g STEP: Self-Tuning Energy-Safe Predictors

Check for
Updates

James Larkby-Lahet Ganesh Santhanakrishnan Ahmed Amer Panos K. Chrysanthis

Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260 U.S.A.

{james, ganesh, amer, panos}@cs.pitt.edu

ABSTRACT 1. INTRODUCTION

Data access prediction has been proposed as a mechanisrerto ov  The perceived lag in the performance of data storage techised
come latency lag, and more recently as a means of conserming e compared to processor performance has resulted in numefeus

ergy in mobile systems. We present a fully adaptive preditttat forts to overcome access latencies through predictive efetoh-
can optimize itself for any arbitrary workload, while sirtare- ing caches. Access latencies to remote data are incredibly d
ously offering simple adjustment of goals between enemyyaroa- ficult to reduce, and are often restricted by physical litiotzs
tion and latency reduction. Our algorithm, STEP, achievewgr (e.g, the speed of light and interventing distance), as such ¢/O a

savings on mobile computers by eliminating more data feiche cess latencies tend to be one of the most insurmountablerperf
which would otherwise have caused excess energy to be cedsum mance obstacles in modern computing. While insurmountéike

in accessing local storage devices or using the wirelessfimte problem is often avoided through the use of appropriateingch
to fetch remote data. We have demonstrated our algorithneto p  schemes. In mobile environments the performance consioesa
form as well as some of the best access predictors, whileringu go beyond simple speedups and service time reductions,ldmt a
almost none of the associated increase in /0O workloads&mf include avoiding excessive energy consumption.

their use. Our algorithm reduced average response timespby a
proximately 50% compared to an LRU cache, while requirirgsle = Caches generally attempt to guarantee that most data tecres

than half the I/O operations that traditional predictors uid re- for data that is being held in main memory or local storaggatie
quire to achieve the same performance, thereby incurringmo ing the need to perform 1/0, or a remote data retrieval. Rehiieg
ergy penalty. caches on the other hand attempt to achieve greater pedqave

formance through the prediction of future data requestd, tha
retrieval of data items before they are requested. The ssauie
such schemes depends on more than the accuracy of the predic-
tive algorithm applied, but also on the timeliness of thedpréon
(was it made early enough to be of use), and the impact of incor
rect predictions (if they result in unnecessary 1/0 operst). A
successful prefetcher has the potential to improve pedooa and
almost completely mask data retrieval delays, while an cress-
General Terms ful predictor can seriously degrade a storage system'speence
Algorithms, Design, Simulation, Performance by creating excessive I/O load for prefetching predictetsh d@ms
that are never used. Thus, for mobile applications any pialen
failure has an added disadvantage in that excessive cadsesni
KeYWOVdS ) ) ) will either result in more frequent data requests to locataie,
Mobile Computing, Power Management, Adaptive Caching: Pre o through the network interface, both of which would resutt
diction, Prefetching unnecessary energy consumption. Finally a cache’s pesiuce
whether it be a traditional or prefetching cache, is depende
how well it's particular caching heuristics react to the koad at
hand.

Categories and Subject Descriptors

D.4.3 [Operating System$: File Systems ManagementBistributed
File SystemsH.2.4 [Database Managemerjt Systems—PBistributed
databases, Query Processjng.3.m [Information Storage and
Retrieval]: Miscellaneous—€aching, Prefetching
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STEP is a self-tuning data access predictor, that not orfgrof
good predictions of future accesses, but does so in a fullptac
manner that can react to arbitrary workloads. STEP achithies
goal while automatically guarding against the over-zeajmefetch-
ing of unnecessary data, avoiding any potential energyheasts.
In order to evaluate our predictor we have built an expertaden
testbed in which we have used a set of real traces as testoaoskl
We demonstrate the success of STEP using this set of widely va
ing, block-level, data access traces.

The rest of the paper is organized as follows. In the nexim®gct
we describe our Self-Tuning Energy-safe Predictors (STBR)y.
We go on to present our experimental results in Section 3etn S
tion 4, we discuss related work and conclude with a brief samym
and directions for future work in Section 5.

