

update a user’s personalized Web page where a user logs on andata stream. So, in this particular example, the arrival oba

monitors updates as they arrive. It can also be used to seaitl em
notifications to the user when new results are availableq§, 1

As the amount of updates on the input data streams increades a
the number of registered queries becomes high, advancey que

*Thisworkis supported in partby NSFITR Medium Award (ANIZEB53).
The first author is supported in part by the Andrew Mellon Brdral
Fellowship.

Copyright is held by the author/owner. Eighth Internation®rkshop
on the Web and Databases (WebDB 2005), June 16-17, 2005mBed{
Maryland.

update renders the continuous output data stream stalgroitia-
bility 50%. FAS-MCQ exploits the probability of stalenessirder
to maximize the overall QoD.

As our experimental results have shown, FAS-MCQ can inereas
freshness by up to 50% compared to existing schedulingipslic
used in Web servers. FAS-MCQ achieves this improvement by de
ciding the execution order of continuous queries based dimidt
ual query properties (i.e., cost and selectivity) as wepraperties
of the update streams (i.e., variability of updates).

The rest of this paper is organized as follows. Section 2iges/
the system model. In Section 3, we define our freshness-kasied

=

Output Data
Stream D,

=

Output Data
Stream D,

Continuous Query Q,

(a2

Continuous Query Q,

Input
Data
Streams

o =O=D=E

Figure 1: A Web server hosting multiple continuous queries

metrics. Our proposed policy for improving freshness ispreed
in Section 4. Section 5 describes our simulation testbe@reds
Section 6 discusses our experiments and results. Sectiovéys
related work. We conclude in Section 8.

2. SYSTEM MODEL

We assume a Web server where users register multiple centinu

ous queries over multiple input data streams (as shown iré&ib).
Data streams consist of updates of remote data sourcegé¢hait a
ther continuously pushed to the Web server or frequentljedul
by the Web server through crawlers. Each updates associated
with atimestamp ¢;. This timestamp is either assigned by the data

1. total cost (C;),
2. total selectivity or total productivity (S;), and
3. averagecost (C""7).

Specifically, for a query); that is composed of a single stream
of operators< Oy, 02, Os, ..., 0, >, C;, S; andC;{"? are defined
as follows:

Ci=ca+c+..+cr
Si =81 X 82 X ... X 8y

qug:C1+C2 X 81 +c€3 X822 X814+ ...+¢Cr X Sr—1 X ... X81

7

The average cost is computed as follows. An update stanggoi
through the chain of operators with;, which has a cost of;.
With a “probability” of s1 (equal to the selectivity of operat@r,)
the update will not be filtered out, and as such continue oheo t
next operator(2, which has a cost of,. Moving along, with a
“probability” of s, the update will not be filtered out, and as such
continue on to the next operat@ps, which has a cost ofs. Up
until now, on average, the cost will 8*“9 = ¢1 + ¢c2 X s1 +
c3 X s2 X s1. This is generalized in the formula f6r*? above as
in [19].

In the rest of the paper, we use lower-case symbols to refer to
operators’ parameters and upper-case ones for querieshgters.

3. FRESHNESS OF WEB DATA STREAMS

In this section, we describe our proposed metric for menguri

source or by the Web server. In the former case, the timestamp
reflects the time when the update took place, whereas in ttee la
case, it represents the arrival time of the update at the \&eles

the quality of output Web data streams. Our metric is based on
the freshness of data and is similar to the ones previously used in

In this work, we assume single-stream queries where eaal que
is defined over a single data stream. However, data streamiseca
shared by multiple queries, in which case each query wilkaige
on its own copy of the data stream. Queries can also be share
among multiple users, in which case the results will be ghare
among them. Improving the QoD in the context of multi-stream
queries as well shared queries or operators is part of ourefut
work.

