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ABSTRACT

In this paper we propose a query-driven approach for tuning the
time/energy trade-off in sensor networks with mobile sensors. The
tuning factors include re-positioning of mobile sensors and
changing their transmission ranges. We propose an algebraic
query optimization framework that explores these factors while
utilizing collision-free concurrent data transmissions with
different degrees of data filtering and aggregation.

Categories and Subject Descriptors

C.2.1 [Computer — Communication Networks]: Network
Architecture and Design — Wireless communications; H.2.4
[Database Management]: Systems — Distributed databases,

Query processing

General Terms
Algorithms, Design, Performance, Experimentation

Keywords
Mobile Sensors, Sensor Networks, Query Optimization, Data
Transmission Algebra, Collision Domains

1. INTRODUCTION

We adopt a broad definition of a sensor database to be a wireless
network composed of a large number of sensor nodes most of
which are power-constrained [YHEO2]. These sensor nodes can
be attached to PDAs or other mobile devices such as mobile
robots. In this way, teams of humans and/or mobile robots in
conjunction with stationary sensor nodes can be deployed to
acquire and process data for surveillance and tracking,
environmental monitoring for highly sensitive areas, or execute
search and rescue operations.

A sensor query is characterized by large data streams among
participating nodes with possible in-node data
filtering/aggregation, and can be described as a tree-like data
delivery pattern (query routing tree). Minimizing sensor query
response time becomes crucial in mission-critical sensor
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networks. At the same time, minimizing energy consumption per
query is equally crucial for battery-powered devices. In general,
the time/energy trade-offs involve energy and time gains/losses
associated with specific layouts of the nodes.

Several techniques have been proposed to alleviate the problem of
limited power at the network level such as energy-efficient
routing, clustering and transmission scheduling [HISO1, YYAO02,
HCBO00, CFS03]. Sensor database research has also looked into
sensor query processing strategies to minimize the query response
time and reduce energy consumption by sampling [MFHHO3],
prediction [GIO1], approximation [CLKBO04], and in-network
query processing (or aggregation) [BGS01, MFHHO02, SBLCO03].
With the same goal in mind, our research makes an effort to fuse
techniques and methods currently used in the two different areas
of databases and networking. In this paper we propose a query-
driven approach for properly tuning the time/energy trade-off in
sensor networks. Our approach is based on two key observations
that have a considerable impact on the time/energy trade-off:

e  Positioning (relocation) of mobile sensors.

e  Changing the transmission ranges of sensors

Specifically, both these factors
characteristics of a query tree:

impact on the following

e Collision-free concurrency: Packet collision is a major source
of energy and time waste. If two or more nodes in the same
Collision Domain (CD) transmit packets at the same time, a
collision occurs, and the corrupted packets must be discarded.
Both node relocation and changing the transmission range could
result in changing the number of potential collision-free
concurrent transmissions.

e Filtering factor: Both node relocation and change of the
transmission range can result in changing the number of hops and
the intermediate transmission nodes involved in query execution.
This, however, brings both benefits and penalties. If the filtering
factor of the intermediate node is low (i.e., it just retransmits the
data) then by introducing it, we expect to have some time and
energy loss due to the extra hop. On the other hand, the
intermediate node does reduce the transmission range, which
results in the saving energy. If the intermediate node does a lot of
filtering, the benefit includes spending less energy by transmitting
less data.

In this paper we introduce a novel query routing tree optimization
technique that minimizes query response time and energy
consumption. Our approach is founded on algebraic analysis of
alternative query routing trees. In related research [ZCRO4,
ZCL04] we proposed a Data Transmission Algebra (DTA) that
uniformly captures the structure of data transmissions, their
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constraints, and their requirements. The DTA framework enables
both qualitative analysis and quantitative cost-based optimization
of sensor queries. In this paper we extend the basic DTA with a
translation operation that formalizes the relocation cost of mobile
nodes and the costs of changing transmission ranges of the
sensors. The extended DTA optimizes the time/energy trade-off
utilizing the concept of Pareto optimality and utility-based
selection of the optimal query tree.

2. SYSTEM MODEL

We assume that a query optimizer executes at a base station along
with other utilities such as data mining for cost-effective and
model-driven data acquisition [DGMHHO4]. For a given query or
data acquisition model, our query optimizer selects the query
routing tree with optimal response time and energy consumption.

Figure 1: Collision domain of two communicating sensors

Mobile sensors are moved into target positions according to the
selected routing query tree. A query optimizer generates
alternative query routing trees and mobile sensor deployment
plans taking into consideration the current topology of stationary
sensor nodes, the applications’ coverage requirements, and the
collision domains of the sensor nodes.

