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ABSTRACT 
In this paper we propose a query-driven approach for tuning the 
time/energy trade-off in sensor networks with mobile sensors. The 
tuning factors include re-positioning of mobile sensors and 
changing their transmission ranges. We propose an algebraic 
query optimization framework that explores these factors while 
utilizing collision-free concurrent data transmissions with 
different degrees of data filtering and aggregation. 

Categories and Subject Descriptors 
C.2.1 [Computer – Communication Networks]: Network 
Architecture and Design – Wireless communications; H.2.4 
[Database Management]: Systems – Distributed databases, 
Query processing 

General Terms 
Algorithms, Design, Performance, Experimentation 

Keywords 
Mobile Sensors, Sensor Networks, Query Optimization, Data 
Transmission Algebra, Collision Domains 
 

1. INTRODUCTION 
We adopt a broad definition of a sensor database to be a wireless 
network composed of a large number of sensor nodes most of 
which are power-constrained [YHE02]. These sensor nodes can 
be attached to PDAs or other mobile devices such as mobile 
robots. In this way, teams of humans and/or mobile robots in 
conjunction with stationary sensor nodes can be deployed to 
acquire and process data for surveillance and tracking, 
environmental monitoring for highly sensitive areas, or execute 
search and rescue operations. 

A sensor query is characterized by large data streams among 
participating nodes with possible in-node data 
filtering/aggregation, and can be described as a tree-like data 
delivery pattern (query routing tree). Minimizing sensor query 
response time becomes crucial in mission-critical sensor 

networks. At the same time, minimizing energy consumption per 
query is equally crucial for battery-powered devices. In general, 
the time/energy trade-offs involve energy and time gains/losses 
associated with specific layouts of the nodes.   

Several techniques have been proposed to alleviate the problem of 
limited power at the network level such as energy-efficient 
routing, clustering and transmission scheduling [HIS01, YYA02, 
HCB00, CFS03].  Sensor database research has also looked into 
sensor query processing strategies to minimize the query response 
time and reduce energy consumption by sampling [MFHH03], 
prediction [GI01], approximation [CLKB04], and in-network 
query processing (or aggregation) [BGS01, MFHH02, SBLC03].  
With the same goal in mind, our research makes an effort to fuse 
techniques and methods currently used in the two different areas 
of databases and networking. In this paper we propose a query-
driven approach for properly tuning the time/energy trade-off in 
sensor networks. Our approach is based on two key observations 
that have a considerable impact on the time/energy trade-off: 

• Positioning (relocation) of mobile sensors. 
• Changing the transmission ranges of sensors 

Specifically, both these factors impact on the following 
characteristics of a query tree: 

● Collision-free concurrency: Packet collision is a major source 
of energy and time waste. If two or more nodes in the same 
Collision Domain (CD) transmit packets at the same time, a 
collision occurs, and the corrupted packets must be discarded. 
Both node relocation and changing the transmission range could 
result in changing the number of potential collision-free 
concurrent transmissions.  

● Filtering factor: Both node relocation and change of the 
transmission range can result in changing the number of hops and 
the intermediate transmission nodes involved in query execution. 
This, however, brings both benefits and penalties. If the filtering 
factor of the intermediate node is low (i.e., it just retransmits the 
data) then by introducing it, we expect to have some time and 
energy loss due to the extra hop. On the other hand, the 
intermediate node does reduce the transmission range, which 
results in the saving energy. If the intermediate node does a lot of 
filtering, the benefit includes spending less energy by transmitting 
less data. * This work was partially supported by a 2002 startup fund from the 
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In this paper we introduce a novel query routing tree optimization 
technique that minimizes query response time and energy 
consumption. Our approach is founded on algebraic analysis of 
alternative query routing trees.  In related research [ZCR04, 
ZCL04] we proposed a Data Transmission Algebra (DTA) that 
uniformly captures the structure of data transmissions, their 
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constraints, and their requirements. The DTA framework enables 
both qualitative analysis and quantitative cost-based optimization 
of sensor queries. In this paper we extend the basic DTA with a 
translation operation that formalizes the relocation cost of mobile 
nodes and the costs of changing transmission ranges of the 
sensors. The extended DTA optimizes the time/energy trade-off 
utilizing the concept of Pareto optimality and utility-based 
selection of the optimal query tree.  

