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ABSTRACT
In the context of mobile data access, data caching is fundamental
for both performance and functionality. For this reason there have
been many studies into developing energy-efficient caching algo-
rithms suitable for specific mobile environments. In this papers, we
present a novel caching policy, Universal Mobile Caching (UMC),
which is suitable for managing object caches in structurally vary-
ing environments, and which is self-optimizing for changing work-
loads. UMC is based on a simple set of basic criteria which reflect
a spectrum of possible caching policies. UMC has demonstrated
the ability to provide caching benefits in the on-demand retrieval
of web documents for the mobile web, wherein multiple levels of
intervening caches can create adverse workloads for other general
caching schemes. When considering the energy expended in ser-
vicing cache misses, UMC consistently demonstrated savings on
the order of 10% to 15%. These energy savings are solely due to
local per-node behavior, and do not include the potential reduction
of power consumption, to less than half its normal levels, achiev-
able due its enabling more effective multi-hop data transmission.
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H.3.m [Information Storage and Retrieval]: Miscellaneous—
Caching, Web Caching, Adaptive Caching; D.4.3 [Operating Sys-
tems]: File Systems Management—Distributed File Systems
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1. INTRODUCTION
One of the most prevalent techniques for improving storage sys-

tem, network, and device performance is caching. In mobile envi-
ronments, caching takes on an added importance when it can con-
tribute to a greater reduction in the consumption of constrained re-
sources such as power and network bandwidth, and by allowing
disconnected operation. There have been many studies into devel-
oping a better caching algorithm, focusing on both improving the
choice of item to replace, as well as developing techniques to model
data access behavior and prefetch data. Recently, research efforts
have produced caching policies that, in addition to optimizing a
specific performance metric, attempt to automate policy parameter
tuning. These efforts hope to effectively eliminate the need for an
administrator or programmer to select a particular parameter, and
thus allow the algorithm to adapt to the observed workload. Such
adaptive and self-optimizing caching algorithms offer another ad-
vantage when we consider mobile environments, where users of
mobile devices should not be expected to tune their devices in re-
sponse to workload changes. The nature of the workload can vary
dramatically depending on the current position of a mobile node
in relation to other nodes and stations, and also depending on the
current location and context of the mobile user. Such adaptive and
self-optimizing caching algorithms offer another advantage when
we consider mobile environments, where users of mobile devices
should not be expected to tune their mobile devices and the nature
of the workload can vary dramatically depending on the current
position of a mobile node in relation to other caches on mobile or
stationary nodes.

In a mobile environment, caching is beneficial both for reduc-
ing the access time to remote data, and for avoiding the power and
resource consumption involved in retrieving such data. Caching is
particularly effective for referential data that is unlikely to change
frequently, and yet comes from a base too large to replicate across
nodes. This is the environment created with the mobile web, and
will form the main application example we consider in this work.
Another advantage of caching data locally to mobile nodes is the
ability to retrieve data from a nearby node, rather than from a more
distant base station. In wireless environments, simply retrieving
data using multiple short-range transmissions provides a reduction
in overall energy consumed. And yet, this very behavior results
in a structure that renders effective caching challenging. Depend-
ing on the current position of a mobile node, it is possible that the
workload it observes is the result of misses in multiple intervening
caches, a condition that even in wired environments is normally be-
lieved to render basic caching schemes useless without relying on
inter-cache communication [23].

In this work we demonstrate how an adaptive self-optimizing
caching scheme can still yield benefits in such a mobile multi-
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staged environment (Figure 1). While such an environment may
appear to be more likely in an infrastructureless wireless network
setting (e.g., mobile ad-hoc networks), we make no such assump-
tion, as the need for multi-hop transmission can also arise with
mobile infrastructure-based environments (i.e., with backbone of
base stations), for example, due to interference and dead spots. For
our experiments we assume a general architectural model that can
apply to both infrastructure and ad-hoc environments, where data
may be retrieved through multiple hops to a base-station or satisfied
from the local caches of mobile peers.

