
STEP: Self-Tuning Energy-Safe Predictors ∗

James Larkby-Lahet Ganesh Santhanakrishnan Ahmed Amer Panos K. Chrysanthis
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260 U.S.A.

{james, ganesh, amer, panos}@cs.pitt.edu

ABSTRACT
Data access prediction has been proposed as a mechanism to over-
come latency lag, and more recently as a means of conserving en-
ergy in mobile systems. We present a fully adaptive predictor, that
can optimize itself for any arbitrary workload, while simultane-
ously offering simple adjustment of goals between energy conserva-
tion and latency reduction. Our algorithm, STEP, achieves power
savings on mobile computers by eliminating more data fetches,
which would otherwise have caused excess energy to be consumed
in accessing local storage devices or using the wireless interface
to fetch remote data. We have demonstrated our algorithm to per-
form as well as some of the best access predictors, while incurring
almost none of the associated increase in I/O workloads typical of
their use. Our algorithm reduced average response times by ap-
proximately 50% compared to an LRU cache, while requiring less
than half the I/O operations that traditional predictors would re-
quire to achieve the same performance, thereby incurring noen-
ergy penalty.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management—Distributed
File Systems; H.2.4 [Database Management]: Systems—Distributed
databases, Query Processing; H.3.m [Information Storage and
Retrieval]: Miscellaneous—Caching, Prefetching

General Terms
Algorithms, Design, Simulation, Performance

Keywords
Mobile Computing, Power Management, Adaptive Caching, Pre-
diction, Prefetching

∗ This work has been supported in part by the National Science
Foundation ITR Medium Award ANI-0325353 and a Pitt-Startup
2002 Research and Development Grant from the University of
Pittsburgh to the third author. The first author has been funded
by a Research Experiences for Undergraduates (REU) programof
the University of Pittsburgh.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MDM’05, May 09-13, 2005, Ayia Napa, Cyprus
(c) 2005 ACM 1-59593-041-8/05/05....$5.00

1. INTRODUCTION
The perceived lag in the performance of data storage technologies
compared to processor performance has resulted in numerousef-
forts to overcome access latencies through predictive or prefetch-
ing caches. Access latencies to remote data are incredibly dif-
ficult to reduce, and are often restricted by physical limitations
(e.g., the speed of light and interventing distance), as such I/O ac-
cess latencies tend to be one of the most insurmountable perfor-
mance obstacles in modern computing. While insurmountable, this
problem is often avoided through the use of appropriate caching
schemes. In mobile environments the performance considerations
go beyond simple speedups and service time reductions, but also
include avoiding excessive energy consumption.

Caches generally attempt to guarantee that most data requests are
for data that is being held in main memory or local storage, negat-
ing the need to perform I/O, or a remote data retrieval. Prefetching
caches on the other hand attempt to achieve greater perceived per-
formance through the prediction of future data requests, and the
retrieval of data items before they are requested. The success of
such schemes depends on more than the accuracy of the predic-
tive algorithm applied, but also on the timeliness of the prediction
(was it made early enough to be of use), and the impact of incor-
rect predictions (if they result in unnecessary I/O operations). A
successful prefetcher has the potential to improve performance and
almost completely mask data retrieval delays, while an unsuccess-
ful predictor can seriously degrade a storage system’s performance
by creating excessive I/O load for prefetching predicted data items
that are never used. Thus, for mobile applications any potential
failure has an added disadvantage in that excessive cache misses
will either result in more frequent data requests to local storage,
or through the network interface, both of which would results in
unnecessary energy consumption. Finally a cache’s performance,
whether it be a traditional or prefetching cache, is dependent on
how well it’s particular caching heuristics react to the workload at
hand.

In this paper we examine the question of whether predictive prefetch-
ing is desirable in the context of mobile environments such as a
mobile environment. Our contribution is a novel algorithm,Self-
Tuning Energy-safePrediction (STEP), which indeed shows that
caching with prefetching can be beneficial in energy constrained
evironments. Prediction has been proposed as a means to improve
storage performance by prefetching data and reducing response
times, or by predicting disk activity and appropriately spinning
down disk devices, or more recently by prefetching data to extend
the duration of device idle periods [15, 30, 18, 9].

125

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1071246.1071264&domain=pdf&date_stamp=2005-05-09

STEP is a self-tuning data access predictor, that not only offers
good predictions of future accesses, but does so in a fully adaptive
manner that can react to arbitrary workloads. STEP achievesthis
goal while automatically guarding against the over-zealous prefetch-
ing of unnecessary data, avoiding any potential energy overheads.
In order to evaluate our predictor we have built an experimental
testbed in which we have used a set of real traces as test workloads.
We demonstrate the success of STEP using this set of widely vary-
ing, block-level, data access traces.

The rest of the paper is organized as follows. In the next section,
we describe our Self-Tuning Energy-safe Predictors (STEP)policy.
We go on to present our experimental results in Section 3. In Sec-
tion 4, we discuss related work and conclude with a brief summary
and directions for future work in Section 5.