2. SYSTEM MODEL 
We assume that a query optimizer executes at a base station along 
with other utilities such as data mining for cost-effective and 
model-driven data acquisition [DGMHH04]. For a given query or 
data acquisition model, our query optimizer selects the query 
routing tree with optimal response time and energy consumption. 
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Figure 1: Collision domain of two communicating sensors 

Mobile sensors are moved into target positions according to the 
selected routing query tree. A query optimizer generates 
alternative query routing trees and mobile sensor deployment 
plans taking into consideration the current topology of stationary 
sensor nodes, the applications’ coverage requirements, and the 
collision domains of the sensor nodes. 

Figure 1 elaborates the concept of collision domains in a typical 
wireless network (e.g. IEEE802.11) and illustrates how collisions 
are handled in such networks. In order for a sensor node n1 to 
communicate with sensor node n2, n1 needs to first send a request 
for transmission packet (Rtx) to n2, so that all other nodes in its 
transmission range (n5 and n6 in Figure 1) become aware of the 
communication and remain silent until n1 ends the transmission. 
Sensor n2 replies to n1 with a confirmation packet (Ctx), so that 
the nodes in its transmission range (n3 and n4 in Figure 1) also 
become aware of the communication and avoid any transmission 
until the end of the current transmission. In this case, nodes n3, 
n4, n5, and n6 belong to the same CD. In general, any two 
communicating nodes ni and nj specify a collision domain 
CD(ni,nj) defined as the union of the transmission/reception 
ranges of  ni and nj. 

Mobile sensor nodes can move in order to improve time and 
energy query performance. The mobile sensors should position 
themselves and adjust their transmission power so as to minimize 
overlap of CDs in the query tree. In some cases, however, this 
general strategy may result in time and/or energy loss. The 
optimizer is responsible for the choice of the best query strategy. 

3. ALGEBRAIC QUERY OPTIMIZATION 
In related research [ZCR04, ZCL04] we introduced an algebraic 
query optimization technique for static sensor networks. We 
developed a Data Transmission Algebra (DTA) for a query 
optimizer to generate query routing trees to maximize collision-

free concurrent data transmissions. Here we extend the DTA to 
handle mobility of sensor nodes.  

3.1 Basic DTA 
The DTA consists of a set of operations that take transmissions 
between wireless sensor nodes as input and produce a schedule of 
transmissions as their result. We call an elementary transmission 
(denoted ni~nj) a one-hop transmission from sensor node ni to 
node nj.  Each transmission ni~nj is associated with a collision 
domain CD(ni, nj) as defined above. A transmission schedule is 
either an elementary transmission or a composition of elementary 
trans-missions using one of the operations of the DTA. The basic 
DTA includes three operations that combine two transmission 
schedules A and B: 

• o(A,B). This is a strict order operation, that is, A must 
be executed before B. 

• a(A,B). This is an overlap operation, that is, A and B 
can be executed concurrently. 

• c(A,B). This is a non-strict order operation, that is, 
either A executes before B, or vice versa.  

 

  n1
  n3 

  n5   n4   n2

Initial 
Specification: 

 
o(n4 ~ n2,n2~n1)
o(n5 ~ n3, n3~n1)
 
c(n2 ~ n1, n3~n1)
 
a(n4 ~ n2, n5~n3)
a(n4 ~ n2, n3~n1)
a(n5 ~ n3, n2~n1)

Complete Schedule: o( a(n4 ~ n2, n5~n3), c(n2 ~ n1, n3~n1) )  
Figure 2: Example of DTA specifications 

