Zone Sharing: A Hot-Spots Decomposition Scheme for
Data-Centric Storage in Sensor Networks

Mohamed Aly, Nicholas Morsillo, Panos K. Chrysanthis, and Kirk Pruhs
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260, USA

{maly, nwm1, panos, kirk}@cs.pitt.edu

ABSTRACT

In the resource over-constrained environment of sensor net-
works, techniques for storing data locally in sensor nodes
have been proposed to support efficient processing of ad-
hoc queries. These data-centric storage (DCS) techniques
differ in the method of mapping events to sensors, but all of
them fail to deal with storage hot-spots due to irregular sen-
sors deployments, and(or) data distributions. In this paper,
we present Zone Sharing (ZS), a novel distributed scheme
for the decomposition of storage hot-spots. We apply ZS
to the DIM scheme, which has been shown to be the best
among all DCS schemes. ZS locally detects hot-spots and
tries to evenly distribute their loads among the sensor nodes
in the network. Simulations have shown the efficiency of ZS
in decomposing small to moderate sized hot-spots without
imposing an additional energy load to the network nodes.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems— Distributed Databases

General Terms

Algorithms, Design, Performance

Keywords

Sensor Networks, sensor databases, data-centric storage, stor-
age hot-spots

1. INTRODUCTION

In a typical sensor network, sensors are responsible of
sensing one or more phenomenon. The reading of one or
more sensors composes an event. Thus, an event type cor-
responds to a set of attributes, one for each phenomenon
under concern. Applications monitor these events by sub-
mitting queries. One way to handle such queries is to propa-
gate events to base stations, mostly outside of the network,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DMSN' 05, August 29, 2005, Trondheim, Norway.

Copyright 2005 ACM 1-59593-206-2/05/0008 ...$5.00.

where queries are submitted and executed. However, this
approach may be more appropriate to answer continuous
queries which mostly process all generated events over a pe-
riod of time. For ad-hoc queries, this approach is extremely
inefficient because ad-hoc queries typically require a small
set of the generated events at some point in time. Propagat-
ing all events to the base stations would be a major waste of
energy that impacts the lifetime of sensor nodes. Further,
more energy is wasted if ad-hoc queries can been submit-
ted to any node in the network as such queries will need to
be propagated all the way to the base stations for execution
and their results have to be sent back to the querying nodes.

In order to improve the lifetime of sensor nodes and conse-
quently the quality of data (QoD) of ad-hoc queries, the idea
of data-centric storage (DCS) has been proposed for main-
taining the events within the sensor network rather than
storing them on base stations [5]. DCS techniques define an
owner for each event, which is the sensor that will be respon-
sible of storing the event. This event-to-sensor mapping is
based on the attributes values of an event. For example, the
mapping is done using hash tables in DHT [5] and GHT [2],
or using k-d trees in DIM [1].

Irregularity in terms of sensors deployment or data distri-
bution represents a vital issue in DCS techniques [6]. The
problem arises when the geographic node distribution does
not match the storage load distribution. In this case, a
high percentage of the load is assigned to a relatively small
portion of the sensor nodes. We call this problem a stor-
age hot-spot. Such hot-spots represent a storage, as well
as energy, bottleneck in the sensor network. The presence
of hot-spots leads to increasing the dropping rate of events
by sensors falling in the hot-spot area. Consequently, this
decreases the QoD of the different queries targeting the hot-
spot events. Also, insertions and queries aiming the hot-spot
area are propagated through a relatively small number of
routes (those leading to such area). This results in the quick
depletion of the energy of sensors falling on these routes (i.e.
their death), thus, leading to network partitioning and con-
sequently reducing the network lifetime. Lost stored events
and reduced coverage due to failed sensor nodes additionally
decreases the QoD.