2. SELF-TUNING PREDICTION: STEP

STEP is an algorithm that predicts likely future data retpibased
on observing prior requests. Basically, it identifies thereot data
access and produces a set of likely subsequent requestselfhe
tuning nature of STEP derives from the fact that it contiralpu
evaluates the accuracy of its own likelihood estimates,aatjaists
its prediction policy accordingly. These likelihood estites are
produced based on a weighted combination of simple predicti
heuristics prediction criterig, and STEP’s self-adjustment is based
on dynamically adjusting the weighting of these heuristidhe
likelihoods STEP calculates in this manner are actuallyrfdivid-

ual data items appearing in immediate successien,successor
likelihoods To use STEP in a prefetching cache, it would be nec-
essary to retrieve an arbitrary number of multiple sucassso any
given data access. This is possible by expanding a set of dinme
ate successors, into a larger setrahsitive successorsThe main
components of the STEP algorithm can therefore be descabed
the master algorithm, the specific heuristics (predictidteia),
and the mechanism to fetch multiple successors.

2.1 The Master Algorithm

STEP adjusts its prediction mechanism using a master #igori
and weight-update scheme based on multi-expert machin@rga
algorithms [27, 12]. The “experts” are prediction heugdstibased
on simple criteria, each of which offers a likelihood estienéor
future events.

The experts make predictionisg., offer likelihood values for the
successors that may be prefetched. The weights of experes-re
sent the quality of their likelihood estimates. Initiallyet weights
are distributed uniformly among all the experts, but as resjuests
are observed the weights of the experts are updated. Themast
algorithm proceeds with a weighted average of the expeanth- i
vidual predictions. We have shown significant performarme
provements utilizing this strategy in caching web docurmémbur
earlier works [24, 23]. Since the weights are updated tocefte
quality of an individual experts’ likelihood estimates, B im-
proves itself via feedback. Figure 1 offers a logical ovenwiof
STEP.

2.2 The Experts: Prediction Criteria

Predicting whether a particular item will be requested mfiiture
can be based on many basic factors, such as how often this/éiem
requested in the past, or how recently. Such indicators toiréu
access likelihood are examples of what we refer to as predict
criteria, and constitute the prediction experts we use agpooents
of the master algorithm in STEP.

126

Application

Specification
of
Performance
Goals to be
satisfied

Process of Data Prediction

[ Criteria i's list of data objects

)

[ Criteria |'s list of data objects )

Current System
State based on
Performance
Goals

[ Criteria k's list of data objects

)

Generic Criteria Selection
and Dynamic Credit

Distribution Combining

criteria using the
Master Algorithm

Performance

Evaluation Performing Data Prediction

Figure 1: Overview of STEP

The experts that we have utilized in our experiments are Igimp
those ofFrequency Recencyand theNull Predictor. Frequency

is defined as the number of times a pair of events have occurred
in succession divided by the total number of times the firsnev
occurred. For data accesses, this is simply a count-basiethés

of how likely the second item is to be observed as the succe$so
the first.

Recency is a similar heuristic, where succession is estuirzdsed
on the temporal proximity of events. Specifically, we defire R
cency as the complement of the time since an event last @xturr
divided by the sum of the times since all other candidate tsven
last occurred. The events being considered are the sucseasso
a given item. This gives a quantitative likelihood estimiduat is
proportional to recency, and conveniently sums to one adtos
set of potential successors.

The Null Predictor is defined as the prediction that no préatic
should be made [4]. Specifically, it says that the next exeliiteély

to be one that has never been observed before as a succetsor of
given event, and subsequently any attempt at making a pi@tic
would be unnecessary overhead. In this manner, STEP automat
ically restrains itself from attempting predictions whée twork-

load tends to be unpredictable.

We believe that tracking these criteria is sufficient foradatcess
patterns, since they cover the most generic set of criterigpér-
forming data access prediction. They are further convémethmat
they provide a set of properties that are observable fooath$ of
data access, and make no assumptions regarding the natevelor
of observation. Evaluating recency, frequency, and thepnatic-
tor require no more of the observed workload than that it thke
form of a sequence of requests for identifiable data itemis i$n
contrast to prediction heuristics thatg, assume file-level obser-
vation, or that assume a particular data format. Examplesicif



heuristics could include the assumption that files sharic@namon
directory are likely to be accessed together, or that HT Mésfire
likely to be followed by requests for files to which they linkor
every observed event, each of our experts effectively tatlesiits
own likelihood estimate for various possible successontsve

2.3 Predicting Multiple Successors

Prefetching is helpful only if the predicted successor guested
before the actual request. This issue can be overcome bizngd
and prefetching several requests into the future [16]. &iech
data block has a set of observed successors, the overalledata
tionships can be represented as a graph, with each diredtgd e
weighted by a likelihood ranging from zero to one. There are
two obvious approaches for identifying transitive sucoesg.e.,
successors of successors), One would be a breadth-firstaabpr
which grabs all the successors to a given item before moving o
This gives high assurance that we will have prefetched therse
quest, at the expense of quite a bit of wasted effort. Altdreky
one might use a depth-first approach, which fetches a lonm cha
of sequential events. If the prediction is correct, thisvisrg bit as
good as breadth-first, without the excess fetches. Howiéeesin-

gle successor is mispredicted, it is likely that the resthef ¢hain
will be unused as well.

