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ABSTRACT
Quality of Service (QoS) and Quality of Data (QoD) are the two
major dimensions for evaluating any query processing system. In
the context of the new data stream management stystems (DSMSs),
multi-query scheduling has been exploited to improve QoS. In this
paper, we are proposing to exploit scheduling to improve QoD.
Specifically, we are presenting a new policy for scheduling multi-
ple continuous queries with the objective of maximizing the fresh-
ness of the output data streams and hence the QoD of such outputs.
The proposed Freshness-Aware Scheduling of Multiple Continuous
Queries (FAS-MCQ) policy decides the execution order of contin-
uous queries based on each query’s properties (i.e., cost and se-
lectivity) as well the properties of the input update streams (i.e.,
variability of updates). Our experimental results have shown that
FAS-MCQ can increase freshness by up to 50% compared to exist-
ing scheduling policies used in DSMSs.

1. INTRODUCTION
Data streams processing is an emerging research area that is driven
by the growing need for monitoring applications. A monitoring
application continuously processes streams of data for interesting,
significant, or anomalous events. Monitoring applications have
been used in important business and scientific information systems,
for example, monitoring network performance, real-time detection
of disease outbreaks, tracking the stock market, performing envi-
ronmental monitoring via sensor networks, providing personalized
and customized Web pages.

For example, consider the University of Pittsburgh’s Realtime Out-
break of Disease Surveillance System (http://rods.health.pitt.edu).
Such a system receives data from different sources (e.g., hospitals,
clinics, pharmacies, etc.) and integrates it together in order to de-
tect correlations or abnormal events. In the event of detecting a
disease outbreak, CDC and health departments are notified to start
mobilizing their resources.

∗This is an extended version of our paper “Freshness-Aware
Scheduling of Continuous Queries in the Dynamic Web”, which ap-
pears in the Proceedings of the 8th ACM WebDB Workshop (June
2005, held in conjuction with SIGMOD 2005).

Efficient employment of monitoring applications needs advanced
data processing techniques that can support the continuous process-
ing of rapid unbounded data streams. Such techniques go beyond
the capabilities of traditional store-then-query Data Base Manage-
ment Systems. This need has led to a new data processing paradigm
and created a new generation of data processing systems, called
Data Stream Management Systems (DSMS) that support the execu-
tion of continuous queries (CQ) on data streams [23].

Aurora [4], STREAM [18], TelegraphCQ [5], Tribeca [21], Gigas-
cope [10], Niagara [7] and Nile [11] are examples of current pro-
totype DSMSs. In such systems, each monitoring application reg-
isters a set of CQs, where a CQ is continuously executed with the
arrival of new relevant data (Figure 1). In the Real-time Outbreak
of Disease System (RODS) example, the health officials register
queries for tracking specific indicators of disease outbreaks. As
another example, a user might register a query to monitor news
about tsunamis. Thus, as new articles arrive into the system, all
the Tsunami-related ones have to be propagated to that user. As
such, the arrival of new updates triggers the execution of a set of
corresponding queries, since portions of the new updates may be
relevant to different queries. The output of such a frequent execu-
tion of a continuous query is what we call an output data stream
(see Figure 1). In this particular example, an output data stream
can be used to continuously update a user’s personalized Web page
where a user logs on and monitors updates as they arrive. It can also
be used to send email notifications to the user when new results are
available.

As the amount of updates on the input data streams increases and
the number of registered queries becomes large, advanced query
processing techniques are needed to efficiently synchronize the re-
sults of the continuous queries with the available updates. Effi-
cient scheduling of updates is one such query processing technique
which successfully improves the Quality of Data (QoD) provided
by interactive systems. In this paper, we are focusing on scheduling
continuous queries for improving the QoD of output data streams.

QoD can be measured in different ways, one of which is freshness.
Freshness, as well as scheduling policies for improving freshness,
has been studied in the contexts of replicated databases [8, 9], de-
rived views [13], and distributed caches [19]. To the best of our
knowledge, our work is the first to study the problem of freshness
in the context of data streams. In this respect, our work can be re-
garded as complementary to the current work on the processing of
continuous queries, which considers only Quality of Service met-
rics like response time and throughput (e.g., [7, 20, 3, 5, 1]).
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Figure 1: A DSMS hosting multiple continuous queries

Specifically, the contribution of this paper is proposing a policy for
Freshness-Aware Scheduling of Multiple Continuous Queries (FAS-
MCQ). The proposed policy, FAS-MCQ, has the following salient
features:

1. It exploits the variability of the processing costs of different
continuous queries registered at the DSMS.

2. It utilizes the divergence in the arrival patterns and frequen-
cies of updates streamed from different remote data sources.