In our work we assume the on-demand broadcasting of web doc-
uments, and caches which depend solely on the observed data ac-
cesses to inform the caching policy. One of the earliest works to
identify problems in future mobile wireless computing environ-
ments was Imielinski et al [5]. As early as 1995 they observed that
energy constrained mobile hosts will need to communicate over a
data transmission medium connecting to different data servers at
different times. They also demonstrated that caching of frequently
accessed data items will be an important technique that will re-
duce contention on narrow bandwidth, wireless channels. Unlike
caching schemes, such as PIX [1], where a periodic broadcast of
data is used (acting as a cache on the air), or schemes that employ
opportunistic scheduling and prefetching, such as that of Aksoy et
al [2], we consider only the demand-based retrieval of web docu-
ments in the mobile web. Our work also differs in its focus from
caching schemes that exploit semantic knowledge, such as the pro-
cessing of location-sensitive queries [19]. In this manner, we hope
to focus on the most basic and general form of caching algorithms
and largely emphasize the impact of the adaptive policy. In the best
of our knowledge, no other adaptive policy exists in the context of
mobile computing.

Our proposed caching scheme, called Universal Mobile Caching,
is suitable for managing object caches in structurally varying envi-
ronments, efficient enough to be implemented with minimal com-
putational costs, and can be easily extended to capture all pos-
sible criteria influencing the performance of a cache replacement
scheme. Our caching algorithm aims to be “Universal” at three dif-
ferent levels. The first is its ability to adapt to arbitrary workloads,
as can arise with multiple mobile caches or due to fluctuations in
user behavior. The second sense of “universal” comes from the
algorithms aim to capture a wide (and eventually exhaustive) spec-
trum of possible caching policies within a simple and practical al-
gorithm based on a small collection of observable workload traits,
which we refer to as “base criteria.” If used by itself on a mobile de-
vice, our novel caching scheme will give better performance, both
in terms of energy and response time. The second advantage of
UMC (the third dimension of universality) is in the event of data
sharing between caches of mobile peers. UMC has the ability to
adapt itself, thereby acting synergetically and cooperatively with
other caching schemes. This is important, particularly in mobile
computing, since cooperation may entail considerable energy costs
and communication overheads.

The paper is structured as follows. We discuss background in
Section 2. After that we go on to discuss our assumed system and
power model in Section 3. In Section 4, we describe our Universal
Mobile Caching policy in detail. After that we present results for
trace-driven tests of the policy using varied workloads in Section 5.
We conclude in Section 6 with a summary of our contribution.

2. BACKGROUND
Providing an effective and self-contained caching policy that is

useful in the face of varying and unpredictable data access work-
loads, while simultaneously avoiding excessive complexity in the

policy itself, is a challenging proposition, and a novel contribution
of our work. We achieve this goal by providing a self-optimizing
caching policy, based on our prior experiences in the application
of machine learning techniques to caching problems, while ensur-
ing that our algorithm is based on a minimal, simple, and effi-
ciently computed set of basic criteria. To this end, our work builds
upon the state of the art in adaptive caching, and we now intro-
duce a brief background to the development of adaptive and self-
optimizing caching schemes.

Simple Caching, Simple Criteria: The Least-Normalized-Cost
replacement (LNC) [18] policy inserts the documents into a pri-
ority queue with a priority key. The problem with this policy is that
it has tunable parameters which are workload dependent. Another
policy known as Low Interference Recency Set (LIRS) [10] main-
tains a variable size LRU stack whose LRU page is the L(lirs)-th
page that has been seen at least twice recently, where L(lirs) is a
parameter. As suggested in the paper, the setting of L(lirs) to 1%
of the cache size will be good for Independent Reference Model
(IRM) workloads. But it does not perform as well for LRU Stack
Depth Distribution (SDD) workloads.

The Frequency based replacement (FBR) [20] policy combines
both the frequency of access and recency of access. It divides the
LRU list into three sections, and maintains a counter for every doc-
ument in the cache. The algorithm has several tunable parame-
ters. In order to prevent cache pollution from stale pages with high
reference counters, all the reference counters must be periodically
rescaled. A class of policies known as Least Recently/Frequently
Used (LRFU) [13] were shown to subsume the Least Recently Used
(LRU) and Least Frequently Used (LFU) policies. These policies
have an update rule which is a form of exponential smoothing that
is widely used in statistics. It effectively balances both the LRU
policy and LFU policies. There is an adaptive version of the policy
known as Adaptive Least Recently/Frequently Used (ALRFU) [14]
policy. This policy basically has a mechanism to dynamically ad-
just the parameter used in the basic LRFU policy. Again, both
these LRFU schemes require tunable parameters. There has also
been considerable work in the context of multiversion data broad-
cast, i.e., data broadcast in which more than one value is broad-
cast per data item, which is essential to support applications that
require access to data sequences and are memory and power con-
strained [22]. Another adaptive cache invalidation algorithm for
client/server mobile environments was proposed by Jin et al [12].
The proposed Bit-sequences algorithm uses adaptable mechanisms
to adjust the size of the invalidation report to optimize the use of a
limited communication bandwidth while retaining the effectiveness
of cache invalidation. An interesting work that presents an energy-
efficient cache invalidation method for a wireless mobile computer
is Grouping with Cold Update-set Retention (GCORE) [24]