Current DCS schemes fail to effectively cope with the hot-
spots problem, although some possible solutions for irreqular
sensors deployments were suggested, such as routing based
on virtual coordinates, or using heuristics to locally adapt
to irregular sensor densities [6]. In this paper, we propose a
solution to the hot-spot problem due to irregular data dis-
tribution in DCS schemes. We will present our solution in

the context of the DIM scheme, which has been shown to
exhibit the best performance among the DCS techniques. In
DIM, a sensor node is defined as a leaf of a k-d tree [4] and
is assigned a binary address (zone) based on its geographic
location. The address size (in bits) of each sensor is equal to
its depth (level number) in the tree. Events are mapped to
binary codes based on their attributes values and they are
routed to their owners using the Greedy Perimiter Stateless
Routing (GPSR) algorithm [3]. Due to its high performance
compared to other DCS schemes, many researches have re-
cently focused on improving the different aspects of DIM,
for example the localization scheme presented in [7].

The intuitive idea of our proposed solution of Zone Shar-
ing (ZS) is that a node experiencing high load compared to
its neighbors is a good indication of a storage hot-spot and
it is reasonable to share its load with one of its less-loaded
neighbors. In the specific terms of DIM, a high-loaded sen-
sor node attempts to split its owned zone with one of its
less-loaded neighbors. Based on the maximum number of
times a zone could be shared, we present two ZS flavors:
Single-Hop Zone Sharing and Multiple-Hop Zone Sharing.

The paper experimentally shows that the main advantages
of ZS are:

e Increasing the QoD by distributing the hot-spot events
among a larger number of sensors.

e Increasing the energy savings by balancing energy con-
sumption among sensor nodes.

e Increasing the network lifetime for networks of small
and medium sizes by reducing the average number of
dead nodes.

The paper is organized as follows: The next section de-
scribes and analyzes the ZS scheme. Experimental results
are provided in Section 3 and Section 4 concludes the paper.

2. ZONE SHARING

In this section, we describe two ZS schemes. We first
illustrate the basic ZS idea using a simple example.

2.1 Basic Idea

Figure 1 shows a typical scenario for the zone sharing
process. In the k-d tree on the LHS, NO (address = 0) is
experiencing high storage load compared to its neighbors,
N1 (address = 11) and N2 (address = 10). N2 has a smaller
storage load than N1. The difference of load between the
two subtrees is considered as a potential hot-spot indication
in the left subtree. Therefore, in order to cope with this hot-
spot that is about to be formed in NO, node N2 passes the
responsibility of its original zone to N1 and takes responsi-
bility of a portion (around half) of NO’s zone. The k-d tree
takes the form presented on the RHS of Figure 1.

Note that the move of N2 is only logical, i.e., N2 still
keeps in its original geographic location (assuming nodes are
stable), but, it takes responsibility of another zone whose
code value is different from its binary address value. Also,
it is assumed that each node has enough energy to send and
receive events during this logical move.

The above procedure is used to decompose storage hot-
spots as follows: In case a hot-spot arises in a set of sensor
nodes, the border nodes, i.e., those nodes falling on the bor-
der of the hot-spot, will trade pass responsibility of portions

N2(10) N2(00)
NO(0) Fe-nev O ------ NO(0) I::> o \
® | NO(O1) i A
NTOD | N2¢1oy i) ® NT0) inzi00) NO@Y)

Figure 1: Zone sharing simple example

of their zones to some of their less-loaded neighbors, not
falling in the hot-spot area, as described above. This will
lead to decreasing the size of the hot-spot by removing these
border nodes outside from the hot-spot. Then, these nodes
that were previously on the hot-spot border will now act
as the less-loaded neighbors for the new border nodes, and
subsequently, receive part of the load of these border nodes.
This process contiues till it totally decomposes the hot-spot
and distributes its load on a larger number of sensor nodes.
But many questions need to be answered to efficiently
implement zone sharing, such as: When can a node tell
that it is falling in a hot-spot? How does a node know the
neighbors information? With which neighbor to trade the
excess capacity? How much load to trade? How many times
a given zone can be traded? What changes need to be made
to GPSR to account for the zone migration? In the following
subsections, we answer these questions in turn.