A single-stream query plan can be conceptualized as a data flo

diagram [3, 1] (Figure 1): a sequence of nhodes and edgesewher

the nodes are operators that process data and the edgeserapre
the flow of data from one operator to another. A qu@rgtarts at a
leaf node and ends atraot node ;). An edge from operatad,

to operatorO, means that the output of operator is an input to
operatorO2. Additionally, each operator has its own input queue
where data is buffered for processing.

As a new update arrives at a quepy it passes through the se-
guence of operators @. An update is processed until it either
produces an output or until it is discarded by some predicatee
query. An update produces an output only when it satisfietheall
predicates in the query.

In a query, each operat@r, is associated with two values:

e processing cost (¢;), and
e selectivity or productivity (s).

Recall that in traditional database systems, an operatbrseiec-
tivity s, produces, tuples after processing one tuple fartime
units. s, is typically less than or equal to 1 for operators like filters
Selectivity expresses the behavior or power of a filter. fiddally,
for a queryQ);, we define three parameters

[7, 10, 15, 8, 11]. However, it is adapted to consider the meabd
continuous queries and input/output Web data streams.

S-1 Average Freshness for Single Streams

In our system, the output of each continuous qu@ris a data
streamD. The arrival of new updates at the input queu&ahight
lead to appending a new tuple fd. Specifically, let us assume that
at timet the length ofD is | D | and there is a single update at the
input queue; also with timestampFurther, assume thét finishes
processing that update at tirtie If the tuple satisfies all the query’s
predicates, thenD,, |=| D | +1, otherwise| D, |=| D |. In the
former case, the output data strediis consideredtale during
the intervalft, '] as the new update occurred at titnand it took
until time ¢’ to append the update to the output data stream. In the
latter caseD is consideredresh during the intervalt, t'] because
the arrival of a new update has been discarde@bpbviously, if
there is no pending update at the input queu®othen D would
also be considerefdesh.

Formally, to define freshness, we consider each output tratans
D as an object an@'(D, t) is the freshness of objed? at timet
which is defined as follows:

[1 ifVu € I, o(u) is false
F(D,1) = { 0 if Ju e I, o(u) istrue

wherel, is the set of input queues i) at timet ando(u) is the
result of applying?’s predicates on update

To measure the freshness of a data stréamwver an entire dis-
crete observation period from tintg to timet,, we have that:

LS R

ty — ts

@)

F(D)

@)

i=tg

3.2 Average Freshness for Multiple Streams

whereLx 1 andLx . are the staleness periods experience@by

Having measured the average freshness for single streaens, w and@: respectively.

proceed to compute the average freshness over dllitdata streams
maintained by the Web server. If the freshness for eachmatrBa,

is given by F(D;) using Equation 2, then the average freshness
over all data streams will be:

®)

3.3 Fairness in Freshness

Ideally, all data streams in the system should experiendegie
freshness. However, this is not always achievable. Eslheaiaen
the Web server is loaded, we can have data streams with feshn
that is less than perfect, because of a “back-log” of updiuais
cannot be processed in time [10]. In such a case, it is désitab
maximize the average freshness in addition to minimizimgwguri-
ance in freshness among different data streams. Minimittieg
variance reflects the systenfdgrnessin handling different contin-
uous queries.

In this paper, we are measuring fairness as in [14]. Speltyfica
we compute the average freshness of each output Web datmstre
Then, we measure fairness the standard deviation of freshness
measured for each data stream. A high value for the standard d
viation indicates that some classes of data streams recaiviair
service compared to others. That is, they were stale for gelon
intervals compared to other data streams. A low value fostae-
dard deviation indicates that the difference in services(finess)
among different data streams is negligible, and, as sueh\ib
server handled all streams in a fair manner.

4. FRESHNESS-AWARE SCHEDULING OF
MULTIPLE CONTINUOUS QUERIES

In this section we describe our proposed policy Foeshness-
Aware Scheduling of Multiple ContinuousQueries (FAS-MCQ). Cur-
rentwork on scheduling the execution of multiple continsiqueries
focuses on QoS metrics [2, 4, 1] and explakectivity to improve
the provided QoS. Previous work on synchronizing database u
dates exploited thamount (frequency) of updates to improve the
provided QoD [7, 15, 8]. In contrast, our propogghS-MCQ, ex-
ploits both selectivity and amount of updates to improveQio®,
i.e., freshness, of output Web data streams.