2. SELF-TUNING PREDICTION: STEP
STEP is an algorithm that predicts likely future data requests based
on observing prior requests. Basically, it identifies the current data
access and produces a set of likely subsequent requests. Theself-
tuning nature of STEP derives from the fact that it continuously
evaluates the accuracy of its own likelihood estimates, andadjusts
its prediction policy accordingly. These likelihood estimates are
produced based on a weighted combination of simple prediction
heuristics (prediction criteria), and STEP’s self-adjustment is based
on dynamically adjusting the weighting of these heuristics. The
likelihoods STEP calculates in this manner are actually forindivid-
ual data items appearing in immediate succession,i.e., successor
likelihoods. To use STEP in a prefetching cache, it would be nec-
essary to retrieve an arbitrary number of multiple successors for any
given data access. This is possible by expanding a set of immedi-
ate successors, into a larger set oftransitive successors. The main
components of the STEP algorithm can therefore be describedas:
the master algorithm, the specific heuristics (prediction criteria),
and the mechanism to fetch multiple successors.

2.1 The Master Algorithm
STEP adjusts its prediction mechanism using a master algorithm
and weight-update scheme based on multi-expert machine learning
algorithms [27, 12]. The “experts” are prediction heuristics, based
on simple criteria, each of which offers a likelihood estimate for
future events.

The experts make predictions,i.e., offer likelihood values for the
successors that may be prefetched. The weights of experts repre-
sent the quality of their likelihood estimates. Initially the weights
are distributed uniformly among all the experts, but as new requests
are observed the weights of the experts are updated. The master
algorithm proceeds with a weighted average of the experts’ indi-
vidual predictions. We have shown significant performance im-
provements utilizing this strategy in caching web documents in our
earlier works [24, 23]. Since the weights are updated to reflect the
quality of an individual experts’ likelihood estimates, STEP im-
proves itself via feedback. Figure 1 offers a logical overview of
STEP.

2.2 The Experts: Prediction Criteria
Predicting whether a particular item will be requested in the future
can be based on many basic factors, such as how often this itemwas
requested in the past, or how recently. Such indicators of future
access likelihood are examples of what we refer to as prediction
criteria, and constitute the prediction experts we use as components
of the master algorithm in STEP.

C u r r e n t S y s t e mS t a t e b a s e d o nP e r f o r m a n c eG o a l s C r i t e r i a i ' s l i s t o f d a t a o b j e c t sC r i t e r i a k ' s l i s t o f d a t a o b j e c t sC r i t e r i a j ' s l i s t o f d a t a o b j e c t sG e n e r i c C r i t e r i a S e l e c t i o na n d D y n a m i c C r e d i tD i s t r i b u t i o n

S p e c i f i c a t i o no fP e r f o r m a n c eG o a l s t o b es a t i s f i e d
C o m b i n i n gc r i t e r i a u s i n g t h eM a s t e r A l g o r i t h mP e r f o r m i n g D a t a P r e d i c t i o nP e r f o r m a n c eE v a l u a t i o n

A p p l i c a t i o n P r o c e s s o f D a t a P r e d i c t i o n

Figure 1: Overview of STEP

The experts that we have utilized in our experiments are simply
those ofFrequency, Recencyand theNull Predictor. Frequency
is defined as the number of times a pair of events have occurred
in succession divided by the total number of times the first event
occurred. For data accesses, this is simply a count-based estimate
of how likely the second item is to be observed as the successor of
the first.

Recency is a similar heuristic, where succession is estimated based
on the temporal proximity of events. Specifically, we define Re-
cency as the complement of the time since an event last occurred
divided by the sum of the times since all other candidate events
last occurred. The events being considered are the successors of
a given item. This gives a quantitative likelihood estimatethat is
proportional to recency, and conveniently sums to one across the
set of potential successors.

The Null Predictor is defined as the prediction that no prediction
should be made [4]. Specifically, it says that the next event is likely
to be one that has never been observed before as a successor ofthe
given event, and subsequently any attempt at making a prediction
would be unnecessary overhead. In this manner, STEP automat-
ically restrains itself from attempting predictions when the work-
load tends to be unpredictable.

We believe that tracking these criteria is sufficient for data access
patterns, since they cover the most generic set of criteria for per-
forming data access prediction. They are further convenient in that
they provide a set of properties that are observable for all forms of
data access, and make no assumptions regarding the nature orlevel
of observation. Evaluating recency, frequency, and the null predic-
tor require no more of the observed workload than that it takethe
form of a sequence of requests for identifiable data items. This is in
contrast to prediction heuristics that,e.g., assume file-level obser-
vation, or that assume a particular data format. Examples ofsuch

126

heuristics could include the assumption that files sharing acommon
directory are likely to be accessed together, or that HTML files are
likely to be followed by requests for files to which they link.For
every observed event, each of our experts effectively calculates its
own likelihood estimate for various possible successor events.