2.2 Distributed Migration Criterion (DMC)

A node experiencing an unusual load can split its owned
zone with one of its neighbors. In such case, the node’s
depth in the k-d tree is increased by 1 (i.e., its address size
is increased by 1 bit). A neighbor of this node is logically
moved to share its zone. As this neighbor was another leaf
in the tree, it passes its original zone to one of its siblings,
and the tree depth of this last decreases by 1 bit.

The above process can be described as a migration of a
given node from its original level to a lower one in the k-d
tree. Thus, we call the original node that splits its zone
the donor (NO in Figure 1) as it donates almost half of its
load, while its neighbor that takes part of that zone is called
the migrator (N2 in Figure 1) as it migrates from a zone
to another. The node that receives the original migrator’s
zone is called the receiver (N1 in Figure 1).

We define [, to be the storage load of node x, while e, is
meant to be the energy level of node x. Therefore, in Fig-
ure 1, the original load of the migrator, which is passed to
the receiver, is referred to as lmigrator, while the total load
of the donor, before the migration process, is lgonor- The
amount of load that the donor passes to the migrator after
the migration of this last is defined as the traded zone, T.
It is expressed in terms of number of the number of traded
messages (Note that an event represents one message). The
value of T is solely defined by the donor, based on the distri-
bution of its storage load, in a way that balances the storage
between itself and the migrator after the migration process.
In case the load is uniformly distributed in the hot-spot
zone, T' can be considered as half of the original load of the
donor, lgonor-

In order to define which neighbor to split zone with, we
need to relate the loads, as well as the energy levels, of the
three nodes involved in the migration process in a reason-
able way that maximizes the profit gained from migration.
Therefore, we provide a set of inequalities to be locally ap-
plied by the three nodes. These equations represent neces-

sary conditions that must be fulfilled to justify zone sharing.
In these equations, an energy unit represents the amount
needed to send one message. The fraction re is the amount
of energy consumed in receiving one message (it is always
less than one energy unit):

ldonor
>C 1
lmigrator + lrecei'uer - ! ()
T
> Cs (2)
lmig'rato'r
T
< Ex (3)
€donor
lmi rator e T
tmigrator + Te * 1 < Es» (4)
€migrator
lmi rator e
egti.*”" < By (5)

where C;’s and Ej;’s are constants representing storage ratio
and energy ratio thresholds, respectively.

The first two equations are concerned with relating the
storage loads of the three nodes. Equation (1) states that
the pre-migration load of the donor should be much big-
ger than the post-migration load of the receiver. Such con-
straint is needed in order to guarantee that no migration
oscillation would occur. It should be applied by both the
donor and the receiver. The value of the constant C; should
be greater than or equal to 2 in order to make sure that the
donor is really falling within a storage hot-spot. Equation
(2) states that the post-migration load of the migrator is
bigger than its pre-migration load. This is needed in order
to gain some profit from the whole migration process. This
equation should be applied by the migrator. It is obvious
that C5 should take values greater than or equal to 2 in
order to avoid cyclic migrations.

Equations (3) to (5) relate the energy levels of the three
nodes, before and after the migration process. Equation (3)
states that the energy consumed in transferring the traded
zone is much less than the donor’s energy level prior to the
migration process. It is applied by the donor. Equation (4)
states that the energy consumed in sending the migrated
zone, as well as receiving the shared zone, is less than the
total energy amount owned by the migrator pre-migration.
It is only applied by the migrator. The last equation, Equa-
tion (5), states that the energy consumed by the receiver in
receiving the original load of the migrator is less than its
available energy before migration. It is obvious that this
last is applied by the receiver. These inequalities are needed
to make sure that the energy amount consumed in the mi-
gration process will not cause the death, or the approach of
death, of one or more of the nodes involved in the migration
process. The values of the E; thresholds should be less than
0.5.

To be able to localize the evaluation of the above equa-
tions, each node is supposed to maintain load information,
in terms of in terms of storage and energy, of its neigh-
bors. Thus, in case of falling in a storage hot-spot, the node
will be able to select the best candidate neighbor to split
its owned zone with. The periodic messages exchanged be-
tween neighbors to maintain the DIM structure, as well as
insertion and query messages, can be piggybacked with such
information. Each node periodically checks its storage level
and applies the migration criterion in case this level exceeds
a given threshold.