4.1 Scheduling without Selectivity

Assume two querie§: andQ2, with output Web data streams

D, andD,. Each query is composed of a set of operators, each

operator has a certain cost, and the selectivity of eachatqreis
one. Hence, we can calculate for each qu@yyits total costC;

as shown in Section 2. Moreover, assume that thereNarand
N> pending updates for queri€®; andQ- respectively. Finally,
assume that the current wait time for the update at the he@d'sf
queue isi¥, similarly, the current wait time for the update at the
head ofQ2's queue isV,.

Next, we compare two policiex andY'. Under policyX, query
Q1 is executed before quey., whereas under policy, queryQ-
is executed before query; .

Under policy X, where queng); is executed before query,,
the total loss in freshnesf.x, (i.e., the period of time wher@-
and@- are stale) can be computed as follows:

Lx =Lx1+ Lxp (4)

Since@: will remain stale until all its pending updates are pro-
cessed, the x ; is computed as follows:

Lx1 =W+ (N:1Ch)

wherelV is the currentloss in freshness gid; x C') is the time
required until applying all the pending updates.
Similarly, Lx 2 is computed as follows:

Lx2 = (W2 + Ni1C1) + (N2Co)

whereWV; is the current loss in freshness plus the extra amount of
time (V1 x C1) where@2 will be waiting for @ to finish execu-
tion.

By substitution in Equation 4, we get

Lx = Wi + (N1C1) + (W2 + N1C1) + (N2C2) 5)

Similarly, under policyY” in which Q2 is scheduled beforg,
we have that the total loss in freshneks, will be:

Ly = (W1 4+ N2C3) 4+ (N1C1) + Wa + (N2Co) (6)

In order forL x to be less thaily-, the following inequality must
be satisfied:

N101 < NQOQ (7)

The left-hand side of Inequality 7 shows the total loss islire
ness incurred by). whenQ) is executed first. Similarly, the right-
hand side shows the total loss in freshness incurredpwhen
Q2 is executed first. Hence, the inequality implies that betvtbe
two alternative execution orders, we select the one thainmues
the total loss in freshness.

4.2 Scheduling with Selectivity

Assume the same setting as in the previous section. However,
assume that the productivity of each quélyis S; which is com-
puted as in Section 2. The objective when scheduling witbcsel
tivity is the same as before: we want to minimize the tota livs
freshness. Recall from Inequality 7 that the objective afimiz-
ing the total loss is equivalent to selecting for executloa query
that minimizes the loss in freshness incurred by the otherygun
the presence of selectivity, we will apply the same concept.

We first compute for each output data streAmits staleness
probability (P;) given the current status of the input data stream.
This is equivalent to computing the probability that at teaise
of the pending updates will satisty;’s predicates. Hence;;, =
1—(1—-5;)™i, where(1—S;)" is the probability that all pending
updates do not satisfy;’s predicates.

Now, if Q2 is executed befor€)., then the loss in freshness
incurred by@: only due to the impact of processiig, first is
computed as:

Lo, = P1 x No x C3"9

whereN; x C5*? is the expected time th&), will be waiting for
Q- to finish execution and?; is the probability thatD; is stale
in the first place. For example, in the extreme cass0f= 0, if
Q2 is executed befor€),, it will not increase the staleness bf;
since all the updates will not satis€y,. However, atS; = 1, if
Q- is executed befor€,, then the staleness éf; will increase by
N2 x C3*? with probability one.