Self-Optimizing Caching Policies: A recently proposed self-
tuning caching policy is known as the Adaptive Replacement Cache
(ARC) [17]. It maintains two variable sized LRU lists. It captures
both recency and frequency of access well, and provides an elegant,
efficient and effective mechanism for combining them. It is in-
tended as a page replacement policy, and so it does not consider the
different delays in fetching a document, and variable object sizes,
which are important factors in general object caching, as with Web
content caching.

Our general approach of combining more than one constituent is
most similar to Adaptive Caching using Multiple Experts (ACME) [3].
ACME uses a mixture of arbitrary policies which are treated as ex-
perts. Machine learning algorithms are applied to combine the rec-
ommendations of the different policies based on their ordering. We
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differ from ACME in two ways: by providing a more direct evalu-
ation of each element’s relative importance, and allowing the eval-
uation of an arbitrary selection of performance criteria. By using
GD-Size variants as component algorithms we are able to propor-
tionally scale the credits based on the normalized cost functions.
ACME restricts policy information to orderings in exchange for a
greater generality in terms of applicable policies. This means that
GD-GhOST introduced in [21] produces a new evaluation function
instead of a switching among policies or a rigid mixed-weighting
policy. The Greedy-Dual * (GD-*) Web caching algorithm [11] is
known to be superior to many other Web cache replacement poli-
cies, but our approach differs in that we attempt to optimize a user-
specified combination, or selection, of performance goals.

As with GD-* we also differ from ACME in our ability to in-
corporate arbitrary combinations or selections of performance cri-
teria. Finally, a motivating factor for these dynamic schemes, as for
multi-queue algorithms [25], is to adapt policies automatically for
cases where multiple caches can have adverse interactions. A re-
cent work that addresses harmful cache interactions is that of Wong
and Wilkes [23], where demotions were used as a mechanism to
explicitly ensure cache exclusivity. Demotions require communica-
tion between these multiple caches, an assumption we do not make.

GD-GhOST & Universal Caching: Combining multiple al-
gorithms can be performed by combining a multi-expert machine
learning algorithm with virtual caches, and using different replace-
ment algorithms for each virtual cache. This approach was first pre-
sented with ACME (Adaptive Caching using Multiple Experts) [3].
For machine learning algorithms, such as “weighted majority” and
“share” [9], the term expert refers to any mechanism for offering
an answer to the question. It can be any arbitrary algorithm for pre-
dicting the correct value, or even a sample answer per se. For cache
replacement, the answer we seek is the identity of the object in the
cache with the least likelihood of subsequent future access. The ac-
tual answer offered by the full algorithm is in fact a weighted com-
bination of each expert’s individual answer, and the contribution of
the machine learning algorithm is to provide a mechanism to update
these weights based on the relative performance of the individual
experts. For ACME, the individual experts were full replacement
algorithms, applied to virtual caches, and their performance was es-
timated based on the observed performance of these virtual caches.
GD-GhOST (Goal-Oriented, Self-Tuning) caching is based on a
combination of several Greedy Dual-Size variants [6], and attempts
to satisfy a given performance goal using a fully adaptive com-
bination of these individual component algorithms [21]. As with
GD-GhOST algorithm, our proposed Universal Mobile Caching
moves away from the use of arbitrary collections of component
algorithms, and focuses on a reduced number of complimentary
algorithms. Universal Mobile Caching, which we describe in the
next section, offers further performance improvements, but its most
notable feature is that it relies on a set of three simple properties of
each cached object. These properties, or base criteria, were derived
from the intuitions expressed in greedy-dual algorithms, and can be
directly calculated or estimated for each cached object.