Figure 1 elaborates the concept of collision domains in a typical
wireless network (e.g. IEEE802.11) and illustrates how collisions
are handled in such networks. In order for a sensor node n/ to
communicate with sensor node n2, nl needs to first send a request
for transmission packet (Rtx) to n2, so that all other nodes in its
transmission range (75 and n6 in Figure 1) become aware of the
communication and remain silent until n/ ends the transmission.
Sensor n2 replies to n/ with a confirmation packet (Ctx), so that
the nodes in its transmission range (n3 and n4 in Figure 1) also
become aware of the communication and avoid any transmission
until the end of the current transmission. In this case, nodes n3,
n4, n5, and n6 belong to the same CD. In general, any two
communicating nodes ni and nj specify a collision domain
CD(ni,nj) defined as the union of the transmission/reception
ranges of ni and nj.

Mobile sensor nodes can move in order to improve time and
energy query performance. The mobile sensors should position
themselves and adjust their transmission power so as to minimize
overlap of CDs in the query tree. In some cases, however, this
general strategy may result in time and/or energy loss. The
optimizer is responsible for the choice of the best query strategy.

3. ALGEBRAIC QUERY OPTIMIZATION

In related research [ZCR04, ZCL04] we introduced an algebraic
query optimization technique for static sensor networks. We
developed a Data Transmission Algebra (DTA) for a query
optimizer to generate query routing trees to maximize collision-
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free concurrent data transmissions. Here we extend the DTA to
handle mobility of sensor nodes.

3.1 Basic DTA

The DTA consists of a set of operations that take transmissions
between wireless sensor nodes as input and produce a schedule of
transmissions as their result. We call an elementary transmission
(denoted ni~nj) a one-hop transmission from sensor node ni to
node nj. Each transmission ni~nj is associated with a collision
domain CD(ni, nj) as defined above. A transmission schedule is
either an elementary transmission or a composition of elementary
trans-missions using one of the operations of the DTA. The basic
DTA includes three operations that combine two transmission
schedules A and B:

e 0o(A,B). This is a strict order operation, that is, A must
be executed before B.

e a(A,B). This is an overlap operation, that is, A and B
can be executed concurrently.

e ¢(A,B). This is a non-strict order operation, that is,
either A executes before B, or vice versa.

s N Initial

’ N Specification:
o(n4 ~n2,n2~n1)

\ *. o(n5~n3, n3~n1)

\

\ o(n2 ~ 1, n3~n1)
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’, + a(n4 ~n2, n3~n1)

e ,/ a(n5~n3, n2~n1)

Complete Schedule: o( a(n4 ~n2, n5~n3), c¢(n2 ~n1, n3~n1) )

Figure 2: Example of DTA specifications

For example, consider the query tree in Figure 2, which was
generated for some query Q. Figure 2 shows the initial DTA
specification reflecting basic constraints of the query tree. For
instance, operation o(n4~n2, n2~nl) specifies that transmission
n2~nl occurs after n4~n2 is completed because of the query tree
topology. Operation c(n2~nl, n3~nl) specifies that there is an
order between transmissions n2~nl and n3~nl since they share
the same destination. However this order is not strict. Operation
a(m4~n2, n5~n3) specifies that n4~n2 can be executed
concurrently with n5~n3, since neither n3 nor n5 belongs to
CD(n4,n2), and neither n4 nor n2 are in CD(n5,n3)

The DTA introduces a set of transformation rules [ZCRO4,
ZCLO04] that can be used to generate complex transmission
schedules. Figure 2 shows an example of a complete schedule that
includes all elementary transmissions of the query tree.

3.2 Mobility-enhanced DTA

In this paper we will focus on mobile sensors that can facilitate
data delivery acting as intermediate nodes rather than data
acquisition nodes. Such mobile facilitators can introduce extra
hops in order to reduce transmission ranges of the static sensors.
In addition, the facilitators can also act as filters, decreasing the
amount of data transmitted from the static sensors to the root
node. Figure 3 shows a tree topology with four fixed sensors s/,
s2, s3, s4 and three different positions of a mobile facilitator Ms1.
The facilitators consume extra energy and introduce some extra
processing delay. However, by reducing the transmission range



and data stream sizes, they are also capable of reducing the
overall query time and energy consumption.

Given a query, the coverage requirements, and the initial position
of both stationary and mobile sensors, the query optimizer shifts
through possible mobile sensor positions in order to generate the
candidate trees with acceptable response time and energy
consumption. In order to support such mobility-based query
optimization we extended our DTA with a translation operation tr
that transforms initial schedules associated with given tree
topology. The #r operation takes two input parameters: target
initial specification tis and a set of mobile facilitators ms whose
repositioning should transform the initial specification of the
current query tree into tis. The output of #r is a complete schedule
Sch generated from the tis: tr tis,ms(Sch).