Similarly, if Q1 is executed befor€,, then the loss in freshness
incurred by@- only due to processing: firstis computed as:

Lo, = P, x N1 x C7"9

In order forLq, to be less thaihg, , then the following inequal-
ity must be satisfied:

N.CP"9 N2CyY*
Py < P, ®
Thus, in our proposed policy, each quélyis assigned a priority
value V; which is the product of its staleness probability and the
reciprocal of the product of its expected cost and the nurobiés
pending updates. Formally,

1—(1-8)N
N,C

4.3 The FAS-MCQ Scheduler

The FAS-MCQ scheduler selects for execution the query Wigh t
highest priority value at eacdtheduling point. A scheduling point
is reached when: (1) a query finishes processing an inputtepda
or (2) when a new update arrives at the system.

In the second case, the scheduler has to decide whetheutoges
executing the current query or preemptit. A query is preeahjta
new update has arrived at a query with priority higher thanathe
currently executing. Thus, we need to recompute the pyiofithe
currently executing query based on the position of the meee
update along the query operators. For example, if the pseces
update is at the input queue of some operéigralong the query,
then the current priority of the query is computed as:

1—(1-5S,)

whereS, andC; "7 are the expected productivity and expected cost
of the segment of operators startingat all the way to the root. If

O, has been processing the tuple d@rtime units, then the current
priority is computed as above by replaciagwith ¢, — d.

4.4 Discussion

It should be noted that under our policy, the priority of aque
increases as the processing of an update advances. Foccegszt
us assume that a query has just been selected for executitmatA
moment, the priority of the query is equal to the priority tsfleaf
node or leaf operator. After the leaf finishes processingifidate,
the priority of the next operator, say., is computed as shown
earlier. Intuitively, S, andCg"? are greater thas andC*"9 of
the leaf operator because the remaining processing costates
and the expected productivity might increase too. Addaibyn N,
is equal to one and our priority function monotonically deases
with the increase inV. Thus, overall, the priority 00, is higher
than that of the leaf node. Similarly, the priority of eactecgtor
in the query is higher than the priority of the operator pckag it.
As such, a query); is never preempted unless a new update arrives
and that new update triggers the execution of a query witlyladri
priority than@; .

Also note that under our priority function (Equation FAS
MCQ behaves as follows:

Vi = ©)

1. If all queries have the same number of pending tuples and
the same selectivity, then FAS-MCQ selects for execution
the query with the lowest cost.

. Ifallqueries have the same cost and the same selectiaty,
FAS-MCQ selects for execution the query with less pending
tuples.

pendingtuples, then FAS-MCQ selects for execution theyquer
with high staleness probability.

. If all queries have the same cost and the same number of

In case (1)FAS-MCQ behaves like th&hortest Remaining Pro-
cessing Time policy. In case (2)FAS-MCQ gives lower priority to
the query with high frequency of updates. The intuition & ththen
the frequency of updates s high, it will take a long time ttaggsh
the freshness of the output Web data stream. This will bldbkro
queries from executing and will increase the stalenessaif thut-
put Web data streams. In case (BAS-MCQ gives lower priority
to queries with low selectivity as there is a low probabitiyat the
pending updates will “survive” the filtering of the query optrs
and thus be appended to the output Web data stream.

5. EVALUATION TESTBED

We have conducted several experiments to compare the perfor
mance of our proposed scheduling policy and its sensitioityif-
ferent parameters. Specifically, we compared the perfoceman
our proposedAS-MCQ policy to a two-level scheduling scheme
from Aurora where Round Robin is used to schedule queries and
pipelining is used to process updates within the query.ectilely,
we refer to the Aurora scheme in our experiment®&sin addi-
tion, we considered a FCFS policy where updates are progesse
according to their arrival times. Finally, we adapted the®&st
Remaining Processing TIm&RPT) policy, where the priority of a
query is the reciprocal of its total cost (i.&,/,C). The SRPT policy
has been shown to work very well for scheduling requests agtla W
server when the performance metric is response time [9].