2.3 Predicting Multiple Successors
Prefetching is helpful only if the predicted successor is requested
before the actual request. This issue can be overcome by predicting
and prefetching several requests into the future [16]. Since each
data block has a set of observed successors, the overall datarela-
tionships can be represented as a graph, with each directed edge
weighted by a likelihood ranging from zero to one. There are
two obvious approaches for identifying transitive successors (i.e.,
successors of successors), One would be a breadth-first approach,
which grabs all the successors to a given item before moving on.
This gives high assurance that we will have prefetched the next re-
quest, at the expense of quite a bit of wasted effort. Alternatively
one might use a depth-first approach, which fetches a long chain
of sequential events. If the prediction is correct, this is every bit as
good as breadth-first, without the excess fetches. However,if a sin-
gle successor is mispredicted, it is likely that the rest of the chain
will be unused as well.

Balanced Expansionprovides an alternative that combines these
two basic options in a manner that optimizes the likelihood of se-
lected successors being observed as transitive successors[3]. The
last observed request serves as the the root of the tree. All of
the successors to the request are put into the successor pool. The
successor with the highest likelihood is removed from the pool
and selected for prefetching. Its successors are then addedto the
successor pool, with their respective likelihoods multiplied by the
prefetched item’s likelihood. Again the item with the highest like-
lihood is removed and prefetched. This continues until we have
reached thesearch limit, or if items fall below theconfidence thresh-
old.

The search limit is the maximum number of items to be prefetched,
and is often defined by the workload (demand fetches take priority
over prefetch requests), or the problem (i.e., how long the prefetch-
ing is allowed to continue). For our experiments we tested search
limits of 3, 5 and 10. The confidence threshold is a parameter of
STEP, and represents the minimum likelihood required for anitem
to be prefetched. We used.1, .5, and.9 for our experiments.

Figures 2(a)-2(d) provide an example of the Balanced Expansion
at work. A is the observed item. Its successors B, C, and D are
assigned likelihoods by the predictor, as shown in Figure 2(a). The
number inside the node represents the likelihood relative to the par-
ent node. The number above the node is is its likelihood relative to
the root of the tree, since the root of the tree is an observed event
we will simply call this the absolute likelihood. Figure 2(b) shows
the tree after C is prefetched and then expanded, as it has thehigh-
est absolute likelihood. Its successors E, F, and G are assigned
likelihoods by the predictor, and these are also multipliedby C’s
likelihood to determine the absolute likelihoods. G now hasthe
highest likelihood and is prefetched and expanded, as shownby
Figure 2(c). Figure 2(d) illustrates the next round; D has the high-
est likelihood, so it is prefetched and the tree is expanded to include
its successors.

AB. 2 C. 5 D. 31 . 0. 2 . 5 . 3
(a) Initial TreeAB. 2 C. 5 D. 3E. 1 G. 8F. 1

1 . 0. 2 . 5 . 3. 0 5. 0 5 . 4
(b) first expansion, after selecting CAB. 2 C. 5 D. 3E. 1 G. 8J. 2 K. 1 L. 7F. 1

1 . 0. 2 . 5 . 3. 0 5. 0 5 . 4 . 2 8. 0 4. 0 8
(c) second expansion, after selecting GAB. 2 C. 5 D. 3H. 5 I. 5E. 1 G. 8J. 2 K. 1 L. 7F. 1

1 . 0. 2 . 5 . 3. 1 5 . 1 5. 0 5. 0 5 . 4 . 2 8. 0 4. 0 8
(d) third expansion, after selecting D

Figure 2: Balanced Expansion, predicting multiple successors

127

Experimental Parameters Definition Range Tested
Search Limit Maximum number of items to prefetch 3, 5, 10
Confidence Threshold Minimum likelihood required to prefetch 0.1, 0.5, 0.9
Spindown Timeout (s) Duration of disk idle period before being spun down1, 5, 10, 15, 20, 25, 30, 45, 60, 90
Spinup Penalty (s) Delay between disk spun up and service of a request1, 3, 5
Cache Size (MB) Size of the LRU cache 1, 2, 4, 8, 16, 32, 64

Table 1: Experimental Parameters

3. EXPERIMENTAL RESULTS
We now describe the workloads used in our experiments, the as-
sumptions we made, and the set of algorithms tested. Our goalis to
demonstrate that STEP can realize the performance gains promised
by prefetching algorithms, while avoiding the adverse effects that
result from the potential for prefetchers to increase I/O load.

3.1 Testbed and Workload Description
We explored the concepts behind our STEP algorithm using block-
level disk access traces [22]. The traces we selected represent two
very different workloads, one represents that of a single-user work-
station (hplajw), while the other represents a busy server (cello).
The workstation traces contain a total of 252,000 accesses that were
recorded over a period of two months, while for the server trace
we used three days of observed activity, that included 977,000 ac-
cesses. We limit our simulations to the read requests so as tofocus
solely on the benefits of prefetch read optimizations. Whilethese
are 1992 traces, the variation in the volume of data, and rates of
access, combined with the fact that these are block-level traces mo-
tivated our selection of simulated cache sizes. The ranges are rep-
resentative of possible controller-based, or device-level caches. We
selected such cache sizes as small as 1MB, and going up to 64MB.
Sizes beyond this tended to exceed the maximum working set size
of these particular traces, and thus served as a good upper limit.