For example, consider the query tree in Figure 2, which was 
generated for some query Q. Figure 2 shows the initial DTA 
specification reflecting basic constraints of the query tree. For 
instance, operation o(n4~n2, n2~n1) specifies that transmission 
n2~n1 occurs after n4~n2 is completed because of the query tree 
topology. Operation c(n2~n1, n3~n1) specifies that there is an 
order between transmissions n2~n1 and n3~n1 since they share 
the same destination. However this order is not strict. Operation 
a(n4~n2, n5~n3) specifies that n4~n2 can be executed 
concurrently with n5~n3, since neither n3 nor n5 belongs to 
CD(n4,n2), and neither n4 nor n2 are in CD(n5,n3) 

The DTA introduces a set of transformation rules [ZCR04, 
ZCL04] that can be used to generate complex transmission 
schedules. Figure 2 shows an example of a complete schedule that 
includes all elementary transmissions of the query tree.  

3.2 Mobility-enhanced DTA 
In this paper we will focus on mobile sensors that can facilitate 
data delivery acting as intermediate nodes rather than data 
acquisition nodes. Such mobile facilitators can introduce extra 
hops in order to reduce transmission ranges of the static sensors. 
In addition, the facilitators can also act as filters, decreasing the 
amount of data transmitted from the static sensors to the root 
node. Figure 3 shows a tree topology with four fixed sensors s1, 
s2, s3, s4 and three different positions of a mobile facilitator Ms1. 
The facilitators consume extra energy and introduce some extra 
processing delay. However, by reducing the transmission range 
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and data stream sizes, they are also capable of reducing the 
overall query time and energy consumption.  

Given a query, the coverage requirements, and the initial position 
of both stationary and mobile sensors, the query optimizer shifts 
through possible mobile sensor positions in order to generate the 
candidate trees with acceptable response time and energy 
consumption. In order to support such mobility-based query 
optimization we extended our DTA with a translation operation tr 
that transforms initial schedules associated with given tree 
topology. The tr operation takes two input parameters: target 
initial specification tis and a set of mobile facilitators ms whose 
repositioning should transform the initial specification of the 
current query tree into tis. The output of tr is a complete schedule 
Sch generated from the tis: tr tis,ms(Sch). 
It follows from the definition of the tr operation that it is not 
deterministic, since we may have more than one schedule 
satisfying constraints of one initial specification. For example, 
consider the query tree topology in Figure 3a with initial 
specification is1 and one facilitator m.  
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s2 
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   c(s1~s0,s2~s0) 
   c(s2~s0,s3~s0) 
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c(s1~s0, m~s0)
o(s2~m, m~s0) 
o(s3~m, m~s0) 
a(s2~m, m~s0) 
a(s3~m, s1~s0)

(c)

 
Figure 3: Impact of mobility on DTA specification 

Figures 3b and 3c illustrate two different re-positioning of 
m reflected in the updated initial specifications is2 and is3. 
Then the following specifications are valid DTA 
expressions:  

• tr is2,m (o(a(s2~m, c(s1~s0,s3~s0)), m~s0)) 
• tr is2,m (o(a(s2~m,s1~s0), c(m~s0,s3~s0))) 
• tr is3,m (o(c(a(s3~m,s1~s0),s2~m),m~s0))) 
• tr is3,m (o(c(s3~m,s2~m),c(m~s0,s1~s0))). 

In order to identify which out of the many transmission schedules 
would be the best one, we propose using a cost-based tree 
generation framework, which we describe in the next section. 

4. COST-BASED QUERY TREE 
GENERATION 

4.1 Pareto-optimal Query Trees 
Generating a query tree with acceptable query response time and 
overall energy consumption is a multi-objective optimization 
(MOP) problem [Miett99]. In general, MOP aims at minimizing 
values of several objective functions f1,…fn under a given set of 
constraints. In most cases it is unlikely that different objectives 
would be optimized by the same parameter choice. To choose 
between different vectors of the optimization objectives the 
optimizer utilizes the concept of Pareto optimality [Miett99]. 
Informally, an objective vector is said to be Pareto optimal if all 
other feasible vectors in the objective space have a higher value 
for at least one of the objective functions, or else have the same 

value for all objectives. Typically, there is more then one Pareto 
optimal vector (Pareto points) reflecting the trade-offs between 
different objectives. For example, if the following set includes 
feasible solutions for bi-objective MOP: {(5,1), (2,2), (2,3), 
(1,5)}, then the Pareto optimal set (also called Pareto front) is 
{(5,1), (2,2), (1,5)}. Among all Pareto optimal solutions the 
optimizer should chose one using an application-dependent utility 
function. 