Queries: We simulated a Web server that hosts 250 registered
continuous queries. The structure of the query is adapted f5,
13] where each query consists of three operators: two patstic
and one projection. All operators that belong to the sameyque
have the same cost, which is uniformly selected from thressibée
classes of costs. The cost of an operator in classequal to:2°
time units, where is 0, 1, or 2.

Selectivities: In any query, the selectivity of the projection is set
to 1, while the two predicates have the same value for seigti
which is uniformly selected from the range [0.1, 1.0].

Streams: The number of input data streams is set to 10 and
the length of each stream is set to 10K tuples. Initially, \eaey-
ate the updates for each stream according to a Poissoibdigiri,
with its mean inter-arrival time set according to the sintedbsys-
tem utilization (or load). For a utilization of 1.0, the in@rival
time is equal to the exact time required for executing therigae
in the system, whereas for lower utilizations, the mean-atgval
time is increased proportionally. To generate a back-lagpofates
[10], we have a parameté? which controls the number diur sty
streams. A bursty stream is created by adapting the iyitgein-
erated Poisson stream using two parameteusst probability (p)
andburst length (1). Specifically, we traverse the Poisson stream
and at each entry/update we toss a coin, if the tossing riedaks
than thep, then the arrival timed, of that update is the beginning
of a new burst. Then, the arrival times of each of the fnextdates
are adjusted so that the new arrival tim, of an update:; is set
to (A; — Ap) * p, whereA; is the arrival time computed originally
under the Poisson distribution. We have conducted sevepaire
iments with different settings of the, [and B parameters. Due
to lack of space, we will present the simulation results &heis
equal to 0.5/ is equal to 50 updates arglis in the range [0, 10]
with the default being 5.

1.1

1.0 4
0.9 4
0.8
0.7 +
0.6

0.5 4

Freshness

0.4

0.3 4

—— RR

v FCFS
—&— SRPT
—O- FAS-MCQ

0.2 4 v

0.1 +

0.0

T T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Server Utilization

Figure 2: freshness vs. load (selectivity=1.0)

6. EXPERIMENTS

6.1 Impact of Utilization

In this experiment, the selectivity for all operators is &etl,
whereas the processing costs are variable and are genasatied
scribed earlier. Figure 2 depicts the average total freshoeer all
output Web data streams as the load at the Web server insrease
In this experiment 5 out of the 10 input data streams are Yaurst
The figure shows that, in general, the freshness of the oWpbt
data streams decreases with increasing load. It also shaiihe
FAS-MCQ policy provides the highest freshness all the tiffiee
freshness provided by SRPT is equal to that of FAS-MCQ for uti
lizations up to 0.5. After that point, with increasing wtion,
queues start building up. That is when FAS-MCQ gives higher
priority to queries with shorter queues and low processogt
order to maximize the overall freshness of data, thus ofapar
ing SRPT. At 95% utilization, FAS-MCQ has 22% higher fresh-
ness than SRPT. If we report QoD as staleness (i.e., the ippbs
freshness [15]), then FAS-MCQ is 41% better than SRPT, wigh j
a 20% overall average staleness.

6.2 Impact of Bursts

The setting for this experiment is the same as the previoas on
However, the utilization at all points is set to the defaallue of
90%. In Figure 3, we plot the average total freshness as tmbau
of input data streams that are bursty increases. At a valOe af
the arrivals follow a Poisson distribution with no burstfiexeas at
10, all input data streams are bursty as described in Se>ion

Figure 3 shows how the total average freshness decreases whe
the number of bursty data streams increases. It also shats th
FAS-MCQ provides the highest freshness compared to the othe
policies. Notice the relation between FAS-MCQ and SRPThas t
number of bursty streams increases, the difference inriesshpro-
vided by FAS-MCQ compared to SRPT increases up until there ar
5 bursty streams. At that point, FAS-MCQ has 20% higher fresh
ness than SRPT. At the same time, FAS-MCQ has 1.8 the freshnes
of the RR policy and 3.6 the freshness of the FCFS policy.