It follows from the definition of the # operation that it is not
deterministic, since we may have more than one schedule
satisfying constraints of one initial specification. For example,
consider the query tree topology in Figure 3a with initial
specification is/ and one facilitator m.
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Figure 3: Impact of mobility on DTA specification

Figures 3b and 3c illustrate two different re-positioning of
m reflected in the updated initial specifications is2 and is3.
Then the following specifications are valid DTA
expressions:

o tris2m (o(a(s2~m, c(s1~s50,s3~s0)), m~s0))

tris2,m (o(a(s2~m,s1~s0), c(m~s0,s3~s0)))

tris3,m (o(c(a(s3~m,s1~s0),s2~m),m~s0)))

tr is3,m (o(c(s3~m,s2~m),c(m~s0,s1~s0))).

In order to identify which out of the many transmission schedules
would be the best one, we propose using a cost-based tree
generation framework, which we describe in the next section.

4. COST-BASED QUERY TREE
GENERATION

4.1 Pareto-optimal Query Trees

Generating a query tree with acceptable query response time and
overall energy consumption is a multi-objective optimization
(MOP) problem [Miett99]. In general, MOP aims at minimizing
values of several objective functions f7,...fn under a given set of
constraints. In most cases it is unlikely that different objectives
would be optimized by the same parameter choice. To choose
between different vectors of the optimization objectives the
optimizer utilizes the concept of Pareto optimality [Miett99].
Informally, an objective vector is said to be Pareto optimal if all
other feasible vectors in the objective space have a higher value
for at least one of the objective functions, or else have the same

249

value for all objectives. Typically, there is more then one Pareto
optimal vector (Pareto points) reflecting the trade-offs between
different objectives. For example, if the following set includes
feasible solutions for bi-objective MOP: {(5,1), (2,2), (2,3),
(1,5)}, then the Pareto optimal set (also called Pareto front) is
{5,1), (2,2), (1,5)}. Among all Pareto optimal solutions the
optimizer should chose one using an application-dependent utility
Sfunction.

4.2 Time/Energy Utility Function

Consider two Pareto optimal objective vectors (T1,E1) and
(T2,E2), where T1, T2 are response times and E1,E2 — consumed
energy. In order to choose one of them the optimizer should trade
time for energy. Informally, the optimizer should evaluate time
and energy gains/losses and make a preference considering the
relative importance of time and energy in the context of a specific
query. The optimizer considers two factors: time factor TF and
energy factor EF ranging from 0 to 1. The following algorithm
describes the computation of our time/energy utility function:

UF (T1.E1),(T2.E2).TF.EF)
BEGIN
DT=(T1-T2)/(T1+T2); DE=(E1-E2)/(E1+E2);
DT1 =abs(DT * TF); DE1 = abs(DE * EF);
if (DT < 0 and DTI>DEI)
then return (T2,E2),
else if (DE <0 and DEI>DTI),
then return (T2,E2),
else return (T1,E1).
END
Consider the Pareto set from a previous subsection: {(5,1), (2,2),
(1,5)}. Then UF((5,1),(2,2),0.8,0.2) will return (5,1), while
UF((5,1),(2,2),0.2,0.8) results in (2,2). In general UF impose an
order on the Pareto set for a given setting of TF and EF. For
example, with TF=0.2 and EF=0.8 the order would be
{(2,2),(1,5),(5, D)}

4.3 Query Optimizer

It is well-known that the problem of generating Pareto sets is NP.
In practice MOP should be combined with scalable optimization
techniques. Our optimizer utilizes randomized algorithms [IK90]
to generate Pareto fronts for large query trees. Randomized
algorithms will search for a Pareto optimal solution by performing
random walks in the solution space via a series of valid moves
[ZCKO04]. Our optimizer uses a cost model to estimate both
response time and energy consumption of a DTA schedule.
Details of the time cost model are in [ZCKO05]. Below we
elaborate on the energy cost model.

The energy consumed by a node in sensor network is dependent
upon the amount of data sent, received, processed, and discarded.
Consider an elementary transmission ni~nj. Node ni transmits x
bytes to node nj and the node j receives the x bytes correctly. No
packets are discarded since none of the nodes ni and #j is idle.
The energy consumed in this elementary transmission (E) can be
represented as follows:

= ETX+ERX

(M

where Er, represents the energy consumed for transmitting a
packet of x bytes by ni and Eg, is the energy spent for receiving
the packet of x bytes by nj. To determine Er, and Eg,, we use the

E total



energy model from [FNO1] with some modifications. In [FNO1], it
is assumed that the energy spent for transmission or reception of x
bytes is given by:

E=C+mx

2.

The constant C and the slope m are 454 pJ and 1.9 pl/byte for
transmission and 356 puJ and 0.5 pJ/byte for reception. While this
is unspecified in [FNO1], we assume that the C and m values for
transmission in (2) satisfy the requirements for a receiving node
to just correctly receive the data when the distance between the
transmitting node and receiving node is 300m.