The migration process, as described above, needs some
distributed decision making among sensors involved in mi-
gration. For such purpose, a three-way hand-shaking proce-
dure must be applied in case a node decides to share its zone
with one of its neighbors. First, the donor should decide
which neighbor to be the migrator and contact this last with
a Request to Migrate message (RTM). In case the candidate
migrator is able to migrate, it should select an appropriate
receiver and inform it about its migration decision. In case
the receiver accepts this decision, the migrator replies to the
donor with an Accept to Migrate message (ATM). Note that
the RTM and ATM could be piggybacked on other mes-
sages, or sent explicitly. The overhead of such messages is
negligible compared to that of the actual migration process.

2.3 Single-Hop Zone Sharing (SHZS)

Now that we defined the DMC, we need to decide how
will the hot-spot decomposition process take place. This
can be done by determining the number of times a single
zone can be traded. In order to minimize the changes made
to the tree, we limit the maximum depth change of any
zone to 1. In other words, each zone can be shared only
once. A receiver cannot share the original migrator’s zone
another time. Hence, we call this ZS version Single-Hop
Zone Sharing.

As every zone will be at most one hop further from its
original location, the original GPSR can be used to query
the different zones and the original donor node will just for-
ward the query, or the insertion, to the migrator in case the
queried zone has been already donated. This will enable us
to use the same DIM scheme with minimal changes made
for the hot-spot decomposition purpose.

2.4 Multiple-Hop Zone Sharing (MHZS)

Although the SHZS algorithm is quite simple, it has three
drawbacks when dealing with large hot-spots. First, with
increasing storage hot-spots sizes, the neighbors of the over-
whelmed node will most probably be falling in, or close to,
the hot-spot, thus suffering from the same symptom. There-
fore, the DMC will be hard to be satisfied by such nodes. As
the hot-spot size increases, border nodes will be extremely
loaded as well as their neighbors, thus complicating the
DMC satisfaction. Further, when a border node passes a
portion of its load to a neighbor, it will be still falling in the
hot-spot, thus, unable to receive any load from other nodes
closer to the center of the hot-spot. Hence, the DMC will
not lead to the hot-spot decomposition.

Second, the fact that a shared zone cannot be shared again
complicates the scheme in the case of dealing with large hot-
spots. At some point, all the neighbors of the hot-spot node
will be responsible of zones that were already falling under
this node’s responsibility. Then, this last receives further
events by dropping old ones, leading to decreasing the QoD.

A third complication is regarding the GPSR algorithm in
the case of events insertion. Assuming that a donor selects to
share the zone that has more upcoming events to be inserted
in the future, all such insertions will first pass by the donor
before going to the migrator. This will impose a large energy
consumption burden on the donor node.

From the above points, it is obvious that the SHZS algo-
rithm is best suited for small hot-spots. In order to extend
the zone sharing idea to handle larger hot-spots, we need
to relax the single hop sharing assumption. Thus, we intro-

duce another ZS version where a zone can be shared more
than once. This implies that a given zone can encounter a
tree depth change of any size. We call this version of zone
sharing Multiple-Hop Zone Sharing.

As a zone can be moved several hops away from its orig-
inal node, keeping GPSR with no changes will involve the
original donor, as well as subsequent ones, in all insertions
and queries concerning the shared zone. This would be an
extreme overhead and it would be proportional to the over-
all depth change of the shared zone. Hence, GPSR must
be augmented by some means to figure out that a zone has
been shared and moved away from its original location.

For such purpose, we assume that each node maintains
a Shared Zones List containing three entries: zone address,
original donor, and final migrator. Upon zone sharing, the
donor sends the shared zone address, its name and the mi-
grator’s name to all its neighbors. Thus, each node will be
aware of zones traded by its neighbors.

In case of multiple sharing of the same zone, the old mi-
grator becomes the new donor. It sends the zone address,
the original donor, as well as the new migrator to all of its
neighbors. Thus, it has to check its shared zones list first
and send the entry corresponding to the zone under con-
cern after updating the final migrator entry with the new
migrator.

