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ABSTRACT

Advances in sensor technology provide the opportunity for
a wide range of applications not examined before. These
advances come with the realization of many limitations,
like energy constraints, communication limitations, or sen-
sor node failures. To combat these limitations, several so-
lutions have been proposed, most of which organize the
sensor nodes into a tree-like configuration that enables in-
network aggregation. These solutions can lead to a heavy
energy burden being put on nodes higher up in the tree,
causing node failure and “stranded” nodes, unable to com-
municate their results. One solution to this problem is to
use multiple query routing trees, which leads to a more bal-
anced network with less burden on the nodes higher in the
tree. In this paper, we present a system framework for us-
ing multiple query routing trees, along with an analytical
examination which enables us to determine the appropri-
ate number of trees to be used and the proper placement of
those trees. We also provide an evaluation tool for different
network configurations.
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1 Introduction and Motivation

Advances in microelectronics have created sensing devices
designed to be able to gather and transmit data from the
most remote places with minimal maintenance.

In order to use the sensor network efficiently, the data

these sensors produce must be properly accessed and even-

tually propagated to the end user. One way this is done

is through the organization of the sensor nodes into a net-

work, which is treated and queried as a distributed sensor
database. Such a sensor network allows for paths to be cre-
ated from the root of the network to each and every sensor
node in the network. However, sensor nodes are limited

devices in terms of energy usage, node failures and lossy
communication.

In order to alleviate these limitations, especially of
power constraints and fault tolerance, several schemes have
been developed [1, 2, 3, 4, 5, 6, 7, 8]. One scheme that has
shown much promise is to organize the nodes into a tree
and synchronize the sending and receiving of packets from
children to parents in that tree [9, 10]. Doing this allows for
in-network aggregation to occur, which has been shown to

lower the amount of energy used in sensor networks, thus
extending their lifetime and usefulness [11, 12].

While query propagation and tree organization tech-
nigues have been shown to lower energy usage, they suf-
fer in several respects, most importantly in the ability to
deal with node crashes and failures. When one node fails
all the nodes in its subtree will also be cut off from the
network (due to the parent/child relationship) until the net-
work can be reorganized. The problem is even more ev-
ident for nodes close to the root of the network, where a
single node failure could cause a substantial portion of the
tree to get isolated, dramatically decreasing the effective-
ness of the data produced for the end user. The base station
(BS) acts as a gateway between the sensor network and the
users. In the extreme case there will no longer be any nodes
near the BS able to communicate with the BS, for example
due to an area failure, which means that the sensor network
is effectively destroyed.

Complementary to this problem is the issue of load
balancing in the sensor network. By organizing the net-
work in a tree-like fashion, with a single root, it is easy to
see that those nodes closer to the root will be forced to do
much more query processing than the nodes further down
in the network. This can cause those nodes to fail sooner,
due to lack of energy, and thus completely isolate the rest
of the sensor network. Ideally, we would like nodes closer
to the root to not have to do as much work by increasing the
number of sensors that are close to the root and therefore
decreasing the negative side-effects for the top nodes that
the tree organization creates.

In this paper, we explore the idea of having multiple
BSs in the network, thus creating multiple query routing
trees for processing a single query. This in turn brings a
distributed query plan where different nodes send their data
to separate BSs and the final result is aggregated at the end
user from the results of the different BSs. Using multiple
BSs will not only help to balance the trees, as there are
more nodes connected to BSs, but also increases the fault
tolerance, for even if one part of a tree fails, nodes can al-
ways connect to another tree. Thus, using multiple query
routing trees to process a query can decrease energy usage
at a given node, increase the fault tolerance of the sensor
network, lower the time it takes to reconstruct the query
routing trees, and lead to better quality of answers with a
smaller response time for a longer period of time.



Using multiple query routing trees, however, is not a
trivial task. The new challenges include determining how
nodes choose which tree to join, how to coordinate the re-
porting of data in each tree, how many BSs to use, where
in the network to place the BSs, and many others. In this
paper, we address the issues of determining the number of
BSs to use and deciding where to place those BSs in order
to increase the fault tolerance and load balance of the sen-
sor network, with the overall goal of creating more useful
results to user queries and a longer-lasting sensor network.
In particular, our contributions are:

1. a system framework for multiple query routing trees,

2. an analytical examination that enables us to determine
the appropriate number of trees to be used and the
proper placement of those trees, and

3. an evaluation tool for different network configurations

The rest of the paper is organized as follows: in the
next section we present an overview of query processing
for sensor networks and some additional details for systems
with multiple routing trees. In Section 3, we will experi-
mentally illustrate the effectiveness of our scheme. Finally
we conclude in Section 4.