We implemented our own cache simulator, and simulated both the
behavior of the cache, and its interaction with an underlying disk.
In addition to varying the cache size, we also tested for different
disk-related parameters. It is especially important in mobile stor-
age that we consider issues such as the energy savings obtained by
spinning down a disk to a low-power state, and the time penalty
incurred when a spun-down disk needs to be activated and spunup
before a request for on-disk data can be satisfied. For this reason,
we paid particular attention to timing delays and the power model
of the disk. By modifying the power and performance-relatedpa-
rameters of the underlying disk model, we were able to verifyour
results across a range of possible mobile storage devices. Asum-
mary of our experimental parameters is shown in Table 1.

We simulated a total of five alternative cache management algo-
rithms. The first was asimple LRUcache without any prefetching,
which primarily served as a control. The other algorithms repre-
sented four different successor predictors used to prefetch multiple
successors. For each of these, the next read request is only pro-
cessed after prefetching is complete. The second algorithm, the
Last Successorpredictor [2], tracks the last read to follow each
block. On subsequent reads, the block is read and then its succes-
sor is prefetched. Transitives, that is successors of successors, are
also prefetched to provide the multiple successors. This isequiva-
lent to fetching a sequence of most likely successors based solely
on the most recent observed successor. The third algorithm is a
Frequency-based Depth Firstexpansion [1]. It tracks multiple suc-

cessors for each block, and their frequency of occurrence (obser-
vation). A Depth First tree expansion is used to identify multiple
successors, with greater priority given to those successors that were
observed most frequently. The fourth algorithmFrequency-based
Balanced Expansion[3], uses an optimized balance of breadth and
depth-first expansion of likely successors to identify a group of
likely successors. The final algorithm simulated is our STEPpol-
icy, which used multiple criteria to evaluate likely successors, and
dynamically self-tunes its prediction mechanism.

In Figure 3 through Figure 9 we show the performance of prefetch-
ers that used Last Successor (LS DFS), Frequency-based Expan-
sion (Freq DFS), Balanced expansion (Freq Bal), and three differ-
ent settings of STEP. Each version of STEP presented used a dif-
ferent confidence threshold (CT) for making predictions. This was
the minimum estimated likelihood below which no predictionis at-
tempted. For STEP Bal CT .1, the confidence threshold is set to
a likelihood of 0.1, implying that STEP will offer predictions even
when the estimated likelihood of the prediction being correct is as
low as 10%. The higher the confidence threshold, the more con-
servative the predictions offered by STEP. While the confidence
threshold is an adjustable parameter, the specific mechanism STEP
uses to produce a likelihood estimate will constantly vary as the
workload changes, so this parameter is a more realistic threshold
than an arbitrary percentage applied to a fixed algorithm.

3.2 Prefetcher Potentialvs. Overhead
While hit ratios have been commonly used as metrics of cache per-
formance, they neglect to consider the potential increase in work-
loads created by the prefetching of data. Disk Read-Ratios offer an
indication of how much unnecessary I/O is created by a prefetcher.
Figure 3 compares the Hit-Ratios across various cache sizes, while
Figure 5 shows the Disk Read-Ratios. In both these figures we nor-
malize the results of the prefetching caches against that ofthe basic
LRU policy, giving us an indication of how much relative benefit
(or loss) is attributed to adding a particular prefetching algorithm
to basic LRU caching. We show the actual range of values for the
LRU cache in the caption of each subfigure.

As we can see from Figure 3, when we consider only hit ratios,
prefetchers provide dramatic improvements over basic LRU replace-
ment in terms of hit ratio, which taper off as the cache capacity
grows large enough to hold most requests. The important thing to
note is that not all prefetches are necessarily useful, and while the
cache may be exhibiting a higher hit rate, these figures neglect the
cost associated with achieving these higher hit rates. If a prefetcher
creates more I/O operations than it saves through such higher hit
rates, then the performance of the system will likely degrade.

From Figure 3 we see that STEP offers hit rate improvements sim-
ilar to the competing prefetchers, and appears generally insensitive
to the particular confidence threshold setting used. But more im-

128

 1

 10

 100

 1 10 100

H
it

R
at

io
, N

or
m

al
iz

ed
 A

ga
in

st
 L

R
U

 C
ac

he

Cache Size (MB)

Hit Ratio for Cello 3 Day Trace

Freq Bal
Freq DFS

LS DFS
STEP Bal, CT .1
STEP Bal, CT .5
STEP Bal, CT .9

(a) cello

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70

H
it

R
at

io
, N

or
m

al
iz

ed
 A

ga
in

st
 L

R
U

 C
ac

he

Cache Size (MB)

Hit Ratio for hplajw

Freq Bal
Freq DFS

LS DFS
STEP Bal, CT .1
STEP Bal, CT .5
STEP Bal, CT .9

(b) hplajw

Figure 3: Hit-Ratio Comparison

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

H
it

R
at

io

Cache Size (MB)