The power loss with distance is typically characterized by a path-
loss equation [Pah02] of the form:

P.(d) (dBm) = P; (dBm) — L, - 10a. log;o(d) ~ (3)

Here, P, is the transmit power, P, is the received power at distance
d from the transmitter, o is the path-loss exponent (o0 = 2 in free
space and typically a value of o = 4 is assumed for other areas),
and L, is a constant that depends on the frequency and other gains
and losses. The received power from (3) at a distance of 300m
given P, = 34.17 dBm and o = 4 will be P, = -64.915 — L, which
we assume is the smallest value of the received power necessary
for correctly receiving a packet.

Suppose the distance between the transmitter and receiver is d =
30m. The received power at the sensor node for just correctly
receiving data must be —64.915 — L which is also equal to P, — L,
— 40 log;o(30). From this, we see that the transmit power needs to
be only equal to —5.83 dBm = 0.26 W. The corresponding energy
consumed for transmission will be 0.26 W x 0.727s = 0.19 J. In
general, the transmit power required at a distance d from the
transmitter is:

Py new (dBm) = Py 399 + 40 log;, (4/300) 4

In our model, the energy consumed by the receiver does not
change with distance as it has to perform the same amount of
processing of the data.

Our optimizer uses equations 1, 2, 3 and 4 to calculate the energy
cost (ECost) for elementary transmissions. The energy cost for the
strict order, overlapping schedules and choice operation over
strict order are sums of ECost for each elementary transmission in
there respective schedules. Energy cost of the translation operator
trtis,ms(Sch) consists of the energy to move the facilitator sensor
to required position plus energy cost of the schedule Sch.

5. EXPERIMENTS AND ANALYSIS

For our experiments we have considered several star sensor query
tree topologies including both fixed sensors and mobile
facilitators. The optimizer evaluated best query plan for different
positioning of the facilitator. In this paper we report experimental
results for a two-hop scenario with one facilitator.

The distance between leaf static sensor and the root was selected
to be 300 meters. The amount of transmitted data was uniformly
distributed in the range 1MB-4MB per leaf sensor. For simplicity
we assumed that the mobile facilitator could only be positioned in
pre-defined “placeholders”. In addition, we considered facilitator
filtering factors ranging from 0.2 (facilitator retransmits only 20%
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of the input data stream) to 1.0 (facilitator retransmits all input
data stream).
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Figure 4: Energy and Time vs Facilitator Position

Figure 4 reports time and energy distributions for suggested query
plans chosen by optimizer for 12 facilitator positions and four
facilitator filtering factors. Position 13 represents a scenario
where no facilitator has been used. In general we observe stable
improvement in both time and energy cost with decrease of the
filtering factor. This is consistent with the fact that the amount of
the transmitted data is the most critical factor in sensor query
optimization. However, different facilitator positions are
characterized by considerable variance in time and energy cost for
all filtering factors. Almost all scenarios that utilize facilitator
outperform the no-facilitator scenario in both time and energy
consumption.
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Figure 5: Pareto fronts vs facilitator filtering factor

This is also expected behavior since even with the filtering factor
of 1.0 the facilitator still helps by reducing transmission ranges
and introducing additional opportunities for collision-free
concurrent data transmissions.

Figure 5 reports on the Pareto fronts explored by the optimizer for
each of the facilitator filtering factors. A major observation here is
stable increase of variance in both time and energy consumption
with decrease of the facilitator filtering factor. For the filtering
factor of 0.2 the energy varies between 66000 mJ and 80000mJ,
while for the filtering factor of 1.0 the energy range is 78000-
81000 mJ. The time ranges are 46-76 sec and 70-95sec
correspondingly. This means that in general the optimizer can
benefit from higher filtering factors (the lower filtering factor
reduces more input data). However, there is a considerable risk
for the optimizer to behave as badly as in the case of high filtering
factor. This, in particular, motivates our current research in fine-
tuning the optimization strategies. Part of it is a proper design of a



utility function to choose among multiple Pareto optimal

solutions.
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Figure 6: Effect of TF and EF on utility-based tree selection

Figure 6 shows optimization choices for one of generated Pareto
fronts using the utility function described in Section 4. The
choices are made for different time and energy factors. We
observe a consistent optimizer behavior in making preferences
with respect to the time and energy factors. We observed similar
performance trends with other query tree topologies considered in
our experiments.

6. CONCLUSION

This paper takes a novel view of sensor networks by considering
them to be comprised by both stationary and mobile sensor nodes.
In this mobile ad-hoc sensor network, we proposed an innovative
approach to query performance tuning. Our approach utilizes an
algebraic framework that formalizes basic query and network
constraints. We developed a scalable randomized query optimizer
that efficiently explores Pareto fronts in order to minimize both
query response time and energy consumption and, through
extensive experiments, illustrated the significant benefits it can
provide over traditional approaches.
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