3. It considers the impact of selectivity on the freshness of out-
put data stream.

To illustrate the last point on the impact of selectivity, let us assume
a continuous query which is used to project the number of trades
on a certain stock, if its price exceeds $60. Further, assume that
there is a 50% chance that this stock’s price exceeds $60. With the
arrival of a new update, if the new price is greater than $60 then
a new update is added to the continuous output data stream. Oth-
erwise, the update is discarded and nothing is added to the output
data stream. So, in this particular example, the arrival of a new
update renders the continuous output data stream stale with prob-
ability 50%. FAS-MCQ exploits such probability of staleness in
order to maximize the overall QoD.

Beyond the basic FAS-MCQ policy, we have also explored a weighted
version of our FAS-MCQ scheduling policy that supports applica-
tions in which queries have different priorities. These priorities
could reflect criticality, and hence their importance with respect
to QoD captured by freshness, or popularity, and thus be used to
optimize the overall user satisfaction.

In order to evaluate our proposed scheduling policies, we have im-
plemented a simulator of such DSMS scheduler and ran extensive
experiments. As our experimental results have shown, FAS-MCQ
can increase freshness by up to 50% compared to existing schedul-
ing policies used in DSMSs. FAS-MCQ achieves this improve-
ment by deciding the execution order of continuous queries based
on individual query properties (i.e., cost and selectivity) as well as
properties of the update streams (i.e., variability of updates).

The rest of this paper is organized as follows. Section 2 provides
the system model. In Section 3, we define our freshness-based

QoD metrics. Our proposed policies for improving freshness is
presented in Section 4. Section 5 describes our simulation testbed,
whereas Section 6 discusses our experiments and results. Section 7
surveys related work. We conclude in Section 8.

2. SYSTEM MODEL
We assume a data stream management system (DSMS) where users
register multiple continuous queries over multiple input data streams
(as shown in Figure 1). Data streams consist of updates at remote
data sources that are either continuously pushed to the DSMS or
frequently pulled from the data sources. For example, sensor net-
works readings are continuously pushed to the DSMS, whereas up-
dates to Web databases are frequenly pulled using Web crawlers.

Each update ui is associated with a timestamp ti. This timestamp
is either assigned by the data source or by the DSMS. In the former
case, the timestamp reflects the time when the update took place,
whereas in the latter case, it represents the arrival time of the update
at the DSMS.

In this work, we assume single-stream queries where each query is
defined over a single data stream. However, data streams can be
shared by multiple queries, in which case each query will operate
on its own copy of the data stream. Queries can also be shared
among multiple users, in which case the results will be shared
among them. Improving the QoD in the context of multi-stream
queries as well as shared queries or operators is part of our future
work.

A single-stream query plan can be conceptualized as a data flow
diagram [4, 1] (Figure 1): a sequence of nodes and edges, where
the nodes are operators that process data and the edges represent
the flow of data from one operator to another. A query Q starts at a
leaf node and ends at a root node (Or). An edge from operator O1

to operator O2 means that the output of operator O1 is an input to
operator O2. Additionally, each operator has its own input queue
where data is buffered for processing.

As a new update arrives at a query Q, it passes through the sequence
of operators of Q. An update is processed until it either produces
an output or until it is discarded by some predicate in the query. An
update produces an output only when it satisfies all the predicates
in the query.
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Figure 2: An example on measuring the freshness of a data stream

In a query, each operator Ox is associated with two values:

• processing time or cost (cx), and

• selectivity or productivity (sx).

Recall that in traditional database systems, an operator with selec-
tivity sx produces sx tuples after processing one tuple for cx time
units. sx is typically less than or equal to 1 for operators like filters.
Selectivity expresses the behavior or power of a filter. Additionally,
for a query Qi, we define three parameters

1. maximum cost (Ci),

2. total selectivity or total productivity (Si), and

3. average cost (Cavg
i ).