In case a node receives a shared zone entry that is already
present in its shared zones list, it updates its list with the
new entry. This means that a given zone has been re-shared.
This update guarantees that a shared zone will have similar
entries in all shared lists containing information about this
shared zone. The node then forward the shared zone entry
to its neighbors.

In routing an event, GPSR first checks the shared zones
list with the zone address. In case an entry for such zone is
found, this means that the original destination of the zone
has been changed to a new one. Therefore, the destination
node found in the shared zones list entry of the zone is used
to explicitly update the destination field of the message to be
routed to its new value. GPSR then uses the new destination
address to forward the message using the best path to the
final migrator. A flag is updated in the message to indicate
that its original destination has been already changed to its
current one to avoid further overhead lookup in subsequent
nodes.

As we are constraining each node to send shared zones
information only to its neighbors, the size of a shared zone
entry will be relatively small. It is easy to prove that an
n-times shared zone will be at most present in the shared
zone lists of nodes of A(n) hops away from its final desti-
nation. Thus, the overhead that GPSR will take to search
for a shared zone in its list in relatively small. Also, for
shared zones, shared lists search occurs only once in the fur-
thest node, containing shared zone information, from the
final destination. As mentioned above, upon seeing that the
destination flag set in the message, GPSR in the following
nodes uses such destination immediately without searching
the list.

From the above, ZS tries to decompose the hot-spot stor-
age load across the network. The decomposition process
takes place from the hot-spot borders and going all the way
to the hot-spot center. The following section presents sim-
ulation results that show ZS ability of decomposing storage
hot-spots of different sizes.

3. SIMULATION RESULTS

In order to measure the ZS performance, we created a
simulator for a typical sensor network applying DIM, as pre-
sented in [1]. We also simulated GPSR to be used as the
routing protocol. Then, we added the ZS functionality to
such network to compare the effect of applying ZS versus
using pure DIM.

In our simulation, we tried to use the same experimental
setting used in [1] to get similar DIM performance. Thus, we
simulated networks of sizes ranging from 50 to 300 sensors,
each having an initial energy of 50 units, a radio range of
40m, and a storage capacity of 15 units. The sensors loca-
tions were drawn from a uniform distribution. The service
area was computed such that each node has on average 20
nodes within its nominal radio range.

We model hot-spots by a using a uniform distribution to
represent sensors locations, while using a skewed distribu-
tion of events among the attributes ranges. We assume that
each sensor has a limited storage capacity and that it re-
places the oldest event in its memory in case it is already
full.

Concerning the DMC parameters, we chosen a value of 2
for the C1 and C> constants of the first two equations (stor-
age load equations). For the energy load equations, we set
the F1, F2 and E3 constants to 0.3. Note that these are
just typical values for such thresholds. For an exact perfor-
mance of ZS, extensive binary search among the different
combinations of such constants should be made. Concern-
ing the r. value, we assumed that message receiving takes
half an energy unit (One unit = amount needed to send an
event). We assumed a network with a single hot-spot, where
a percentage varying from 10% to 50% of the events values
fell into within 10% of the attributes ranges.

The simulation consisted of two phases: the insertion
phase and the query phase. During the insertion phase,
each sensor initiates 5 events, according to the predefined
hot-spot size, and forward each event to its owner. In the
query phase, each sensor generates queries of sizes ranging
from 10% to 100% of the attributes ranges.

The results of the simulations are shown in the following
figures. In these figures, we compare the performance of the
pure DIM versus that of SHZS, as well as MHZS, with re-
spect to five performance measures. Note that we only show
some of our findings due to space constraints.