After there are 7 bursty input streams, the performance @f th
FAS-MCQ and SRPT policies get closer. The explanation isgha
a lower number of bursty streams, FAS-MCQ has a better chtance
find a query with a short queue of pending updates to schedule f
execution. As the number of bursty streams increases, teceh
of finding such a query decreases, and as such, SPRT is parfprm
reasonably well. At 10 bursty streams, FAS-MCQ has only 16%
higher freshness than SRPT.

1.0

0.8

0.6 q

Freshness

—— RR

v FCFS
—8— SRPT
— - FAS-MCQ

0.2 1

0.0

T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

Number of Bursty Streams (B)

Figure 3: freshness vs. number of bursty streams

6.3 Impact of Selectivity

In this experiment, the cost for all operators is set to 1 timi.
However, the selectivity is chosen uniformly from the raf@®,
1.0]. Figure 4 depicts how the freshness decreases withdsirg
load at the Web server. The figure also shows that FAS-MCQ stil
provides the highestfreshness, as it considers the priap&iat an
update will affect the freshness of the corresponding dag¢as.
That is opposite to SRPT which will give a higher priority to a
query with low selectivity since a low selectivity will prae a low
value forC**9. Hence, SRPT will spend time executing queries
that will only append fewer updates to their correspondintpot
data streams.

In this experiment, RR behaves better than SRPT at higkaili
tions. At a 95% utilization, FAS-MCQ gives 50% higher fresln
than RR and 63% higher than SRPT.

11

1.0 1

0.9 +

0.8 +

0.7 +

0.6

Freshness

0.5 +

0.4 +

0.3 o

0.2 +

0.1 +

0.0 T T T
05 06 07
Server Utilization

T T T T
0.1 0.2 0.3 0.4

Figure 4: freshness vs. load (variable selectivity)

Figure 5 shows the standard deviation of freshness for time sa
experiment setting. The figure shows that for all policiks,devia-
tion increases with increasing load where some output deares
are stale for longer times compared to other data streamse o,
FAS-MCQ provides the lowest standard deviation for mostieal
of utilization. As the utilization approaches 1 (i.e., witte Web
server is about to reach its capacity), the fairness proMiyeFAS-
MCQ gets closer to that of FCFS. Thus, FAS-MCQ is at least as
fair as FCFS, even at very high utilizations.

However, the FCFS policy behaves poorly if we look beyond
fairness and into the average total freshness: as showgume4,
FAS-MCQ provides 96% higher average freshness compared to
FCFS, despite having the same fairness.

—e— RR
v FCFS
—a— SRPT
—O - FAS-MCQ

Standard Deviation of Freshness

Server Utilization

Figure 5: standard deviation of freshness

7. RELATED WORK

The work in [7, 8] provides policies for crawling the Web in
order to refresh a local database. The authors make thevaltiser
that a data item that is updated more often should be synizen
less often. In this paper, we utilize the same observatioweher,
[7, 8] assumes that updates follow a mathematical modelreese
we make our decision based on the current status of the Weérser
queues (i.e., the number of pending updates). The samevatiser
has been exploited in [15] for refreshing distributed caciued in
[12] for multi-casting updates.

The work in [10] studies the problem of propagating the up-
dates to derived views. It proposes a scheduling policyfiphang
the updates that considers the divergence in the computatists
of different views. Similarly, our proposeAS-MCQ considers
the different processing costs of the registered multipletiouous
queries. MoreoveFAS-MCQ generalizes the work in [10] by con-
sidering updates that are streamed from multiple data ssuas
opposed to a single data source.

Improving the QoS of multiple continuous queries has been th
focus of many research efforts. For example, multi-quetintpa-
tion has been exploited in [6] to improve the system throwugfirp
an Internet environment and in [13] for improving the thrbpgt
of a data stream management system. Multi-query scheduiding
been exploited by Aurora to achieve better response time sett
isfy application-specified QoS requirements [2]. The warkl]
employs a scheduler for minimizing the memory utilizatidn.the
best of our knowledge, none of the above work provided tepres
for improving the QoD provided by continuous queries.