Balanced Expansioprovides an alternative that combines these
two basic options in a manner that optimizes the likelihobdes
lected successors being observed as transitive succ¢3fofhe
last observed request serves as the the root of the tree. fAll o
the successors to the request are put into the successor il
successor with the highest likelihood is removed from thel po
and selected for prefetching. Its successors are then addée
successor pool, with their respective likelihoods mukiglby the
prefetched item’s likelihood. Again the item with the highéke-
lihood is removed and prefetched. This continues until weeha
reached theearch limit or if items fall below theconfidence thresh-
old.

The search limit is the maximum number of items to be prefch
and is often defined by the workload (demand fetches takeityrio
over prefetch requests), or the problerm.(how long the prefetch-
ing is allowed to continue). For our experiments we testedche
limits of 3, 5 and 10. The confidence threshold is a paramdter o
STEP, and represents the minimum likelihood required fdtean

to be prefetched. We used], .5, and.9 for our experiments.

Figures 2(a)-2(d) provide an example of the Balanced Expans

at work. A is the observed item. Its successors B, C, and D are

assigned likelihoods by the predictor, as shown in Figuad. Zhe
number inside the node represents the likelihood relabivied par-
ent node. The number above the node is is its likelihoodivelab
the root of the tree, since the root of the tree is an observedte
we will simply call this the absolute likelihood. Figure 2@&hows
the tree after C is prefetched and then expanded, as it hasgre
est absolute likelihood. Its successors E, F, and G arerasbig
likelihoods by the predictor, and these are also multipbgdC’s
likelihood to determine the absolute likelihoods. G now Haes
highest likelihood and is prefetched and expanded, as shoywn
Figure 2(c). Figure 2(d) illustrates the next round; D hastigh-
est likelihood, so itis prefetched and the tree is expandétttude
its successors.
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(d) third expansion, after selecting D

Figure 2: Balanced Expansion, predicting multiple successs



Spinup Penalty (s)
Cache Size (MB)

Size of the LRU cache

Experimental Parameters Definition Range Tested

Search Limit Maximum number of items to prefetch 3,5,10

Confidence Threshold Minimum likelihood required to prefetch 0.1,0.5,0.9

Spindown Timeout (s) Duration of disk idle period before being spun dowri, 5, 10, 15, 20, 25, 30, 45, 60, 90

Delay between disk spun up and service of a reqTEStB, 5

1,2,4,8,16, 32,64

Table 1: Experimental Parameters

3. EXPERIMENTAL RESULTS

We now describe the workloads used in our experiments, the as
sumptions we made, and the set of algorithms tested. Ouigtml
demonstrate that STEP can realize the performance gainggeo

by prefetching algorithms, while avoiding the adverse @ffeéhat
result from the potential for prefetchers to increase |/&dlo

3.1 Testbed and Workload Description

We explored the concepts behind our STEP algorithm usintkblo
level disk access traces [22]. The traces we selected esyirego
very different workloads, one represents that of a singler-work-
station fiplajw), while the other represents a busy senellf).
The workstation traces contain a total of 252,000 accebhsg¢svere
recorded over a period of two months, while for the servetera
we used three days of observed activity, that included @072-
cesses. We limit our simulations to the read requests sofasus
solely on the benefits of prefetch read optimizations. Withikse
are 1992 traces, the variation in the volume of data, and m@ite
access, combined with the fact that these are block-lexets mo-
tivated our selection of simulated cache sizes. The rangesep-
resentative of possible controller-based, or devicellesehes. We

cessors for each block, and their frequency of occurrenbsefe
vation). A Depth First tree expansion is used to identify tiple
successors, with greater priority given to those succegbat were
observed most frequently. The fourth algorittimequency-based
Balanced Expansiof8], uses an optimized balance of breadth and
depth-first expansion of likely successors to identify augrof
likely successors. The final algorithm simulated is our STP&RP
icy, which used multiple criteria to evaluate likely sucsers, and
dynamically self-tunes its prediction mechanism.