Hit Ratio for LRU Cache

hplajw
Cello

Figure 4: LRU Hit-Ratio (the baseline for Figure 3)

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70D
is

k
R

ea
d

R
at

io
, N

or
m

al
iz

ed
 a

ga
in

st
 L

R
U

 C
ac

he

Cache Size (MB)

Disk Read Ratio for Cello 3 Day Trace

Freq Bal
STEP Bal, CT .1

Freq DFS
LS DFS

STEP Bal, CT .5
STEP Bal, CT .9

(a) cello

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60 70D
is

k
R

ea
d

R
at

io
, N

or
m

al
iz

ed
 A

ga
in

st
 L

R
U

 C
ac

he

Cache (MB)

Disk Read Ratio for hplajw

Freq Bal
LS DFS

Freq DFS
STEP Bal, CT .1
STEP Bal, CT .5
STEP Bal, CT .9

(b) hplajw

Figure 5: Disk Read Ratio Comparison

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

D
is

k
R

ea
d

R
at

io

Cache (MB)

Disk Read Ratio for LRU Cache

Cello
hplajw

Figure 6: LRU Disk Read Ratio (the baseline for Figure 5)

129

portantly we can see from Figure 5 that these hit rate improvements
were generally achieved at the expense of large increases inthe to-
tal number of I/Os performed. For both the cello and hplajw this
could be as significant as a doubling of total I/O operations per-
formed. The sole exceptions to this harsh penalty is the implemen-
tations of STEP that use a moderate to high confidence threshold.
Basically any moderate implementation of STEP manages to im-
prove hit rates, while incurring little to no additional I/Ooperations.
This implies that STEP is capable of accurately estimating the like-
lihood of block accesses, with little to no error in either identifying
a likely successor, or in rating its true likelihood of access.

3.3 Device Speedvs. Power
While hit ratios offer a convenient measure of cache performance,
and disk read ratios offer a realistic view of the potential added
overheads of prefetching caches, the ultimate goal of STEP is to im-
prove performance while conserving device energy consumption.
While the total increase in I/O behavior (or ideally, the lack thereof)
shown through the disk read ratio metric is indicative of perfor-
mance in both these areas, it is not a direct relationship. While
more I/Os imply greater disk activity, and a higher likelihood of
delays to demand fetches, it does not indicate if such delaysac-
tually happened for a particular workload. Similarly, diskpower
consumption is not a direct function of the amount of disk activity,
but is also sensitive to the timing of activity due to disk spin-up
costs [14, 18]. For this reason Figures 7 and 9 compare the simu-
lated disk response times and energy usage for various cachesizes.
Again these values are normalized, with the actual range of values
for the LRU cache shown in the caption of each subfigure. For
Figure 7, these values represent response time in seconds, but for
Figure 9 the actual value represents the percentage of powercon-
sumed compared to a continuously running disk.

In Figure 7(a) we see the most dramatic effects of prefetcherover-
heads. All but the moderate STEP prefetchers suffer tremendous
delays compared to a basic LRU cache. This is to be expected, as
this is the workload with the high rate of I/Os, and hence any addi-
tional or unnecessary prefetch requests will almost certainly delay
demand fetches that will follow immediately afterwards. STEP is
particularly impressive under these adverse conditions, for it not
only avoided delays, but generally showed an improvement inre-
sponse time for the cache sizes that showed it to increase hitrates.
As the cache sizes increase we see a reduction in the negativeim-
pact of other prefetchers, and the positive impact of the moderate
versions of STEP. This is again due to the cache size growing in
relation to the data space and limiting the opportunities toactually
prefetch new data. For the lighter hplajw workload (Figure 7(b)),
all the prefetchers managed to achieve between 40% to 5% reduc-
tions in average response time compared to a simple LRU cache.

A successful predictor will likely impact both the disk energy con-
sumption as well as that of the network interface, basicallyany de-
vices that would be required to retrieve out-of-cache data.In spite
of this we look only to the power consumption of the disk, as this
requires the fewest assumptions about the specific nature ofthe en-
vironment. For the network interface there can be a great deal of
variation in the effects of networking protocols and the quality of
connections, the effects of which are difficult to simulate with a
high degree of accuracy and realism. Limiting our energy analy-
sis to a disk device gives us a conservative measure of the benefits
of our approach, in a more accurately evaluated environment. In
our experiments, power consumption was evaluated by simulating
a disk spin-down algorithm with an energy spin-up cost equivalent

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70

Lo
g

R
es

po
ns

e
T

im
e,

 N
or

m
al

iz
ed

 A
ga

in
st

 L
R

U
 C

ac
he

Cache Size (MB)

Response Time for Cello 3 Day Trace

LS DFS
Freq DFS

Freq Bal
STEP Bal, CT .1
STEP Bal, CT .5
STEP Bal, CT .9

(a) cello

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70R
es

po
ns

e
T

im
e

N
or

m
al

iz
ed

 A
ga

in
st

 L
R

U
 C

ac
he

Cache Size (MB)