4.2 Time/Energy Utility Function  
Consider two Pareto optimal objective vectors (T1,E1) and 
(T2,E2), where T1, T2 are response times and E1,E2 – consumed 
energy. In order to choose one of them the optimizer should trade 
time for energy. Informally, the optimizer should evaluate time 
and energy gains/losses and make a preference considering the 
relative importance of time and energy in the context of a specific 
query. The optimizer considers two factors: time factor TF and 
energy factor EF ranging from 0 to 1. The following algorithm 
describes the computation of our time/energy utility function: 

UF ((T1,E1),(T2,E2),TF,EF) 
         BEGIN 
            DT=(T1-T2)/(T1+T2);  DE=(E1-E2)/(E1+E2); 
            DT1 = abs(DT * TF); DE1 = abs(DE * EF); 
            if (DT < 0 and DT1>DE1)  
            then return  (T2,E2),  
            else   if (DE < 0 and DE1>DT1),  
                      then return (T2,E2), 
                      else return (T1,E1). 
          END 

Consider the Pareto set from a previous subsection: {(5,1), (2,2), 
(1,5)}.Then UF((5,1),(2,2),0.8,0.2) will return (5,1), while  
UF((5,1),(2,2),0.2,0.8) results in (2,2). In general UF impose an 
order on the Pareto set for a given setting of TF and EF. For 
example, with TF=0.2 and EF=0.8 the order would be 
{(2,2),(1,5),(5,1)}. 

4.3 Query Optimizer  
It is well-known that the problem of generating Pareto sets is NP. 
In practice MOP should be combined with scalable optimization 
techniques. Our optimizer utilizes randomized algorithms [IK90] 
to generate Pareto fronts for large query trees. Randomized 
algorithms will search for a Pareto optimal solution by performing 
random walks in the solution space via a series of valid moves 
[ZCK04]. Our optimizer uses a cost model to estimate both 
response time and energy consumption of a DTA schedule. 
Details of the time cost model are in [ZCK05]. Below we 
elaborate on the energy cost model. 

The energy consumed by a node in sensor network is dependent 
upon the amount of data sent, received, processed, and discarded. 
Consider an elementary transmission ni~nj. Node ni transmits x 
bytes to node nj and the node j receives the x bytes correctly. No 
packets are discarded since none of the nodes ni and nj is idle. 
The energy consumed in this elementary transmission (E) can be 
represented as follows: 

Etotal = ETx+ERx    (1) 

where ETx represents the energy consumed for transmitting a 
packet of x bytes by ni and ERx is the energy spent for receiving 
the packet of x bytes by nj. To determine ETx and ERx, we use the 
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energy model from [FN01] with some modifications. In [FN01], it 
is assumed that the energy spent for transmission or reception of x 
bytes is given by: 

E = C + mx   (2). 

The constant C and the slope m are 454 µJ and 1.9 µJ/byte for 
transmission and 356 µJ and 0.5 µJ/byte for reception. While this 
is unspecified in [FN01], we assume that the C and m values for 
transmission in (2) satisfy the requirements for a receiving node 
to just correctly receive the data when the distance between the 
transmitting node and receiving node is 300m. 