2 Query Processing with Multiple Routing
Trees System

In this section, we first provide an overview of the query
processing system of a sensor network. Then, in subsection
2.2, we discuss the intuition of how such systems should
work. In the last subsection, we propose a scheme for plac-
ing BSs in a network of sensors that is organized as a grid.

2.1 System Overview

In order to avoid the single point of failure problem, we as-
sume a system that consists of several BSs which synchro-
nize when starting to build the query routing trees (Fig. 1).
Periodically or triggered, the BSs synchronize in order to
reconstruct the routing trees. This is done to allow sensor
mobility and prevent failures.

The BSs are replicated, as necessary. If the average
number of children per node exceeds a threshold, then BSs
can be introduced or removed in order to ensure a good
balance of the load in the system.
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Figure 1. System Architecture

The key issues that need to be addressed in such a
system are:

1. Building the trees: In the hierarchical organization
of nodes, each node has to pick a parent and has a
number of children. The node will get the data from
its children, possibly aggregate it with its own data
and send the result to its parent.

2. Synchronization among trees:We refer to the soft-
ware running on the BSs as middleware. The middle-
ware has the global view of the system. When sending
data to the middleware, trees have to synchronize, to
send their reading in the same time-slot.

3. Number of BSs: What is the optimal number of BSs?

4. Placement of BSs: Where should these BSs be
placed?

5. Algorithms used: Special algorithms are needed to
take advantage of the multiple trees.

Out of these issues, in this paper we will address only the
third and the forth issues of how many BSs are necessary
and what is the optimal placement for them.

2.2

Most papers assume that sensors are placed in a grid (e.g.
[11, 12]), with one sensor in each cell and the BS located
exactly in the middle of the grid. This corresponds to Fig. 2.
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Figure 2. Ideal case, 1 BSFigure 3. Almost ideal
in the center of the grid  case, 1 BS very close to
the center of the grid

The traditional routing tree construction works as fol-
lows. The BS broadcasts the initial MAKEEREE message
to construct the tree and all the nodes choose a parent and
broadcast the message further, until all nodes are reached,
and the tree hierarchy is organized. In the case of Fig. 2,
only 3 time steps are needed for all the nodes to hear the
message and organize in the tree hierarchy.

However, physically placing the BS in the exact cen-
ter of the grid is usually a very hard thing to do and in most
cases it will simply end up at a location very close to the
center of the grid, like in Fig. 3. As shown in the figure,
only a slight variation in the location of the BS induces an
increase in the number of levels of the tree and therefore
in the time it takes to construct the tree and to report the
results. If the grid is bigger than 5*5, then the difference
between the ideal case and the almost ideal case is more
dramatic.

Having a single routing tree does not provide any fault
tolerance and also does not have any obvious benefits un-
less we find the exact center of the grid. If the grid has




an even number of nodes, than there is no exact center of
the grid. Furthermore, our vision is that the BSs should
be placed near the borders of the grid, so that they can be
retrieved and replaced easily if needed.

Before running any tests, our initial intuition was that
more BSs should improve the performance of the system in
all cases. However, we found that this does not hold. If we
take the example in Fig. 4, we can easily see that it takes an
extra 2 time steps to construct the trees!
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Figure 4. Two BS placed
in the corners of the grid

Figure 5. Two BS placed
in the middle of the bor-
ders of the grid

This result made us question which can be the best
and worst placement of the BSs and how the number of
BSs affects the results.

2.3 Analytical Examination

Continuing our study, we found that if we place two BSs in
the middle of the borders of the grid facing each other, then
we can get the same time steps necessary for constructing
the trees as in the ideal case with one BS in the center of
the grid (Fig. 5).

After extensive experiments we came to the conclu-
sion that 3 is the best number of time steps we can get
regardless of the number of BSs in the network or their
locations around the borders. We concentrate our attention
around the borders of the grid because we want to be able
to access the BSs quickly in case of any failure.

The next challenge we wanted to solve was to derive
formulas that would give us the time it takes for a given
number of BSs to construct the routing trees. Fig. 6 shows
the results for that.