Response Time for hplajw

STEP Bal, CT .9
STEP Bal, CT .5
STEP Bal, CT .1

LS DFS
Freq DFS

Freq Bal

(b) hplajw

Figure 7: Response Time Comparison

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10 20 30 40 50 60 70

R
es

po
ns

e
T

im
e

(s
)

Cache Size (MB)

Response Time for LRU Cache

hplajw
Cello

Figure 8: LRU Response Time (the baseline for Figure 7)

130

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 10 20 30 40 50 60 70

E
ne

rg
y,

 N
or

m
al

iz
ed

 a
ga

in
st

 L
R

U
 C

ac
he

Cache Size (MB)

Energy Usage for Cello 3 Day Trace

Freq Bal
STEP Bal, CT .1

Freq DFS
LS DFS

STEP Bal, CT .5
STEP Bal, CT .9

(a) cello

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 10 20 30 40 50 60 70

E
ne

rg
y,

 N
or

m
al

iz
ed

 A
ga

in
st

 L
R

U
 C

ac
he

Cache Size (MB)

Energy Usage for hplajw

STEP Bal, CT .9
STEP Bal, CT .5
STEP Bal, CT .1

LS DFS
Freq DFS

Freq Bal

(b) hplajw

Figure 9: Energy Usage Comparison

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

E
ne

rg
y,

 a
s

a
pe

rc
en

t o
f a

n
"a

lw
ay

s-
on

"
di

sk

Cache Size (MB)

Energy Usage for LRU Cache

Cello
hplajw

Figure 10: LRU Energy Usage (the baseline for Figure 9)

to 200 seconds of operation. Typical values for this measurerange
from 100 to 300 seconds [18]. We simulated multiple values for
disk spin-down timeout (1 to 90 seconds), and different timepenal-
ties (delays) for restarting a spun-down disk (1, 3, and 5 seconds).
The results we present are the average performance across these
settings.

Figure 9 demonstrates that the addition of prefetchers can have a
slightly beneficial or harmful effect on device power consumption
compared to a non-prefetching cache. Nonetheless, STEP demon-
trates the least fluctutation in energy performance, remaining as
close as possible to the performance of an LRU cache that doesnot
prefetch. It is important to note that this is the same algorithm and
workloads that demonstrated a marked improvement in response
time, and yet we can see from this figure that this was achieved
with almost no impact on power consumption and hence STEP is
energy safe.

4. RELATED WORK
STEP offers a general purpose access prediction and cache prefetch-
ing mechanism. We have tested our algorithm against the most
general class of storage access, block-level device references, and
simulated its behavior as a cache prefetching scheme. Thereare
definitely other approaches to improving the management of mo-
bile and distributed data. These include mobile hoarding, which at-
tempts to pre-identify data that is likely to be accessed during peri-
ods of disconnected operation [13, 25], but does not necessarily at-
tempt to improve or reduce local storage device accesses. Other ap-
proaches also include those that are application-specific;like web
prefetching proxies that can make use of file content for successor
hints [8], or explicit compiler generated I/O hints [19]. With STEP,
it was not our intent to construct a file hoarding mechanism, or to
attempt to utilize any information beyond the access sequence it-
self, giving us a truly general self-tuning prediction engine that has
as little restriction as possible on its wider applications. This wide
applicability is particularly aided by STEP’s use of a smallset of
universally observable workload criteria.

Our prefetcher’s use of graphs is similar to that originallyproposed
by Griffioen and Appleton [11]. While Griffioen and Appleton lim-
ited the use of these graphs to tracking frequency of access within
a particular “look-ahead” window size, the aggregating cache [1]
was primarily based on immediate recency (succession) instead of
the heuristic of adjacent accesses implied by a sliding window. The
use of a last successor model for file prediction, and more elab-
orate techniques based on pattern matching, were first presented
by Lei and Duchamp [17]. Later work by Kroeger and Long [15]
compared the predictive performance of the last successor model to
Griffioen and Appleton’s scheme, and more effective schemes[16]
based on context modeling and data compression [26, 6].

Kroeger and Long’s implementation of a predictive file system was
one of the first works to note the practical and negative impact
of predictors that suffer from excessive false predictions, and not
enough timely and accurate predictors [16]. Their solutionwas to
modify their compression-based predictor to make further-looking
predictions thereby allowing a timely prefetch or the preemption
of prefetching workloads by demand workloads. The most re-
cent work on data access prediction attacked this problem byal-
lowing predictors to decline making a prediction when thereis a
(parametrized) level of doubt [2, 29, 4].

While the predictor proposed by Whittleet alwas a composite pre-

131

dictor that selected the best policy among a set [29], we should em-
phasize that STEP does not operate by discretely selecting among
a set of full prediction algorithms, it is in fact based on a set of
the simplest heuristics. Of these heuristics, the Null Predictor was
originally proposed as part of a multi-expert prediction scheme that
simply treated each possible successor as an independent expert [4].
STEP goes well beyond a simple choice, forming a self-optimizing
mechanism that estimates the actual likelihood of future access for
previously observed successors.