The power loss with distance is typically characterized by a path-
loss equation [Pah02] of the form: 

Pr(d) (dBm) = Pt (dBm) – L0 - 10α log10(d)        (3) 

Here, Pt is the transmit power, Pr is the received power at distance 
d from the transmitter, α is the path-loss exponent (α = 2 in free 
space and typically a value of α = 4 is assumed for other areas), 
and L0 is a constant that depends on the frequency and other gains 
and losses. The received power from (3) at a distance of 300m 
given Pt = 34.17 dBm and α = 4 will be Pr = -64.915 – L0 which 
we assume is the smallest value of the received power necessary 
for correctly receiving a packet.  

Suppose the distance between the transmitter and receiver is d = 
30m. The received power at the sensor node for just correctly 
receiving data must be –64.915 – L0 which is also equal to Pt – L0 
– 40 log10(30). From this, we see that the transmit power needs to 
be only equal to –5.83 dBm = 0.26 W. The corresponding energy 
consumed for transmission will be 0.26 W × 0.727s = 0.19 J. In 
general, the transmit power required at a distance d from the 
transmitter is: 

Pt, new (dBm) = Pt,300 + 40 log10 (d/300)   (4) 

In our model, the energy consumed by the receiver does not 
change with distance as it has to perform the same amount of 
processing of the data.  

Our optimizer uses equations 1, 2, 3 and 4 to calculate the energy 
cost (ECost) for elementary transmissions. The energy cost for the 
strict order, overlapping schedules and choice operation over 
strict order are sums of ECost for each elementary transmission in 
there respective schedules. Energy cost of the translation operator 
trtis,ms(Sch) consists of the energy to move the facilitator sensor 
to required position plus energy cost of the schedule Sch. 

5. EXPERIMENTS AND ANALYSIS 
For our experiments we have considered several star sensor query 
tree topologies including both fixed sensors and mobile 
facilitators. The optimizer evaluated best query plan for different 
positioning of the facilitator. In this paper we report experimental 
results for a two-hop scenario with one facilitator.  

The distance between leaf static sensor and the root was selected 
to be 300 meters. The amount of transmitted data was uniformly 
distributed in the range 1MB-4MB per leaf sensor. For simplicity 
we assumed that the mobile facilitator could only be positioned in 
pre-defined “placeholders”. In addition, we considered facilitator 
filtering factors ranging from 0.2 (facilitator retransmits only 20% 

of the input data stream) to 1.0 (facilitator retransmits all input 
data stream). 
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Figure 4: Energy and Time vs Facilitator Position 

Figure 4 reports time and energy distributions for suggested query 
plans chosen by optimizer for 12 facilitator positions and four 
facilitator filtering factors. Position 13 represents a scenario 
where no facilitator has been used. In general we observe stable 
improvement in both time and energy cost with decrease of the 
filtering factor. This is consistent with the fact that the amount of 
the transmitted data is the most critical factor in sensor query 
optimization. However, different facilitator positions are 
characterized by considerable variance in time and energy cost for 
all filtering factors. Almost all scenarios that utilize facilitator 
outperform the no-facilitator scenario in both time and energy 
consumption.  
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Figure 5: Pareto fronts vs facilitator filtering factor 

This is also expected behavior since even with the filtering factor 
of 1.0 the facilitator still helps by reducing transmission ranges 
and introducing additional opportunities for collision-free 
concurrent data transmissions. 

Figure 5 reports on the Pareto fronts explored by the optimizer for 
each of the facilitator filtering factors. A major observation here is 
stable increase of variance in both time and energy consumption 
with decrease of the facilitator filtering factor. For the filtering 
factor of 0.2 the energy varies between 66000 mJ and 80000mJ, 
while for the filtering factor of 1.0 the energy range is 78000-
81000 mJ. The time ranges are 46-76 sec and 70-95sec 
correspondingly. This means that in general the optimizer can 
benefit from higher filtering factors (the lower filtering factor 
reduces more input data). However, there is a considerable risk 
for the optimizer to behave as badly as in the case of high filtering 
factor. This, in particular, motivates our current research in fine-
tuning the optimization strategies. Part of it is a proper design of a 
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utility function to choose among multiple Pareto optimal 
solutions.  
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