Specifically, for a query Qi that is composed of a single stream of
operators <O1, O2, O3, ..., Or >, Ci, Si and Cavg

i are defined as
follows 1:

Ci = c1 + c2 + ... + cr

Si = s1 × s2 × ... × sr

Cavg
i = c1 + c2 × s1 + c3 × s2 × s1 + ... + cr × sr−1 × ... × s1

The total selectivity measures the probability that a new update will
satisfy all the query predicates while the average cost measures the
expected time for processing a new update until it produces an out-
put or until it is discarded. The average cost is computed as fol-
lows. An update starts going through the chain of operators with
O1, which has a cost of c1. With a “probability” of s1 (equal to the
selectivity of operator O1) the update will not be filtered out, and
as such continue on to the next operator, O2, which has a cost of
c2. Moving along, with a “probability” of s2 the update will not
be filtered out, and as such continue on to the next operator, O3,
which has a cost of c3. Up until now, on average, the cost will be
Cavg = c1 + c2 × s1 + c3 × s2 × s1. This is generalized in the
formula for Cavg

i above as in [24]. The maximum cost is a special
case of the average cost when the selectivity of each operator in a
single-stream query is equal to 1.
1In the rest of the paper, we use lower-case symbols to refer to
operators’ parameters and upper-case ones for queries’ parameters.

3. FRESHNESS OF DATA STREAMS
In this section, we describe our proposed metric for measuring the
quality of output data streams. Our metric is based on the freshness
of data and is similar to the ones previously used in [8, 13, 19, 9,
14]. However, it is adapted to consider the nature of continuous
queries and input/output data streams.

3.1 Average Freshness for Single Streams
In a DSMS, the output of each continuous query Q is a data stream
D. The arrival of new updates at the input queue of Q might lead
to appending a new tuple to D. Specifically, let us assume that at
time t the length of D is | Dt | and there is a single update at the
input queue; also with timestamp t. Further, assume that Q finishes
processing that update at time t′. If the tuple satisfies all the query’s
predicates, then | Dt′ |=| D |+1, otherwise, | Dt′ |=| D |. In the
former case, the output data stream D is considered stale during
the interval [t, t′] as the new update occurred at time t and it took
until time t′ to append the update to the output data stream. In the
latter case, D is considered fresh during the interval [t, t′] because
the arrival of a new update has been discarded by Q. Obviously, if
there is no pending update at the input queue of D, then D would
also be considered fresh.

Formally, to define freshness, we consider each output data stream
D as an object and F (D, t) is the freshness of object D at time t
which is defined as follows:

F (D, t) =


1 if ∀u ∈ It, σ(u) is false
0 if ∃u ∈ It, σ(u) is true

(1)

where It is the set of input queues in Q at time t and σ(u) is the
result of applying Q’s predicates on update u.

To measure the freshness of a data stream D over an entire discrete
observation period from time Tx to time Ty , we have that:

F (D) =
1

Ty − Tx

TyX
t=Tx

F (D, t) (2)

Figure 2 shows an example on measuring the freshness of a data
stream. Specifically, the figure shows two output data streams; 1)
the ideal stream which shows the times instants when updates be-
came available at the DSMS; and 2) the actual stream which shows
the time instants when updates became available to the user. The
delay between the time an update is available at the system un-
til the time it is propagated to the user is composed of two inter-
vals: 1) the interval where the continuous query is waiting to be
scheduled for execution; and 2) the interval where the continuous



query is processing the update. The sum of these two intervals
represents the overall interval when the output data stream devi-
ates from the ideal one. That is, when the output data stream is
stale compared to the physical world. In the example illustared
in Figure 2, the output data stream is stale for the intervals t1, t2
and t3. Hence, the staleness of the data stream is computed as:
(t1 + t2 + t3)/(Ty − Tx), equivalently, the freshness of the data
stream is computed as: ((Ty − Tx) − (t1 + t2 + t3))/(Ty − Tx).