One of the earliest studies of modeling power consumption for
computer hard disks was presented by [10], while a more detailed
approach was recently presented by [31]. John Wilkes first sug-
gested the use of predictive techniques to dynamically adjust disk
spin-downs for improved power conservation [30], while Douglis
et al demonstrated that perfect non-invasive spin-downs could re-
duce disk power consumption by up to 60%. They also showed
that an on-line algorithm could reduce power consumption by53%
compared to the manufacturer’s recommended five minute time-
out [7]. These works were primarily concerned with reducingthe
power consumption of the disk, leaving the negative impact of such
techniques on perceived disk speed unanswered.

More recently, prediction has been suggested as a possible means
to modify an I/O workload to reduce power consumption in mo-
bile devices [9, 18]. These suggestions focused on the ability of
prefetching data to allow for increased idle-time periods,which in
turn would hopefully allow greater opportunities for spin-downs.
On a similar note, more recent work attempts to actively modify
the workload and increase workload burstiness to increase oppor-
tunities for disk spin-down, and hopefully reduce the powercon-
sumption without adversely affecting disk performance [28, 20, 21,
5]. STEP achieves this goal while automatically adapting its pre-
dictors to the workload at hand, as we’ve demonstrated aboveusing
two very disparate device workloads. STEP also does not require
any API modifications for device usage, as is required by Weissel
et al [28].

5. CONCLUSION
Data access prediction has been proposed as a mechanism to over-
come latency lag, and more recently as a means of conserving en-
ergy in mobile systems. We have presented a fully adaptive predic-
tor, called STEP, that can optimize itself for any arbitraryworkload,
while simultaneously offering simple adjustment of goals between
energy conservation and latency reduction. In other words,we have
proposed a predictive prefetching scheme that combines themost
generic and useful criteria to enable data prefetching while being
energy safe.

Our algorithm, STEP, achieves power savings on mobile comput-
ers by eliminating more data fetches, which would otherwisehave
caused excess energy to be consumed in accessing local storage de-
vices or using the wireless interface to fetch remote data. We have
demonstrated our algorithm to perform as well as some of the best
access predictors, while incurring almost none of the associated in-
crease in I/O workloads typical of their use. More precisely, our
algorithm reduced average response times by approximately50%
compared to an LRU cache, while requiring less than half the I/O
operations that traditional predictors would require to achieve the
same performance, thereby incurring no energy penalty. In conclu-
sion, our empirical results show that we have been able to achieve
the promised performance gains of competing prefetchers, with lit-
tle to none of the associated costs in terms of power consumption

and increased I/O overheads. STEP offers both a highly precise
and effective access prediction mechanism, that nonetheless does
not unnecessarily increase the total number of I/O operations per-
formed, or the energy consumed by the storage device.

For future work, we intend to experiment with varying threshold
values and the effects of such adjustment on predictor performance
and adaptability. We also plan to incorporate STEP into a prototype
implementation for benchmarking studies.

6. ACKNOWLEDGMENTS
We would like to thank our colleagues at the University of Pits-
burgh, particularly within the Advanced Data Management Tech-
nologies, the Storage Research, and the Power-Aware Real-Time
Systems groups, for their continuous support and assistance. We
would further like to thank the members of the Storage Systems
Research Center at the University of California, Santa Cruzfor
valuable discussions, and would also like to thank John Wilkes and
the Storage Systems Program at Hewlett Packard Labs for making
their traces available.

7. REFERENCES
[1] A. Amer, D. D. E. Long, and R. C. Burns. Group-based

management of distributed file caches. InProc. of the 22nd
Int’l. Conf. on Distributed Computing Systems, pages
525–534, Vienna, Austria, 2002.

[2] A. Amer, D. D. E. Long, J.-F. Paris, and R. C. Burns. File
access prediction with adjustable accuracy. InProc. of the
20th IEEE Int’l. Performance, Computing and
Communications Conf., pages 131–140, Phoenix, AZ, 2002.

[3] A. M. Amer. Predictive Data Grouping Using Successor
Prediction. PhD thesis, University of California at Santa
Cruz, 2002.

[4] K. S. Brandt, D. D. E. Long, and A. Amer. Predicting when
not to predict. InProc. of the 12th Annual Meeting of the
IEEE / ACM Int’l. Symp. on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems,
pages 419–426, Volendam, The Netherlands, 2004.

[5] M. Craven and A. Amer. Predictive Reduction of Power and
Latency (PuRPLe). InProc. of the 22’nd IEEE / 13’th NASA
Goddard Conference on Mass Storage Systems and
Technologies conference, Monterey, CA, 2005. (to appear).

[6] K. M. Curewitz, P. Krishnan, and J. S. Vitter. Practical
prefetching via data compression. InProc. of the ACM
SIGMOD Int’l. Conf. on Management of Data, pages
257–266, Washington, D. C., 1993.

[7] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the
power-hungry disk. InProc. of the 1994 Winter USENIX
Conf., pages 293–306, Boston, MA, 1994.

[8] D. Duchamp. Prefetching hyperlinks. InProc. of the Second
Usenix Symp. on Internet Technologies and Systems, pages
127–138, Boulder, CO, 1999.