In Figure 3 through Figure 9 we show the performance of pchfet
ers that used Last Successor (LS DFS), Frequency-basedhExpa
sion (Freq DFS), Balanced expansion (Freq Bal), and thiféer-di

ent settings of STEP. Each version of STEP presented usdd a di
ferent confidence threshold (CT) for making predictionsisTias

the minimum estimated likelihood below which no predictis@at-
tempted. For STEP Bal CT .1, the confidence threshold is set to
a likelihood of 0.1, implying that STEP will offer predictig even
when the estimated likelihood of the prediction being ottrie as

low as 10%. The higher the confidence threshold, the more con-
servative the predictions offered by STEP. While the conitde
threshold is an adjustable parameter, the specific mechs&3iEP

selected such cache sizes as small as 1MB, and going up t0.64MB uses to produce a likelihood estimate will constantly vesyttee

Sizes beyond this tended to exceed the maximum working zet si
of these particular traces, and thus served as a good upger li

We implemented our own cache simulator, and simulated tath t
behavior of the cache, and its interaction with an undeghdisk.

In addition to varying the cache size, we also tested foerfit
disk-related parameters. It is especially important in iveoktor-
age that we consider issues such as the energy savingseabtgin
spinning down a disk to a low-power state, and the time pgnalt
incurred when a spun-down disk needs to be activated andiugpun
before a request for on-disk data can be satisfied. For thgore
we paid particular attention to timing delays and the powedeh

of the disk. By modifying the power and performance-relgtad
rameters of the underlying disk model, we were able to vamify
results across a range of possible mobile storage devicesumA
mary of our experimental parameters is shown in Table 1.

We simulated a total of five alternative cache managemeiat alg
rithms. The first was aimple LRUcache without any prefetching,
which primarily served as a control. The other algorithmzree
sented four different successor predictors used to prefatdtiple
successors. For each of these, the next read request is mnly p
cessed after prefetching is complete. The second algarithen
Last Successopredictor [2], tracks the last read to follow each
block. On subsequent reads, the block is read and then itesuc
sor is prefetched. Transitives, that is successors of ssocg are
also prefetched to provide the multiple successors. Thagigva-
lent to fetching a sequence of most likely successors badety s
on the most recent observed successor. The third algorghan i
Frequency-based Depth Firskpansion [1]. It tracks multiple suc-
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workload changes, so this parameter is a more realististbte
than an arbitrary percentage applied to a fixed algorithm.

3.2 Prefetcher Potentials. Overhead

While hit ratios have been commonly used as metrics of caehe p
formance, they neglect to consider the potential increaseork-
loads created by the prefetching of data. Disk Read-Raffesan
indication of how much unnecessary /O is created by a prieést
Figure 3 compares the Hit-Ratios across various cache, sibéle
Figure 5 shows the Disk Read-Ratios. In both these figuresowe n
malize the results of the prefetching caches against titaedfasic
LRU policy, giving us an indication of how much relative béhe
(or loss) is attributed to adding a particular prefetchitgpeathm

to basic LRU caching. We show the actual range of values for th
LRU cache in the caption of each subfigure.

As we can see from Figure 3, when we consider only hit ratios,
prefetchers provide dramatic improvements over basic Léilhce-
ment in terms of hit ratio, which taper off as the cache cdpaci
grows large enough to hold most requests. The importang tioin
note is that not all prefetches are necessarily useful, drntdwhe
cache may be exhibiting a higher hit rate, these figures oetile
cost associated with achieving these higher hit rates. iétetcher
creates more 1/O operations than it saves through such tighe
rates, then the performance of the system will likely degrad

From Figure 3 we see that STEP offers hit rate improvements si
ilar to the competing prefetchers, and appears generagnsitive
to the particular confidence threshold setting used. Buenmor
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portantly we can see from Figure 5 that these hit rate impneves
were generally achieved at the expense of large increasks to-

tal number of I/Os performed. For both the cello and hplajis th
could be as significant as a doubling of total I/O operatioass p
formed. The sole exceptions to this harsh penalty is thedmph-
tations of STEP that use a moderate to high confidence tHoesho
Basically any moderate implementation of STEP manages 10 im
prove hit rates, while incurring little to no additional l&8perations.
This implies that STEP is capable of accurately estimatiedike-
lihood of block accesses, with little to no error in eithegdifying