3.2 Average Freshness for Multiple Streams
Having measured the average freshness for single streams, we pro-
ceed to compute the average freshness over all the M data streams
maintained by the DSMS. If the freshness for each stream, Di, is
given by F (Di) using Equation 2, then the average freshness over
all data streams will be:

F =
1

M

MX
i=1

F (Di) (3)

3.3 Fairness in Freshness
Ideally, all data streams in the system should experience perfect
freshness. However, this is not always achievable. Especially when
the DSMS is loaded, we can have data streams with freshness that
is less than perfect, because of a “back-log” of updates that cannot
be processed in time [13]. In such a case, it is desirable to maxi-
mize the average freshness in addition to minimizing the variance
in freshness among different data streams. Minimizing the vari-
ance reflects the system’s fairness in handling different continuous
queries.

In this paper, we are measuring fairness as in [17]. Specifically, we
compute the average freshness of each output data stream. Then,
we measure fairness as the standard deviation of freshness mea-
sured for each data stream. A high value for the standard deviation
indicates that some classes of data streams received unfair service
compared to others. That is, they were stale for a longer intervals
compared to other data streams. A low value for the standard de-
viation indicates that the difference in service (freshness) among
different data streams is negligible, and, as such, the DSMS han-
dled all streams in a fair manner.

4. FRESHNESS-AWARE SCHEDULING OF
MULTIPLE CONTINUOUS QUERIES

In this section we describe our proposed policy for Freshness-Aware
Scheduling of Multiple Continuous Queries (FAS-MCQ). Current
work on scheduling the execution of multiple continuous queries
focuses on QoS metrics [3, 5, 1] and exploits selectivity to improve
the provided QoS. Previous work on synchronizing database up-
dates exploited the amount (frequency) of updates to improve the
provided QoD [8, 19, 9]. In contrast, our proposal, FAS-MCQ, ex-
ploits both selectivity and amount of updates to improve the QoD,
i.e., freshness, of output data streams.

4.1 Scheduling without Selectivity
Assume two queries Q1 and Q2, with output data streams D1 and
D2. Each query is composed of a set of operators, each operator has
a certain cost, and the selectivity of each operator is one. Hence,
we can calculate for each query Qi its maximum cost Ci as shown
in Section 2. Moreover, assume that there are N1 and N2 pending
updates for queries Q1 and Q2 respectively. Finally, assume that
the current wait time for the update at the head of Q1’s queue is

W1, similarly, the current wait time for the update at the head of
Q2’s queue is W2.

Next, we compare two policies X and Y . Under policy X, query
Q1 is executed before query Q2, whereas under policy Y , query
Q2 is executed before query Q1.

Under policy X, where query Q1 is executed before query Q2, the
total loss in freshness, LX , (i.e., the period of time where Q1 and
Q2 are stale) can be computed as follows:

LX = LX,1 + LX,2 (4)

where LX,1 and LX,2 are the staleness periods experienced by Q1

and Q2 respectively.

Since Q1 will remain stale until all its pending updates are pro-
cessed, then LX,1 is computed as follows:

LX,1 = W1 + (N1C1)

where W1 is the current loss in freshness and (N1×C1) is the time
required until applying all the pending updates.

Similarly, LX,2 is computed as follows:

LX,2 = (W2 + N1C1) + (N2C2)

where W2 is the current loss in freshness plus the extra amount of
time (N1 × C1) where Q2 will be waiting for Q1 to finish execu-
tion.

By substitution in Equation 4, we get

LX = W1 + (N1C1) + (W2 + N1C1) + (N2C2) (5)

Similarly, under policy Y in which Q2 is scheduled before Q1, we
have that the total loss in freshness, LY will be:

LY = (W1 + N2C2) + (N1C1) + W2 + (N2C2) (6)

In order for LX to be less than LY , the following inequality must
be satisfied:

N1C1 < N2C2 (7)

The left-hand side of Inequality 7 shows the total loss in freshness
incurred by Q2 when Q1 is executed first. Similarly, the right-
hand side shows the total loss in freshness incurred by Q1 when
Q2 is executed first. Hence, the inequality implies that between the
two queries, we start with the one that has the lower NiCi value.
Similarly, in the general case, where there are more than 2 queries
ready for execution, we start with the one that has the lowest NiCi

value since it will have the minimum negative impact on the other
queries in the system.