[9] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for
mobile applications. InProc. of the Symposium on Operating
Systems Principles, pages 48–63, Charleston, SC, 1999.

132

[10] P. M. Greenawalt. Modeling power management for hard
disks. InProc. of the Second Int’l. Workshop on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems, pages 62–66, Durham, NC,
1994.

[11] J. Griffioen and R. Appleton. Reducing file system latency
using a predictive approach. InProc. of the USENIX Summer
Technical Conference, pages 197–207, Boston, MA, 1994.

[12] M. Herbster and M. K. Warmuth. Tracking the best expert.In
Proc. of the Twelfth Int’l. Conf. on Machine Learning, pages
286–294, Tahoe City, CA, 1995.

[13] J. J. Kistler and M. Satyanarayanan. Disconnected operation
in the Coda file system. InProc. of the 13’th ACM Symp. on
Operating Systems Principles, pages 213–225, Pacific
Grove, CA, 1991.

[14] P. Krishnan, P. M. Long, and J. S. Vitter. Adaptive disk
spindown via optimal rent-to-buy in probabilistic
environments. InProc. of the Twelfth Int’l. Conf. on Machine
Learning, pages 322–330, Tahoe City, CA, 1995.

[15] T. M. Kroeger and D. D. E. Long. The case for efficient file
access pattern modeling. InProc. of the Seventh Workshop
on Hot Topics in Operating Systems, pages 14–19, Rio Rico,
AZ, 1999.

[16] T. M. Kroeger and D. D. E. Long. Design and
implementation of a predictive file prefetching algorithm.In
Proc. of the 2001 USENIX Annual Technical Conf., pages
105–118, Boston, MA, 2001.

[17] H. Lei and D. Duchamp. An analytical approach to file
prefetching. InProc. of the 1997 USENIX Annual Technical
Conf., pages 275–288, Anaheim, CA, 1997.

[18] J. R. Lorch and A. J. Smith. Software strategies for portable
computer energy management.IEEE Personal
Communications Magazine, 5(3):60–73, 1998.

[19] T. C. Mowry, A. K. Demke, and O. Krieger. Automatic
compiler-inserted I/O prefetching for out-of-core
applications. InProc. of the 1996 Symp. on Operating
Systems Design and Implementation, pages 3–18, Seattle,
WA, 1996.

[20] A. E. Papathanasiou and M. L. Scott. Increasing file system
burstiness for energy efficiency. Work In Progress at the
Symp. on Operating Systems Design and Implementation,
Boston, MA, 2002.

[21] A. E. Papathanasiou and M. L. Scott. Energy efficient
prefetching and caching. InProc. of the USENIX 2004
Annual Technical Conferfence, pages 255–268, Boston, MA,
2004.

[22] C. Ruemmler and J. Wilkes. UNIX disk access patterns. In
Proc. of the 1993 Winter USENIX Technical Conf., pages
405–420, San Diego, CA, 1993.

[23] G. Santhanakrishnan, A. Amer, and P. K. Chrysanthis. A
Goal-Oriented Self-Tuning caching algorithm. InProc. of the
3’rd IEEE International Performance Computing and
Communications Conference, pages 311–312, Phoeniz, AZ,
2004.

[24] G. Santhanakrishnan, A. Amer, P. K. Chrysanthis, and D.Li.
GD-GhOST: A Goal-Oriented Self-Tuning caching
algorithm. InProc. of the 19’th ACM Symp. on Applied
Computing, pages 1141–1145, Nicosia, Cyprus, 2004.

[25] Y. Saygin, O. Ulusoy, and A. K. Elmagarmid. Association
rules for supporting hoarding in mobile computing
environments. InProc. of the 10’th Int’l. Workshop on
Research Issues in Data Engineering, pages 71–78, San
Diego, CA, 2000.

[26] J. S. Vitter and P. Krishnan. Optimal prefetching via data
compression.JACM, 43(5):771–793, 1996.

[27] M. Warmuth and N. Littlestone. The weighted majority
algorithm.Information and Computation, 108(2):212–261,
1994.

[28] A. Weissel, B. Beutel, and F. Bellosa. Cooperative I/O:A
novel I/O semantics for energy-aware applications. InProc.
of the 2002 Symp. on Operating Systems Design and
Implementation, pages 117–130, Boston, MA, 2002.

[29] G. A. S. Whittle, J.-F. Paris, A. Amer, D. D. E. Long, and
R. Burns. Using multiple predictors to improve the accuracy
of file access predictions. InProc. of the 20’th IEEE/11’th
NASA Goddard Conf. on Mass Storage Systems and
Technologies, pages 230–240, San Diego,CA, 2003.

[30] J. Wilkes. Predictive power conservation. Technical Report
HPL-CSP-92-5, Hewlett-Packard Laboratories, Palo Alto,
CA, 1992.

[31] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy,
and R. Wang. Modeling hard-disk power consumption. In
Proc. of the 2003 Usenix Conf. on File and Storage
Technologies, pages 217–230, San Francisco, CA, 2003.

133