8. CONCLUSIONS

Motivated by the need to support active Web services whieh in
volved the processing of update streams by continuousegjeni
this paper we studied the different aspects that affect e f
these services. In particular, we focused on the freshrfeggeo
output data stream and identified that both the propertigaefies,
i.e., cost and selectivity, as well as the properties of tipaii up-
date streams, i.e., variability of updates, have a sigmifizapact

on freshness. For this reason, we have proposed and experime

tally evaluated a new scheduling policy for continuous @ssthat
exploits all of these aspects to maximize the freshnessaftitput
data stream. Our proposed Freshness-Aware Scheduling Itif Mu
ple Continuous Queries (FAS-MCQ) policy can increase inesk
by up to 50% compared to existing scheduling policies us&dib
servers. Our next step is to study the problem when MCQ plans i
clude shared operators as well as join operators.

Acknowledgments: We would like to thank the anonymous re-
viewers for their thoughtful and constructive comments.

9. REFERENCES

[1] B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain:
Operator scheduling for memory minimization in data
stream systems. [EGMOD, 2003.

D. Carney, U. Cetintemel, A. Rasin, S. Zdonik,

M. Cherniack, and M. Stonebraker. Operator scheduling in a

data stream manager. \f.DB, 2003.

D. Carney, U. Getintemel, M. Cherniack, C. Convey, S. Lee

G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.

Monitoring streams: A new class of data management

applications. InVLDB, 2002.

S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.

Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,

V. R. S. Madden, F. Reiss, and M. A. Shah. TelegraphCQ:

Continuous Dataflow Processing for an Uncertain World. In

CIDR, 2003.

J. Chen, D. J. DeWitt, and J. F. Naughton. Design and

evaluation of alternative selection placement strateigies

optimizing continuous queries. ICDE, 2002.

J. Chen, D. J. DeWitt, F. Tian, and Y. .Wang. NiagaraCQ: A

scalable continuous query system for internet databases. |

S GMOD, 2000.

J. Cho and H. Garcia-Molina. Synchronizing a database to

improve freshness. IBIGMOD, 2000.

J. Cho and H. Garcia-Molina. Effective page refresh gieb

for web crawlersACM Transactions on Database Systems,

28(4):390-426, 2003.

M. Harchol-Balter, B. Schroeder, N. Bansal, and

M. Agarwal. Size based scheduling to improve web

performanceTransactionson Computer Systems,

21(2):207-233, 2003.

A. Labrinidis and N. Roussopoulos. Update propagation

strategies for improving the quality of data on the web. In

VLDB, 2001.

[11] A. Labrinidis and N. Roussopoulos. Exploring the traffie
between performance and data freshness in database-driven
web serversvVLDB J., 13(3):240-255, 2004.

[12] W. Lam and H. Garcia-Molina. Multicasting a changing
repository. INNICDE, 2003.

[13] S. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over streams. In
S GMOD, 2002.

[14] M. Mehta and D. J. DeWitt. Dynamic memory allocation for
multiple-query workloads. IWVLDB, 1993.

[15] C. Olston and J. Widom. Best-effort cache synchroimzat
with source cooperation. I@GMOD, 2002.

[16] S. Pandey, K. Ramamritham, and S. Chakrabarti. Moinior
the dynamic web to respond to continuous querie WiV,
2003.

[17] J. Shanmugasundaram, K. Tufte, D. J. DeWitt, J. F.
Naughton, and D. Maier. Architecting a network query
engine for producing partial results. WebDB, 2002.

[18] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki.
Continuous queries over append-only databases. In
SGMOD, 1992.

[19] T. Urhan and M. J. Franklin. Dynamic pipeline schedglin
for improving interactive query performandé_DB, 2001.

(2]

(3]

[4]

(5]

(6]

[7]
(8]

(9]

[10]