4.2 Scheduling with Selectivity
Assume the same setting as in the previous section. However, as-
sume that the productivity of each query Qi is Si which is com-
puted as in Section 2. The objective when scheduling with selec-
tivity is the same as before: we want to minimize the total loss in
freshness. Recall from Inequality 7 that the objective of minimiz-
ing the total loss is equivalent to selecting for execution the query
that minimizes the loss in freshness incurred by the other query. In
the presence of selectivity, we will apply the same concept.



However, we first need to compute for each output data stream Di

its staleness probability (Pi) given the current status of the input
data stream. This is equivalent to computing the probability that
at least one of the pending updates will satisfy Qi’s predicates.
Hence, Pi = 1 − (1 − Si)

Ni , where (1 − Si)
Ni is the probability

that all pending updates do not satisfy Qi’s predicates.

Now, if Q2 is executed before Q1, then the “expected” loss in fresh-
ness incurred by Q1 only due to the impact of processing Q2 first
is computed as:

LQ1 = P1 × N2 × Cavg
2 (8)

where N2 × Cavg
2 is the expected time that Q1 will be waiting for

Q2 to finish execution and P1 is the probability that D1 is stale
in the first place. For example, in the extreme case of S1 = 0, if
Q2 is executed before Q1, it will not increase the staleness of D1

since all the updates will not satisfy Q1. However, at S1 = 1, if
Q2 is executed before Q1, then the staleness of D1 will increase by
N2 × Cavg

2 with probability one.

Similarly, if Q1 is executed before Q2, then the expected loss in
freshness incurred by Q2 only due to processing Q1 first is com-
puted as:

LQ2 = P2 × N1 × Cavg
1 (9)

In order for LQ2 to be less than LQ1 , then the following inequality
must be satisfied:

N1C
avg
1

P1
<

N2C
avg
2

P2
(10)

Thus, in our proposed policy, each query Qi is assigned a priority
value Vi which is the product of its staleness probability and the
reciprocal of the product of its expected cost and the number of its
pending updates. Formally,

Vi =
1 − (1 − Si)

Ni

NiC
avg
i

(11)

4.3 The FAS-MCQ Scheduler
The FAS-MCQ scheduler selects for execution the query with the
highest priority value at each scheduling point. A scheduling point
is reached when: (1) a query finishes processing an input update,
or (2) when a new update arrives at the system.

In the second case, the scheduler has to decide whether to resume
executing the current query or preempt it. A query is preempted if a
new update has arrived at a query with priority higher than the one
currently executing. Thus, we need to recompute the priority of the
currently executing query based on the position of the processed
update along the query operators. For example, if the processed
update is at the input queue of some operator Ox along the query,
then the current priority of the query is computed as:

1 − (1 − Sx)

Cavg
x

where Sx and Cavg
x are the expected productivity and expected cost

of the segment of operators starting at Ox all the way to the root. If
Ox has been processing the tuple for δx time units, then the current
priority is computed as above by replacing cx with cx − δx.

4.4 Discussion
It should be noted that under our policy, the priority of a query
increases as the processing of an update advances. For instance, let
us assume that a query has just been selected for execution. At that
moment, the priority of the query is equal to the priority of its leaf
node or leaf operator. After the leaf finishes processing the update,
the priority of the next operator, say Ox, is computed as shown
earlier. Intuitively, Sx and Cavg

x are greater than S and Cavg of the
leaf operator because the remaining processing cost decreases and
the expected productivity might increase too. Additionally, Nx is
equal to one and our priority function monotonically increases with
the decrease in N . Thus, overall, the priority of Ox is higher than
that of the leaf node. Similarly, the priority of each operator in the
query is higher than the priority of the operator preceding it. As
such, a query Qi is never preempted unless a new update arrives
and that new update triggers the execution of a query with a higher
priority than Qi.

Also note that under our priority function (Equation 11), FAS-MCQ
behaves as follows:

1. If all queries have the same number of pending tuples and
the same selectivity, then FAS-MCQ selects for execution
the query with the lowest cost.

2. If all queries have the same cost and the same selectivity, then
FAS-MCQ selects for execution the query with less pending
tuples.

3. If all queries have the same cost and the same number of
pending tuples, then FAS-MCQ selects for execution the query
with high staleness probability.