250

DIM ——

MSHZS -

200

150

Dropped Events

100

" L
50 100 150 200 250 300
Network Size

Figure 2: Number of dropped events for networks
with a 30% hot-spot after insertion phase

500

450 -

400

350 [

300

250

Dropped Events

200

150 -

100 - _—

L L
50 100 150 200 250 300
Network Size

Figure 3: Number of dropped events for networks
with a 50% hot-spot after insertion phase

R1. Data Persistence: Figures 2 and 3 present the to-
tal number events dropped by all network nodes after the
insertion phase in networks with hot-spots of sizes of 30%
and 50%, respectively. For the three simulated schemes, the
number of dropped events is quite low and almost constant
for networks of small sizes (less than 150 nodes), while it
increases linearly for larger network sizes. However, the ZS
schemes, especially MHZS, highly improve the performance
by decreasing the number of dropped events for all network
sizes.

The above result proves that ZS improves the average
lifetime of an event to be stored in the network, which is
the time that an event passes in the network before being
dropped. Therefore, for queries aiming an arbitrary set of
events, the network will be able to efficiently provide an-
swers to such queries for longer time periods.

550

DIM —+—

500 |- MHZS %~

350
300
250 - X
200

150

Events Returned for Query <0.0-0.5,0.0-0.5>

100 |

0 L L L L
50 100 150 200 250 300
Network Size

Figure 4: Query size of a 50% query for networks
with a 50% hot-spot

R2. Quality of Data: Figures 4 and 5 show the average
query sizes of 50% and 70% of the attribute ranges, respec-
tively, for networks with 50% and 40% hot-spots, respec-
tively. It is clear that ZS schemes, especially MHZS, improve
the QoD by dropping less information, as described in R1,
thus increasing the number of events resulting in each query.
Note that the gap between pure DIM and ZS schemes, in
terms of resulting query sizes, increases with the increase of
the hot-spot size.

800

DIM —+—

MHZS - %---
700 |]

600 -
500 -
400 e A

300 | LT L

Events Returned for Query <0.0-0.7,0.0-0.7>

200 | _—

00—

L L L L
50 100 150 200 250 300
Network Size

Figure 5: Query size of a 7T0% query for networks
with a 40% hot-spot

This result has a very important implication on the data
consistency of the sensed data output from a network expe-
riencing a hot-spot. The success of ZS schemes in decompos-
ing the hot-spots results in improving the network ability to
keep a higher portion of the hot-spot data. This ameliorates
the degree of correctness of any aggregate functions made on
the network readings, for example, an average of the tem-
perature or pressure values where a high percentage of the
data is falling within a small range of the total attributes
range. We consider this to be a good achievement compared
to the pure DIM structure.

DIM —+—

MHZS ---%--

Overloaded Nodes

- L L L
50 100 150 200 250 300
Network Size

Figure 6: Number of overloaded nodes for networks
with a 40% hot-spot after insertion phase

R3. Load Balancing: Figure 6 presents the number of
overloaded nodes after the insertion process for networks
with a hot-spot of size of 40%. By overloaded nodes, we
mean the nodes having full memories. Thus, in our simula-
tion, this means a node having 15 events in its cache. The
figure shows that the performance of networks applying the
ZS schemes is much better than those applying the pure
DIM scheme. The MHZS achieves a ratio of improvement
ranging from 25% to 50% based on the network size.

The previous results prove that ZS schemes, especially
MHZS, improve the network ability to maintain a higher
portion of the hot-spot events by achieving a better balanc-
ing of such events among the network nodes.

DIM —+—

MHZS —%---

Dead Nodes

" e L
50 100 150 200 250 300
Network Size

Figure 7: Number of dead nodes for networks with
a 50% hot-spot after insertion phase

R4. Network Lifetime: Figure 7 presents the number
of dead nodes after the insertion process for networks with
hot-spot size of 50%. The number is negligible for the three
schemes in case of small to medium networks (less than 200
node). Then, this number increases in case of larger net-
works. The performance of ZS schemes is slightly better
than the pure DIM in small and medium networks, while it
is lower than DIM for larger networks in this experiment
(although both of them achieve a small number of dead
nodes compared to the whole network size). This result
shows that the additional work done by the sensors in the ZS
process increases the network lifetime for small to medium
networks, in addition to the increase in the QoD in all cases
shown above. Recall that in this experiment, MHZS was
unrestricted in terms of decomposing hot-spots over large
number of hops. Hence, the performance could have been
improved for large networks by defining an upper bound of
the number of times (hops) a zone could be traded or by
dynamically adjusting the E; values of the DMC. We plan
to experiment with these extensions in our future work.