a likely successor, or in rating its true likelihood of aces

3.3 Device Speegs. Power

While hit ratios offer a convenient measure of cache peréome,
and disk read ratios offer a realistic view of the potentiddied
overheads of prefetching caches, the ultimate goal of STEHIn-
prove performance while conserving device energy consempt
While the total increase in 1/0 behavior (or ideally, thed#rereof)
shown through the disk read ratio metric is indicative offqer
mance in both these areas, it is not a direct relationship.iléNh
more |/Os imply greater disk activity, and a higher likeliftbof
delays to demand fetches, it does not indicate if such dedays
tually happened for a particular workload. Similarly, distwer
consumption is not a direct function of the amount of diskvégt

but is also sensitive to the timing of activity due to diskrspp
costs [14, 18]. For this reason Figures 7 and 9 compare the sim
lated disk response times and energy usage for various sad®e
Again these values are normalized, with the actual rangalokg
for the LRU cache shown in the caption of each subfigure. For
Figure 7, these values represent response time in secantd®rb
Figure 9 the actual value represents the percentage of pmwer
sumed compared to a continuously running disk.

In Figure 7(a) we see the most dramatic effects of prefetoher-
heads. All but the moderate STEP prefetchers suffer tremend
delays compared to a basic LRU cache. This is to be expected, a
this is the workload with the high rate of 1/0s, and hence aldi-a
tional or unnecessary prefetch requests will almost adytaielay
demand fetches that will follow immediately afterwards. E¥Tis
particularly impressive under these adverse conditiomsjtfnot
only avoided delays, but generally showed an improvemenrg-n
sponse time for the cache sizes that showed it to increasatég.

As the cache sizes increase we see a reduction in the negmative
pact of other prefetchers, and the positive impact of theerate
versions of STEP. This is again due to the cache size growing i
relation to the data space and limiting the opportunitiesdtoially
prefetch new data. For the lighter hplajw workload (Figu¢e)y,

all the prefetchers managed to achieve between 40% to 5%-redu
tions in average response time compared to a simple LRU cache

A successful predictor will likely impact both the disk eggicon-
sumption as well as that of the network interface, basicaily de-
vices that would be required to retrieve out-of-cache datapite
of this we look only to the power consumption of the disk, as th
requires the fewest assumptions about the specific nattine eh-
vironment. For the network interface there can be a gredtafea
variation in the effects of networking protocols and theliyaf
connections, the effects of which are difficult to simulatihwa
high degree of accuracy and realism. Limiting our energyyana
sis to a disk device gives us a conservative measure of thefitsen
of our approach, in a more accurately evaluated environmient
our experiments, power consumption was evaluated by stingla
a disk spin-down algorithm with an energy spin-up cost eajeivt
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to 200 seconds of operation. Typical values for this measrge
from 100 to 300 seconds [18]. We simulated multiple valugs fo
disk spin-down timeout (1 to 90 seconds), and different fraeal-
ties (delays) for restarting a spun-down disk (1, 3, and r3es).
The results we present are the average performance acesss th
1 settings.

Energy Usage for Cello 3 Day Trace

1.2 T

Figure 9 demonstrates that the addition of prefetchers eaa h

slightly beneficial or harmful effect on device power congtion

, compared to a non-prefetching cache. Nonetheless, STEBrdem

trates the least fluctutation in energy performance, reimgias
close as possible to the performance of an LRU cache thatrdes

Freq Bal —— .. .. .