In case (1), FAS-MCQ behaves like the Shortest Remaining Pro-
cessing Time policy. In case (2), FAS-MCQ gives lower priority
to the query with high frequency of updates. The intuition is that
when the frequency of updates is high, it will take a long time to
establish the freshness of the output data stream. This will block
other queries from executing and will increase the staleness of their
output data streams. In case (3), FAS-MCQ gives lower priority to
queries with low selectivity as there is a low probability that the
pending updates will “survive” the filtering of the query operators
and thus be appended to the output data stream.

4.5 Weighted Freshness
In many monitoring applications, some queries are more important
than others. That is especially obvious in emergency systems where
some continuous queries are more critical than others. For example,
a continuous query monitoring the erruption of a volcano is more
crtitical than a continuous query monitorig traffic congestions. As
such, when the system is loaded, it is necessary to maximize the
freshness of these critical queries.

It is fairly easy to modify our proposed FAS-MCQ policy to in-
crease the frehness of data streams which have different levels of
importance. Specifically, we assign each continuous query Qi a
weight αi. This assigned weight represents the importance of the
query and it takes values in the range (0.0, 1.0] where the weight
1.0 is assigned to the most important query. Hence, the objective
of our policy would be to maximize the overall weighted freshness.
A priority function that allows us to maximize the weighted fresh-
ness can be easily deduced from Equations 8 and 9. Recall that



Equation 8 measures the expected loss in freshness experienced by
Q1 due to executing Q2 first, thus, the expected loss in weighted
freshness experienced by Q1 is measured as:

WLQ1 = α1 × P1 × N2 × Cavg
2

Similarly, the the expected loss in weighted freshness experienced
by Q2, when Q1 is executed first, is measured as:

WLQ2 = α2 × P2 × N1 × Cavg
1

In order for WLQ2 to be less than WLQ1 , then the following in-
equality must be satisfied:

N1C
avg
1

P1α1
<

N2C
avg
2

P2α2

And the priority assigned to each query is computed as:

Vi =
αi(1 − (1 − Si)

Ni)

NiC
avg
i

(12)

The weights of the queries can be explicitly or implicitly defined,
depending on the application. For example, in the case of an appli-
cation that includes queries that are critical, the critical queries can
be explicitly assigned higher weights than the rest of the queries.
In applications where explicit criticality/importance information is
not given, an implicit measure of importance can be derived. For
example, the popularity of each query (i.e., the number of users that
registered that query) can be used as the weight. In such an appli-
cation, the weighted FAS-MCQ policy will provide high levels of
overall user satisfaction in terms of QoD (freshness).

5. EVALUATION TESTBED
We have conducted several experiments to compare the performance
of our proposed scheduling policy and its sensitivity to different
parameters. Specifically, we compared the performance of our pro-
posed FAS-MCQ policy to a two-level scheduling scheme from Au-
rora where Round Robin is used to schedule queries and pipelining
is used to process updates within the query. Collectively, we refer
to the Aurora scheme in our experiments as RR. In addition, we
considered a FCFS policy where updates are processed according
to their arrival times. Finally, we adapted the Shortest Remaining
Processing Time (SRPT) policy, where the priority of a query is the
reciprocal of its maximum cost. The SRPT policy has been shown
to work very well for scheduling requests at a Web server when the
performance metric is response time [12].

Queries: We simulated a DSMS that hosts 250 registered contin-
uous queries. The structure of the query is adapted from [6, 16]
where each query consists of three operators: two predicates and
one projection. All operators that belong to the same query have the
same cost, which is uniformly selected from three possible classes
of costs. The cost of an operator in class i is equal to: 2i time units,
where i is 0, 1, or 2.

Selectivities: In any query, the selectivity of the projection is set
to 1, while the two predicates have the same value for selectivity,
which is uniformly selected from the range [0.1, 1.0].