3. SYSTEM & POWER MODEL
We now discuss our system model, and the data transmission

and power consumption behavior that we will be evaluating. We
are assuming a model of layered caches among the mobile nodes,
as illustrated in Figure 1. A mobile host in a lower layer commu-
nicates with any of the mobile hosts in the layer above it. More
specifically in Figure 1, the mobile hosts L2A1 and L2A2 can com-
municate with their parent mobile host L1A, but not the base sta-

tion directly. This can due to the use of an infrastructureless net-
work, or due to wireless interference and dead spots necessitating
such multi-hop communication. While earlier works have explic-
itly considered the benefits and implementation of multi-hop strate-
gies, it is important to note that local caches within such schemes
are either non-cooperative, or require explicit communication to act
well together. The overheads of explicit communication are easy to
overlook. In contrast, our policy allows the multiple local caches
to coexist by autonomously self-tuning the local policy, which is
independent of any workload changes caused by intervening local
caches.

We have assumed a generic model of data transmission in the
wireless domain. Basically, the energy consumed in the transmis-
sion of data is related to the volume of data and number of retrieval
operations by the following equation:

Energy = K +[Power ∗VolumeO f Misses∗Distance2 ] (1)

In this equation, the constant K accounts for various costs asso-
ciated with the network, the term Power stands for the power costs,
the term Volume Of Misses stands for the volume of data misses
at the cache and the term Distance stands for the distance of the
mobile hosts. In practice, the average estimated power required
for data transmission in terms of the volume of data transferred
will vary depending on the model of wireless interface employed.
Typical values include 1.875 Watts at 1 Mb/s to 3.12 Watts at 4.2
Mb/s [15,16]. Using this model we are able to estimate a reasonable
range of values for the energy costs of data transmission, and we
model the energy consumed for the wireless transmission of data to
the local cache at each node. The exact values for the energy costs
are computed as per Equation 1.

As we are considering the mobile web, the local cache at each
node may in fact be subject to a workload that originates from the
cache misses of other nodes’ caches. For this reason, we model
the miss and byte-miss behavior of caches that observe workloads
filtered through zero or more preceding caching layers. The ideal
result would be to observe our policy showing better cache perfor-
mance than competing object caching algorithms, and to observe a
positive impact on the energy consumed in wireless data transmis-
sion throughout the system. To test this hypothesis, we subject the
caches to filtered workloads, and compare the energy consumed in
the wireless transmission of data for our universal caching policy
to that consumed using GDSF and GD-GhOST caching.

Such a relative comparison, conducted across a range of power
consumption values, allows us to largely eliminate the contribu-
tions of any assumed constants and demonstrate the relative gains
in energy conservation resulting from a more effective caching pol-
icy.

4. UNIVERSAL MOBILE CACHING
We now present our initial proposal for a Universal Mobile Caching

(UMC) policy, which offers a self-optimizing replacement algo-
rithm that is usable for general object caching, and yet is based on
the simplest of base criteria. As discussed above, prior work has
demonstrated the feasibility of constructing adaptive caching algo-
rithms, but such efforts have either been restricted to page replace-
ment and limited criteria, as with ARC [17], or else based on com-
binations of arbitrary replacement algorithms, as with ACME [3].
In contrast, Universal Mobile Caching uses a very simple set of
object properties to select which objects (of varying size) will be
removed from the cache.

Greedy-Dual (GD) cache replacement algorithms are based on
ranking objects by their cost of retrieval (H-values), and replacing
the objects with the lowest retrieval cost. To account for variable
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Level L2 of Mobile Peers

Figure 1: Data Transmission model of mobile hosts.

page sizes the retrieval cost is divided by the page size in Greedy
Dual-Size (GD-Size) algorithms. For an object p, the H-value is
calculated as:

H(p) =
cost(p)
size(p)

(2)

The division by the page size accounts for the intuition that re-
placing larger pages frees up more space in the cache than remov-
ing smaller ones (the same intuition behind “SIZE” replacement
that evicts the largest objects first). Different variants of GD-Size
use different estimates of retrieval cost. For example, GD-1 as-
sumes all objects have an equal replacement cost (cost(p) = 1),
while GD-Size Frequency (GDSF) assumes the cost of replacement
is proportional to the frequency of access of the object (cost(p) =
f requency(p)). Yet another variant, GD-Size Packets, estimates
the cost of retrieval as proportional to the number of packets that
must be sent to transfer the object.