0.9 STEP Bal, CT .1 > - prefetch. It is important to note that this is the same atboriand

Energy, Normalized against LRU Cache

085 | FEdbrs o | v_vorkloads that demonstrated a m_ark_ed improvement in regpon
' STERBancr s e time, and yet we can see from this figure that this was achieved
0.8 ; . . . — . with almost no impact on power consumption and hence STEP is
0 10 20 30 . 40 50 60 70 energy safe.
Cache Size (MB)
(a) cello 4. RELATED WORK
STEP offers a general purpose access prediction and ceaefletgbr
ing mechanism. We have tested our algorithm against the most
Energy Usage for hplajw general class of storage access, block-level device refese and
1.2 : simulated its behavior as a cache prefetching scheme. THnere
2 definitely other approaches to improving the managementaf m
§ BT 1 bile and distributed data. These include mobile hoardirtgchvat-
% 11 f . tempts to pre-identify data that is likely to be accessethdyperi-
B os | | ods of di_sconnected operation [13, 25], but d_oes not nexssa
k=S tempt to improve or reduce local storage device accessasr @p-
3 1 ¥ £ 1 proaches also include those that are application-spetikeeweb
% 005 | B :if;i’:i‘;"_"j’j’ﬁ'i"j’f’f': , prefetching proxies that can make use of file content for esssar
£ STEP Bal, CT .9 —— hints [8], or explicit compiler generated 1/O hints [19]. WISTEP,
Rl L= L 1 it was not our intent to construct a file hoarding mechanisnipo
Ej 085 L Fréﬁ DFS o i attempt to utilize any information beyond thg access SerpIén
& os _ FreqBal o ‘ ‘ ‘ selfZ giving us a truly gene(al self-;unln_g predlct_lon _emgt_hat _has
0 10 20 20 20 50 60 70 as little restriction as possible on its wider applicationhis wide
Cache Size (MB) applicability is particularly aided by STEP’s use of a snsat of
universally observable workload criteria.
(b) hplajw

Our prefetcher’s use of graphs is similar to that origingligposed

by Griffioen and Appleton [11]. While Griffioen and Appletdmk
Figure 9: Energy Usage Comparison ited the use of these graphs to tracking frequency of accikgw
a particular “look-ahead” window size, the aggregatingheafl]
was primarily based on immediate recency (successiorgadsyf
the heuristic of adjacent accesses implied by a sliding sind he
use of a last successor model for file prediction, and more-ela
orate techniques based on pattern matching, were firstrjgesse
by Lei and Duchamp [17]. Later work by Kroeger and Long [15]
compared the predictive performance of the last successdeinto
Griffioen and Appleton’s scheme, and more effective schdftgs
based on context modeling and data compression [26, 6].

Energy Usage for LRU Cache

50 1 i Kroeger and Long’s implementation of a predictive file systeas
one of the first works to note the practical and negative irhpac
of predictors that suffer from excessive false predictiaral not
enough timely and accurate predictors [16]. Their solutias to
modify their compression-based predictor to make furtbeking
10 Py . 1 predictions thereby allowing a timely prefetch or the prpgon
0 : . . : : . of prefetching workloads by demand workloads. The most re-
0 20 30 40 50 6070 cent work on data access prediction attacked this probleral-by
Cache Size (MB) . . . . - .

lowing predictors to decline making a prediction when thisra

(parametrized) level of doubt [2, 29, 4].

40+ 1
30t .
20 | 1

Energy, as a percent of an "always-on" disk

Figure 10: LRU Energy Usage (the baseline for Figure 9)
While the predictor proposed by Whitté# alwas a composite pre-
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dictor that selected the best policy among a set [29], weldr@u-

phasize that STEP does not operate by discretely seleatiogg
a set of full prediction algorithms, it is in fact based on & e
the simplest heuristics. Of these heuristics, the Null Rtedwas
originally proposed as part of a multi-expert predictiohexme that
simply treated each possible successor as an indepengent .

STEP goes well beyond a simple choice, forming a self-opimgi

mechanism that estimates the actual likelihood of futuress for
previously observed successors.

One of the earliest studies of modeling power consumption fo
computer hard disks was presented by [10], while a morelddtai
approach was recently presented by [31]. John Wilkes firgt su
gested the use of predictive techniques to dynamicallysadiisk
spin-downs for improved power conservation [30], while Dl

et al demonstrated that perfect non-invasive spin-downs ca#d r
duce disk power consumption by up to 60%. They also showed
that an on-line algorithm could reduce power consumptiob3#6
compared to the manufacturer’s recommended five minute- time
out [7]. These works were primarily concerned with redudimng
power consumption of the disk, leaving the negative impastioh
techniques on perceived disk speed unanswered.

More recently, prediction has been suggested as a possédaan
to modify an 1/O workload to reduce power consumption in mo-
bile devices [9, 18]. These suggestions focused on thetyabfi
prefetching data to allow for increased idle-time periagsich in
turn would hopefully allow greater opportunities for sglowns.
On a similar note, more recent work attempts to actively riyodi
the workload and increase workload burstiness to increppere
tunities for disk spin-down, and hopefully reduce the powaen-
sumption without adversely affecting disk performance P28 21,
5]. STEP achieves this goal while automatically adaptisgie-
dictors to the workload at hand, as we've demonstrated alising
two very disparate device workloads. STEP also does noireequ
any API modifications for device usage, as is required by ¥éis
et al[28].