Streams: The number of input data streams is set to 10 and the
length of each stream is set to 10K tuples. Initially, we generate
the updates for each stream according to a Poisson distribution,

Parameter Value
Policies FAS-MCQ, RR, FCFS, SRPT
Number of Queries 250
Number of Operators per Query 3
Operators’ Costs 1, 2, 4
Operators’ Selectivities 0.1–1.0
Utilization 0.1–0.95
Number of Data Streams 10
Stream Length 10K
Number of Bursty Streams 0–10

Table 1: Simulation Parameters

with its mean inter-arrival time set according to the simulated sys-
tem utilization (or load). For a utilization of 1.0, the inter-arrival
time is equal to the exact time required for executing the queries
in the system, whereas for lower utilizations, the mean inter-arrival
time is increased proportionally. To generate a back-log of updates
[13], we have a parameter B which controls the number of bursty
streams. A bursty stream is created by adapting the initially gen-
erated Poisson stream using two parameters: burst probability (p)
and burst length (l). Specifically, we traverse the Poisson stream
and at each entry/update we toss a coin, if the tossing result is less
than the p, then the arrival time Ab of that update is the beginning
of a new burst. Then, the arrival times of each of the next l updates
are adjusted so that the new arrival time, A′

i, of an update ui is set
to (Ai − Ab) ∗ p, where Ai is the arrival time computed originally
under the Poisson distribution. We have conducted several experi-
ments with different settings of the p, l and B parameters. In this
paper, we will present the simulation results where p is equal to
0.5, l is equal to 50 updates and B is in the range [0, 10] with the
default being 5. Table 1 summarizes our simulation parameters and
settings.

6. EXPERIMENTS
In this section we are going to present our experimental evaluation
results on the impact of utilization, impact of burstiness in data
streams, impact of selectivities and on fairness. In this paper, we
are only reporting the results of our experiments with the FAS-MCQ
policy (i.e., without weights).

6.1 Impact of Utilization
In this experiment, the selectivity for all operators is set to 1, whereas
the processing costs are variable and are generated as described ear-
lier. Figure 3 depicts the average total freshness over all output data
streams as the load at the DSMS increases. In this experiment 5 out
of the 10 input data streams are bursty.

The figure shows that, in general, the freshness of the output data
streams decreases with increasing load. It also shows that the FAS-
MCQ policy provides the highest freshness all the time. The fresh-
ness provided by SRPT is equal to that of FAS-MCQ for utiliza-
tions up to 0.5. After that point, with increasing utilization, queues
start building up. That is when FAS-MCQ gives higher priority
to queries with shorter queues and low processing cost in order to
maximize the overall freshness of data, thus outperforming SRPT.
At 95% utilization, FAS-MCQ has 22% higher freshness than SRPT.
If we report QoD as staleness (i.e., the opposite of freshness [19]),
then FAS-MCQ is 41% better than SRPT, with just a 20% overall
average staleness.
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Figure 3: freshness vs. load (selectivity=1.0)

6.2 Impact of Bursts
The setting for this experiment is the same as the previous one.
However, the utilization at all points is set to the default value of
90%. In Figure 4, we plot the average total freshness as the number
of input data streams that are bursty increases. At a value of 0, all
the arrivals follow a Poisson distribution with no bursts, whereas at
10, all input data streams are bursty as described in Section 5.

Figure 4 shows how the total average freshness decreases when the
number of bursty data streams increases. It also shows that FAS-
MCQ provides the highest freshness compared to the other policies.
Notice the relation between FAS-MCQ and SRPT: as the number
of bursty streams increases, the difference in freshness provided by
FAS-MCQ compared to SRPT increases up until there are 5 bursty
streams. At that point, FAS-MCQ has 20% higher freshness than
SRPT. At the same time, FAS-MCQ has 1.8 the freshness of the
RR policy and 3.6 the freshness of the FCFS policy.
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Figure 4: freshness vs. number of bursty streams

After there are 7 bursty input streams, the performance of the FAS-
MCQ and SRPT policies get closer. The explanation is that at a
lower number of bursty streams, FAS-MCQ has a better chance to
find a query with a short queue of pending updates to schedule for
execution. As the number of bursty streams increases, the chance
of finding such a query decreases, and as such, SPRT is performing
reasonably well. At 10 bursty streams, FAS-MCQ has only 16%
higher freshness than SRPT.

6.3 Impact of Selectivity
In this experiment, the cost for all operators is set to 1 time unit.
However, the selectivity is chosen uniformly from the range [0.0,
1.0]. Figure 5 depicts how the freshness decreases with increasing
load at the Web server. The figure also shows that FAS-MCQ still
provides the highest freshness, as it considers the probability that an
update will affect the freshness of the corresponding data stream.
That is different from SRPT which will give a higher priority to
a query with low cost. Hence, SRPT might spend time executing
queries that will only append fewer updates to their corresponding
output data streams.