All variants of GD-Size algorithms are essentially providing dif-
ferent estimates for the same basic formula for evaluating the merit
of retaining objects in the cache. This formula can be expressed as:

L(p) : Access-likelihood of p

C(p) : Cost of retrieving p

B(p) : Benefit from evicting p

H(p) =
L(p) ·C(p)

B(p)
(3)

All cache replacement algorithms can be interpreted as differ-
ent simplifications and estimates of this formula. The benefit from
evicting an object is best described by the cache capacity freed by
such an eviction. This does not differ among the GD-Size variants.
But from Equation 3, it should be apparent that increases in the re-
placement cost of an object, weighted by the likelihood of future
access, are equivalent to expected costs incurred by evicting an ob-
ject. The variations among the GD-Size variants appear in their
estimates of this expected replacement cost. More importantly, we
suggest that there is no cache replacement policy that does not per-
form an estimate of Equation 3 when deciding what to evict.

The Universal Mobile Caching algorithm draws on this small set
of object properties (likelihood L(p), cost C(p), and benefit B(p)),
and directly combines them to provide a self-optimizing and poten-
tially comprehensive caching policy. Assuming we have three ac-
curate estimators for these three properties, a possible mechanism
to vary their combination is to provide a weight for each property.
Unfortunately, it would be much simpler to automatically adjust

such weights if these properties were a sum of “expert” values, and
not a product. This is easily achieved by taking the log-sum of the
product in Equation 3, giving us Equation 4.

H(p) = wL · log(L(p))+wC · log(C(p))−wB · log(B(p)) (4)

In the following Section we see that using logarithms has a dis-
tinct impact on algorithm performance. For Equation 4 to be the
basis of an adaptive caching algorithm, we need to select estimators
of likelihood, cost, and benefit, as well as a mechanism to update
the weights.

The choice of estimators can be debated, but for our experiments
we selected the simplest possible set. The benefit from evicting ob-
ject p was taken as the size of the object, while the cost of retrieval
was also estimated as the size of the object. It should be pointed
out that such conflicting uses of the same value are perfectly rea-
sonable. If the cost of retrieving object p outweighs the benefit
from evicting it, this can be reflected by increasing wC relative to
wB. It should also be made clear that the estimator need not be an
accurate estimate, merely that it should be proportional to the value
being estimated.

Estimating likelihood of future access was done using two dif-
ferent estimators: frequency of access, and recency of last access.
Because these two criteria were used as two distinct experts, we
avoid any need to balance the mix of the two criteria (as is done
manually in LRFU algorithms, and automatically in ARC [17]).

Similar to ACME and GD-GhOST, Universal Mobile Caching
combines individual components using a master-algorithm approach [3].
Based on the performance of the component criteria, we distribute
the credits for each criteria in the following manner.

Creditc = (Per fo −Per fi) ·Creditp

where:

Creditc : The current credits for the criteria.
Creditp : The previous credits for the criteria.

Per fo : The overall combination/selection
of hit ratio and byte hit ratio.

Per fi : Criteria i’s performance based on the
combination/selection of hit ratio
and byte hit ratio.

The credits are distributed among the criteria every time we eval-
uate their relative performance. This is not done with every access,
but at a variable interval. There is no need to manually set this in-
terval, as it’s automatically adjusted based on variations in relative
algorithm performance. If the workload is such that there is a con-
sistent combination of criteria to maximize performance, then the
period is automatically lengthened. As updates are needed more
rapidly, the period is automatically reduced. This on-line update
of credits ensures that at any instant in time, we are most likely to
follow the leader among the criteria, for the metrics that are consid-
ered most important. When the best performing criterion degrades
in performance, the redistribution of credits ensures that it does not
degrade the overall performance. We have actually observed that
Universal Mobile Caching can follow the best performance of the
component criteria, and frequently exceeds it.

5. EXPERIMENTAL RESULTS
We conducted simulation-based experiments on real-world traces

to evaluate the Universal Mobile Caching policy and the effect
of web-cache filtering effects on it, particularly in comparison to
GDSF and the adaptive, yet more complex, GD-GhOST policy.
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Figure 2: Average byte miss ratio results for varied cache sizes.

We tested the ability of Universal Mobile Caching to exhibit per-
formance similar to the best policy for the selected performance
metric. Specifically we evaluated hit ratios, byte hit ratios, and
estimated power consumed for data transmission.

We also present the impact of cache filtering to demonstrate the
resilience of our Universal Mobile Caching policy to the harm-
ful cache interactions observed by Wong and Wilkes [23], and its
ability to provide performance benefits in spite of such an adverse
workload.