5. CONCLUSION

Data access prediction has been proposed as a mechaniserto ov
come latency lag, and more recently as a means of conseming e
ergy in mobile systems. We have presented a fully adaptisdipr

tor, called STEP, that can optimize itself for any arbitranyrkload,
while simultaneously offering simple adjustment of goatéieen
energy conservation and latency reduction. In other wavdd)ave
proposed a predictive prefetching scheme that combinemts
generic and useful criteria to enable data prefetchingenbding
energy safe.

Our algorithm, STEP, achieves power savings on mobile cémpu
ers by eliminating more data fetches, which would otherhisee
caused excess energy to be consumed in accessing locglestiara
vices or using the wireless interface to fetch remote da@h¥ve
demonstrated our algorithm to perform as well as some of éisé b
access predictors, while incurring almost none of the aasaatin-
crease in I/O workloads typical of their use. More preciselyr
algorithm reduced average response times by approxima@sty
compared to an LRU cache, while requiring less than half /@e |
operations that traditional predictors would require thieee the
same performance, thereby incurring no energy penaltyorela-
sion, our empirical results show that we have been able ti@eeh
the promised performance gains of competing prefetchetis lity
tle to none of the associated costs in terms of power consompt
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and increased 1/O overheads. STEP offers both a highly geeci
and effective access prediction mechanism, that nonethelees
not unnecessarily increase the total number of I/O operatier-
formed, or the energy consumed by the storage device.

For future work, we intend to experiment with varying threlsh
values and the effects of such adjustment on predictor pedoce
and adaptability. We also plan to incorporate STEP into sopype
implementation for benchmarking studies.

6. ACKNOWLEDGMENTS

We would like to thank our colleagues at the University ofsPit
burgh, particularly within the Advanced Data Managementhfe
nologies, the Storage Research, and the Power-Aware Real-T
Systems groups, for their continuous support and assistae
would further like to thank the members of the Storage System
Research Center at the University of California, Santa Gonz
valuable discussions, and would also like to thank John &%itknd
the Storage Systems Program at Hewlett Packard Labs fongaki
their traces available.

7. REFERENCES
[1] A. Amer, D.D. E. Long, and R. C. Burns. Group-based
management of distributed file cachesPloc. of the 22nd
Int'l. Conf. on Distributed Computing Systenpages
525-534, Vienna, Austria, 2002.

[2] A. Amer, D.D. E. Long, J.-F. Paris, and R. C. Burns. File
access prediction with adjustable accuracyPtac. of the
20th IEEE Int’l. Performance, Computing and
Communications Confpages 131-140, Phoenix, AZ, 2002.

[3] A. M. Amer. Predictive Data Grouping Using Successor
Prediction PhD thesis, University of California at Santa
Cruz, 2002.

[4] K. S. Brandt, D. D. E. Long, and A. Amer. Predicting when

not to predict. InProc. of the 12th Annual Meeting of the

IEEE / ACM Int'l. Symp. on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems

pages 419-426, Volendam, The Netherlands, 2004.

M. Craven and A. Amer. Predictive Reduction of Power and
Latency (PuRPLe). IIProc. of the 22'nd IEEE / 13'th NASA
Goddard Conference on Mass Storage Systems and
Technologies conferengéMonterey, CA, 2005. (to appear).

(5]

K. M. Curewitz, P. Krishnan, and J. S. Vitter. Practical
prefetching via data compression.Rmnoc. of the ACM
SIGMOD Int’l. Conf. on Management of Datpages
257-266, Washington, D. C., 1993.

(6]

[7] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the
power-hungry disk. IfProc. of the 1994 Winter USENIX
Conf, pages 293-306, Boston, MA, 1994.

[8] D. Duchamp. Prefetching hyperlinks. Rroc. of the Second
Usenix Symp. on Internet Technologies and Systpaues

127-138, Boulder, CO, 1999.

[9] J. Flinn and M. Satyanarayanan. Energy-aware adaptétio
mobile applications. IfProc. of the Symposium on Operating
Systems Principlepages 48-63, Charleston, SC, 1999.



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

P. M. Greenawalt. Modeling power management for hard
disks. InProc. of the Second Int'l. Workshop on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systenpages 62—66, Durham, NC,
1994.

J. Griffioen and R. Appleton. Reducing file system lagenc
using a predictive approach. Rroc. of the USENIX Summer
Technical Conferenc@ages 197-207, Boston, MA, 1994.