In this setting, RR behaves better than SRPT at high utilizations.
At a 95% utilization, FAS-MCQ gives 50% higher freshness than
RR and 63% higher than SRPT.
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Figure 5: freshness vs. load (variable selectivity)

6.4 Fairness
Figure 6 shows the standard deviation of freshness for the same ex-
periment setting. The figure shows that for all policies, the devia-
tion increases with increasing load where some output data streams
are stale for longer times compared to other data streams. However,
FAS-MCQ provides the lowest standard deviation for most values
of utilization. As the utilization approaches 1 (i.e., when the DSMS
is about to reach its capacity), the fairness provided by FAS-MCQ
gets closer to that of FCFS. Thus, FAS-MCQ is at least as fair as
FCFS, even at very high utilizations.
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Figure 6: standard deviation of freshness



However, the FCFS policy behaves poorly if we look beyond fair-
ness and into the average total freshness: as shown in Figure 5,
FAS-MCQ provides 96% higher average freshness compared to
FCFS, despite having the same fairness.

7. RELATED WORK
Improving the QoS of multiple continuous queries has been the fo-
cus of many research efforts. For example, multi-query optimiza-
tion has been exploited in [7] to improve the system throughput in
an Internet environment and in [16] for improving the throughput
of a data stream management system. Multi-query scheduling has
been exploited by Aurora to achieve better response time or to sat-
isfy application-specified QoS requirements [3]. The work in [1]
employs a scheduler for minimizing the memory utilization.

To the best of our knowledge, no previous work has proposed multi-
query scheduling policies for improving the QoD provided by con-
tinuous queries. However, load shedding has been devised as a
technique to control the degree of degradation in the provided QoD
under overloaded conditions. The work in [22] describes a load
shedding technique that decides which tuples to drop according to
the importance of their content. The work in [2] formalizes the load
shedding problem for aggregate queries.

Scheduling policies for improving the QoD has been studied in the
context of replicated databases and in Web databases. For example,
the work in [8, 9] provides policies for crawling the Web in order
to refresh a local database. The authors make the observation that
a data item that is updated more often should be synchronized less
often. In this paper, we utilize the same observation, however, [8,
9] assumes that updates follow a mathematical model, whereas we
make our decision based on the current status of the Web server
queues (i.e., the number of pending updates). The same observation
has been exploited in [19] for refreshing distributed caches and in
[15] for multi-casting updates.

The work in [13] studies the problem of propagating the updates
to derived views. It proposes a scheduling policy for applying
the updates that considers the divergence in the computation costs
of different views. Similarly, our proposed FAS-MCQ considers
the different processing costs of the registered multiple continuous
queries. Moreover, FAS-MCQ generalizes the work in [13] by con-
sidering updates that are streamed from multiple data sources with
different traffic patterns as opposed to a single data source.

8. CONCLUSIONS
Motivated by the need to support monitoring applications, as well
as active Web services, both of which involve the processing of up-
date streams by continuous queries, in this paper we studied the
different aspects that affect the QoD of these applications. In par-
ticular, we focused on the freshness of the output data stream and
identified that both the properties of queries, i.e., cost and selec-
tivity, as well as the properties of the input update streams, i.e.,
variability of updates, have a significant impact on freshness.

Our major contribution is a new approach to scheduling multiple
queries in Data Stream Management Systems. Our approach ex-
ploits both properties of queries and input data streams in order
to maximize the freshness of output data streams. We proposed a
new scheduling policy called Freshness-Aware Scheduling of Mul-
tiple Continuous Queries (FAS-MCQ) and a weighted version of it
that supports applications in which queries have different priorities.
We have experimentally evaluated our proposed FAS-MCQ policy

against scheduling policies used in current DSMS prototypes as
well as Web servers. Our experiments show that FAS-MCQ can
increase freshness by up to 50% compared to the existing policies.

Our next step is to study the problem of maximizing the freshness
when MCQ plans include shared operators as well as join operators.
Additionally, we are planning to investigate the relation between
QoD and QoS provided by DSMSs.
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