5.1 Workload Description
Experiments were conducted using traces run against a simulated

cache. The three Greedy Dual-Size algorithms (GD-Size(1), GD-
Sizepackets), and GDSF) were implemented, along with the GD-
GhOST and Universal Mobile Caching policies. For GD-GhOST
and Universal Mobile Caching the credits for the components (al-
gorithms or criteria) were updated on-line using the proportional
weighted averaging described in Section 4. In other words, no
warm-up or training period was allowed for the adaptive caches.

For our tested workloads, the best performing Greedy Dual-Size
algorithm was GDSF, to which we restrict our graphed results for
the sake of clarity. For Universal Mobile Caching, the core criteria
were implemented using their own estimators and each operating
on its own ghost cache. This was a compromise to simplify test-
ing and comparison with GD-GhOST, but ultimately the goal will
be to completely eliminate the need for ghost caches by evaluating
criteria values in relation to future accesses. The criteria were also
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Figure 3: Average miss ratio results for varied cache sizes.

implemented without using their log based components. We refer
to the Universal Caching policy thus implemented as the Universal
Caching policy without logs. The credits for the individual replace-
ment criteria were updated on-line using the proportional weighted
averaging described in Section 4. As described above, the trial pe-
riod for updating the credits was dynamically adjusted and required
no a priori settings. We tested with different cache sizes and using
both client and proxy web traces. Specifically, we used traces from
Boston University [8] and the 1998 World Cup [4]. The Boston
University traces contain records of the HTTP requests and user
behavior of a set of Mosaic clients running in the Boston Univer-
sity Computer Science Department, spanning from 21 November
1994 through 8 May 1995. During the data collection period a to-
tal of 9,633 Mosaic sessions were traced, representing a population
of 762 different users, and resulting in 1,143,839 requests for data
transfer. There were 5-32 workstations. The World Cup 98 data
set consists of all the requests made to the 1998 World Cup Web
site between April 30, 1998 and July 26, 1998. During this pe-
riod of time the site received 1,352,804,107 requests. In Figures 2
through 7 the criss-cross pattern represents the Universal Mobile
Caching policy, the slanted lines to the left represent the GDSF pol-
icy and the checkerboard pattern represents the GD-GhOST policy.
In Figures 2 and 3 the solid pattern represents the Universal Mo-
bile Caching policy without the logarithmic components.

5.2 Basic Caching Results
We present the byte miss ratios in Figure 2 and the miss ratios for
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Figure 4: Web cache filtering results for LRU filtered level-1
Boston University Trace.

the Universal Mobile Caching policy in Figure 3. These results are
for cache sizes of 32 MB, 64 MB, 128 MB, 256 MB and 512 MB.
We compare the performance of the Universal caching policy based
Equation 4 (with logs), to that of the Universal Caching policy
without logs (Equation 3), the GD-GhOST policy [21], and the
Greedy Dual-Size Frequency policy [7].

We see that our Universal Mobile Caching policy (with logs)
based on Byte Hit-Ratio, performs on par with the other compet-
ing variants exceeding them on several occasions. When compared
based on Hit-Ratio, it performs among the top two policies while
performing better than others on more than a couple of occasion’s.
The Universal Mobile caching policy not based on logs performs
slightly poorly than that based on logs.

The striking result from Figure 2 is that our Universal Mobile
Caching policy consistently outperforms GDSF policy in terms of
byte hit ratios. From Figure 3, we see that for simple hit ratios,
where all object misses are equal regardless of object size, Univer-
sal Caching performs only slightly worse for the largest of cache
sizes. While the overall value ranges differ for the two workloads,
it is important to note that the trends are consistent regardless of
whether the workload is from a server, or from a client-side proxy.