M. Herbster and M. K. Warmuth. Tracking the best explert.
Proc. of the Twelfth Int’l. Conf. on Machine Learningages
286-294, Tahoe City, CA, 1995.

J. J. Kistler and M. Satyanarayanan. Disconnectedabioer
in the Coda file system. IRroc. of the 13'th ACM Symp. on
Operating Systems Principlggages 213-225, Pacific
Grove, CA, 1991.

P. Krishnan, P. M. Long, and J. S. Vitter. Adaptive disk
spindown via optimal rent-to-buy in probabilistic
environments. IProc. of the Twelfth Int’l. Conf. on Machine
Learning pages 322-330, Tahoe City, CA, 1995.

T. M. Kroeger and D. D. E. Long. The case for efficient file
access pattern modeling. Broc. of the Seventh Workshop
on Hot Topics in Operating Systenmages 14-19, Rio Rico,
AZ, 1999.

T. M. Kroeger and D. D. E. Long. Design and
implementation of a predictive file prefetching algorithim.
Proc. of the 2001 USENIX Annual Technical Copages
105-118, Boston, MA, 2001.

H. Lei and D. Duchamp. An analytical approach to file
prefetching. InProc. of the 1997 USENIX Annual Technical
Conf, pages 275-288, Anaheim, CA, 1997.

J. R. Lorch and A. J. Smith. Software strategies for iole
computer energy managemeliEE Personal
Communications Magazing(3):60-73, 1998.

T. C. Mowry, A. K. Demke, and O. Krieger. Automatic
compiler-inserted I/O prefetching for out-of-core
applications. IrProc. of the 1996 Symp. on Operating
Systems Design and Implementatipages 3-18, Seattle,
WA, 1996.

A. E. Papathanasiou and M. L. Scott. Increasing fileayst
burstiness for energy efficiency. Work In Progress at the
Symp. on Operating Systems Design and Implementation,
Boston, MA, 2002.

A. E. Papathanasiou and M. L. Scott. Energy efficient
prefetching and caching. Proc. of the USENIX 2004
Annual Technical Conferfencpages 255-268, Boston, MA,
2004.

C. Ruemmler and J. Wilkes. UNIX disk access patterns. In
Proc. of the 1993 Winter USENIX Technical Copfiges
405-420, San Diego, CA, 1993.

G. Santhanakrishnan, A. Amer, and P. K. Chrysanthis. A
Goal-Oriented Self-Tuning caching algorithm.Rroc. of the
3'rd IEEE International Performance Computing and
Communications Conferenggages 311-312, Phoeniz, AZ,
2004.

133

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

G. Santhanakrishnan, A. Amer, P. K. Chrysanthis, andiD.
GD-GhOST: A Goal-Oriented Self-Tuning caching
algorithm. InProc. of the 19'th ACM Symp. on Applied
Computing pages 1141-1145, Nicosia, Cyprus, 2004.

Y. Saygin, O. Ulusoy, and A. K. ElImagarmid. Association
rules for supporting hoarding in mobile computing
environments. IfProc. of the 10°'th Int’l. Workshop on
Research Issues in Data Engineerjpgges 71-78, San
Diego, CA, 2000.

J. S. Vitter and P. Krishnan. Optimal prefetching vidada
compressionJACM, 43(5):771-793, 1996.

M. Warmuth and N. Littlestone. The weighted majority
algorithm.Information and Computatiqri08(2):212—261,
1994.

A. Weissel, B. Beutel, and F. Bellosa. Cooperative KO:
novel I/0O semantics for energy-aware application?1oc.
of the 2002 Symp. on Operating Systems Design and
Implementationpages 117-130, Boston, MA, 2002.

G. A. S. Whittle, J.-F. Paris, A. Amer, D. D. E. Long, and

R. Burns. Using multiple predictors to improve the accuracy
of file access predictions. lroc. of the 20'th IEEE/11'th
NASA Goddard Conf. on Mass Storage Systems and
Technologiespages 230-240, San Diego,CA, 2003.

J. Wilkes. Predictive power conservation. TechnicapBrt
HPL-CSP-92-5, Hewlett-Packard Laboratories, Palo Alto,
CA, 1992.

J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnathur
and R. Wang. Modeling hard-disk power consumption. In
Proc. of the 2003 Usenix Conf. on File and Storage
Technologiespages 217-230, San Francisco, CA, 2003.