44 <

S T T T T
~— DIM ——

3k ~ MHZS % |

a2 ™
ol e \
40 T ~

39 - T = B
38+ \
37t .

36

Average Energy Level

35

L L L L 2
50 100 150 200 250 300
Network Size

Figure 8: Average node energy level for networks
with a 50% hot-spot after insertion phase

R5. Energy Consumption: Figure 8 presents the aver-
age node energy level after the insertion process for networks
with hot-spot size of 50%. The figure shows that this aver-
age lineraly decreases with the increase of the network size.
Introducing ZS schemes slightly decreases the average sen-
sor energy by a small amount compared to the correspond-

ing average in the pure DIM case. However, ZS increases
the number of sensors taking responsibility of the hot-spot
events. Hence, ZS balances the energy consumption among a
larger number of sensors in the network compared to fewer
sensor nodes in the pure DIM. This can be viewed as de-
creasing the variance of the nodes energy levels compared
to the pure DIM.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we presented Zone Sharing (ZS), a novel
scheme for decomposing storage load of hot-spots in Data-
Centric Storage sensor networks. ZS is based on locally de-
tecting the formation of a hot-spot, and iteratively trying
to break off the hot-spot load, starting from the hot-spot
nodes toward their neighbors. We described two types of
ZS schemes, based on the level of sharing of the different
zones: Single-Hop and Multiple-Hop.

We have shown experimentally that applying ZS schemes
to the DIM structure achieves good performance in the case
of skewed data distributions. ZS is able to decompose small
to moderate sized hot-spots without adding an extra addi-
tional load on the different sensor nodes. This leads to hav-
ing a better usage of the sensed data, i.e. improve the QoD.
The last result implies an amelioration of the profit gained
from the sensor network throughout the network lifetime.

In the future, we would like to develop a new global scheme
for incremental load balancing throughout the network life-
time. Such scheme should act as a storage hot-spots avoid-
ance mechanism, instead of a storage hot-spots detection
and decomposition mechanism like ZS.

Acknowledgment

We thank the reviewers for their helpful comments. This
work has been supported by NSF grants CCR-0098752, ANI-
0123705, ANI-0325353, CCF-0448196, and CCF-0514058.

5. REFERENCES
[1] Xin Li, Young Jin Kim, Ramesh Govidan, and Wei

Hong, “Multi-dimensional Range Queries in Sensor
Networks”. In Proc. of the ACM SenSys, 2003.

[2] Sylvia Ratnasamy, Brad Karp, Li Yin, Fang Yu,
Deborah Estrin, Ramesh Govidan, and Scott Shenker,
“GHT: A Grographic Hash Table for Data-Centric
Storage”. In Proc. of the 1st ACM Intl. Workshop on
Wireless Sensor Neworks and Applications, 2002.

[3] Brad Karp and H. T. Kung, “GPSR: Greedy Perimeter
Stateless Routing for Wireless Sensor Networks”. In
Proc. of the ACM Mobicom, 2000.

[4] J. L. Bentley, “Multidimensional Binary Search Trees
Used for Associative Searching”. In CACM 18(9),
475-484, 1975.

[5] Scott Shenker, Sylvia Ratnasamy, Brad Karp, Ramesh
Govidan, and Deborah Estrin, “Data-Centric Storage
in Sensornets”. In Proc. of the 1st Workshop on Hot
Topics in Networks, 2002.

[6] Deepak Ganesan, Sylvia Ratnasamy, Hanbiao Wang,
and Deborah Estrin, “Coping with Irregular
Spatio-temporal sampling in Sensor Networks”. In Proc.
of the 2nd Workshop on Hot Topics in Networks, 2003.

[7] Lin Xiao and Aris Ouksel, “Tolerance of Localization
Imprecision in Efficiently Managing Mobile Sensor
Databases”. In Proc. of the 4th ACM MobiDE, 2005.