5.3 Mobile Web Cache Filtering
Recognizing that in most configurations, the request path from
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Figure 5: Web cache filtering results for GDSF filtered level-1
Boston University Trace.

clients to servers can involve multiple caches, at least two at browser/
proxy and at the server, that is why we performed experiments with
web cache filtering. The Web cache filtering effects described here
were simulated as follows: We allowed the Boston University and
World Cup 98 traces to pass through a cache employing a specific
policy. Then we ran the filtered trace through the cache employ-
ing the GD-GhOST policy, its constituents and the Universal Mo-
bile Caching policy. For clarity and space we present the results
for the Boston University trace, and limit the constituents to the
GDSF policy, which was the best performaing GD-Size variant for
the workloads tested. While the results presented here are repre-
sentative, we felt that filtering the Boston University traces would
most realistically reflect a server-caching scenario where client re-
quests have passed through prior caching levels. We performed the
simulation for the mobile web cache filtering effects using varying
cache sizes. We experimented with LRU filtering caches varying
from size 32 MB to 512 MB, and target caches varying across the
same range. Without loss of generality, we fixed the cache size of
the filtering cache as 64 MB since we felt that it was representative.
We also experimented with the GD-Size(1), GD-Size(Packets), and
GDSF filtered caches of size 64 MB using cache sizes of 32 MB,
64 MB, 128 MB, 256 MB, and 512 MB. We also experimented
with two levels of cache filtering employing the same policies, and
using the same cache sizes as described above.
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versity Trace

Figure 6: Web cache filtering results for LRU filtered level-2
Boston University Trace.

We compare the results for byte miss ratios for the Universal
Mobile Caching, GD-GhOST, and GDSF policies. Results for both
levels of filtered workloads are shown in Figures 4, 5, 6 and 7.
The miss ratios are generally much higher under these conditions,
but this is true regardless of policy, and the Universal Caching re-
sults are again very encouraging. Our policy consistently outper-
forms GDSF and the GD-GhOST policy for small and medium
sized caches, while performing only slightly worse for only the
largest cache capacities where miss rates are exceedingly low.

We now present the power results for our Universal Mobile Caching
policy compared against the GDSF policy. We have incorporated
the parameters as mentioned in our data transmission and power
consumption model. We have assumed power consumption values
for data transmission rates as suggested by Lorch et al [15] and Ma-
hesri et al [16]. The power consumption values for the data trans-
mission rates range from 1.875 W at 1 Mbps, 2.55 W at 2.9 Mbps
and 3.12 W at 4.2 Mbps. We have shown the average estimated en-
ergy utilized for a range of power values with the aforementioned
three values as the baseline.

In figure 8(a), we show the plot of Average Estimated Energy
utilized in terms of Joules per Megabit against the Power usage
in terms of Watts. We show the results for the unfiltered Boston
University trace comparing GDSF and Universal Mobile Caching
policy for cache sizes of 32 MB and 512 MB. We can clearly see
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Figure 7: Web cache filtering results for GDSF filtered level-2
Boston University Trace.

that the energy utilized for Universal Mobile Caching policy for
cache size of 32 MB is much less than that of the energy utilized for
Greedy Dual Size Frequency Caching policy for cache size of 32
MB. The difference between the energy utilized for the Universal
Mobile Caching policy for cache size of 512 MB and the energy
utilized for the GDSF caching policy for cache size of 512 MB is
negligible.

In figure 8(b), we show the plot of the percentage of average
estimated energy saved for the filtered Boston University Trace
through two different levels of filtering, as well as employing two
different filtering policies of Least Recently Used (LRU) and GDSF.
We show the percentage savings when employing the Universal
Mobile Caching policy as opposed to that of the Greedy Dual Size
Frequency caching policy. We can see here that there is a signifi-
cant energy savings, which is also consistent over the cache sizes
from 32 MB through 512 MB.

By using our universal mobile caching policy we are able to
achieve a savings of up to 12% in terms of energy used to trans-
mit data. We should also point out that this does not include the
potential halving of such energy due to the enabling of multi-hop
transmission, but reflects only the energy saved at the individual
nodes due to the reduced volume of data that needs to be transmit-
ted. As such, we offer a very conservative estimate of the energy
savings achievable by employing universal mobile caching in mo-
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Figure 8: Power Savings Results for Boston University Trace

bile web environments.

6. CONCLUSIONS
Our major contribution in this paper is a Universal Mobile Caching

policy that demonstrates its ability to use a set of simple criteria as
a basis for auto-tuning the caching policy, and as a result is capa-
ble of achieving resource savings in the most adverse multi-level
caching scenarios. In summary, we can see that Universal Mobile
Caching performs very well, achieving the highest byte hit ratios
among the best competing algorithms, and even against a far more
complex self-optimizing algorithm. The comparison was based on
web workloads, but they differed greatly in their nature due to the
imposition of different prior levels of caching. In a mobile web
environment, with multiple levels of intervening caches, our policy
was able to demonstrate consistent power savings over a range of
possible power consumption models.
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