N Odd # Nodes Grid

N Even # Nodes Grid

# Base Stations (location) | Time Steps | # Base Stations (location) | Time Steps
1BS (middle) N 1BS (middle) N

2BS to 4BS (middle) (N-1)/2 + 1 | 2BS to 4BS (middle) N2+ 1
1BS (center) (N-1)/2 + 1 | 1BS (center) N2+ 1
1BS to 3BS (corner) N 1BS to 3BS (comer) N

4BS (N-1)/2 + 1 | 4BS N/2

Figure 6. Time necessary to construct the routing trees

If we place a single BS randomly in the grid, the num-
ber of steps necessary to construct the routing tree is:
maz{maz|[N —1— Xps, Xps], maz[N —1—Yp,, V5| } +1
where X, andY;, are the X and Y coordinates of the BS
inanN x N grid. In the experiments section we discuss in
more detail the tradeoffs involved in having different con-
figurations of the BSs.

Another interesting result was the fact that in the sim-
ulation, exactly like in real-life, not everything is perfectly
synchronized and some nodes broadcast sooner than their
peers. If we take into consideration Fig. 7, we can see that
even though the BSs are placed in good locations and theo-
retically it should take the system 3 time steps to construct
the trees, in reality it might take 4 time steps.

We refer to the policy where the nodes choose their
parent to be the first node their hear from, as the First Heard
From policy (FHF). It is well known that FHF is not the
best policy for a node to choose its parent, other criteria
like the node with highest level of energy or fewest number
of children are more efficient [13]. However, if the FHF
policy is applied, than the behavior expressed above can
take place.
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Figure 7. A single broadcast domain

We illustrate this with an example, where we follow
the execution of the FHF policy on an 5*5 grid of sensor
nodes with two BSs (Fig. 7).

Time step 1
- MAKE _TREE message sentto BS, Node 10 and Node 14

Time step 2
- Node 10 (BS) broadcasts to Node 5, Node 6, Node 11,

Node 15 and Node 16
- Node 14 (BS) broadcasts to Node 8, Node 9, Node 13,
Node 18 and Node 19

Time step 3
- Node 5 broadcasts to Node 0
- Node 6 broadcasts to Node 1, Node 2, Node 7
- Node 11 broadcasts to Node 12
- Node 16 broadcasts to Node 17, Node 21, Node 22
- Node 15 broadcasts to Node 20
- Node 9 broadcasts to Node 4
- Node 8 broadcasts to Node 3, Node 2, Node 7
- Node 18 broadcasts to Node 17, Node 23
- Node 19 broadcasts to Node 24

Time step 4
- Node 21 broadcasts to Node 22

In the end, every node broadcasts the MAKREE
message. When this message arrives at the 8 neighboring
nodes, it is a different matter. In this example, the extra
time step appears because Node 22 hears the MAREE
message first from Node 21 and not from Node 16 or Node
18 and once it chooses a parent, it does not reconsider other
options and remains on level 3 in the first routing tree. This
is how the standard Cougar protocol [11] works.



After selecting a parent, the sensor hears other “adver-
tisements” from other sensors. Instead of dropping the rest
of the messages, the node reads them and if the message
proposes a lower level than the sensor is actually in, then it
should select the sender of the message to be its parent and
change its level to the new one. In Cougar, the sensor does
not need to inform its children that it switched to a lower
level and that in fact, the children themselves are in a bet-
ter position, because the routing protocol is still working.
We advocate using this kind of “need to know basis” parent
selection, because it avoids long chains of sensors, creates
better balanced trees and does not incur any extra costs.

Of course there is no need for informing your parent
that you are its child, it will figure it out after the first round
of values transmitted towards the BS.

If for any reason the sensors need to know their tree
ID, then the sensors are still able to reselect their parent, but
only within the initial selected tree. Otherwise, the node
has to inform its children about the new tree ID. Due to
space limitations we are not going to show the graphs for
this case, but the experiments performed show that the per-
formance of this case is very close to the previous one.

3 Experiments

In this section we first present our simulation environ-
ment and then give the details of our performance metrics.
Lastly, we present the results of our experiments.

3.1 Simulation Environment and Perfor-
mance Metrics

We created a simulation environment using CSIM [14],
based on Cougar [11]. Due to space limitations, we are
going to show only the results for the 45*45 network, the
rest of the simulations on different size networks being sim-
ilar. For collision avoidance, we used in our simulation
a contention-based MAC protocol (PAMAS) [15]. In this
protocol, a sender node will perform a carrier sensing be-
fore initiating a transmission. If a node fails to get the
medium, it goes to sleep and wakes up when the channel
is free.

We used several metrics in our evaluation: time steps
necessary for the trees construction to finish, energy con-
sumption, maximum and average number of nodes per
level.

Energy consumption includes the transmitting and lis-
tening energy. We do not take into account the sampling
and processing energy, as their values are much smaller and
are comparable in all schemes.

We want to show that having several routing trees
gives us the advantage of quicker construction of the rout-
ing trees and no single point of failure for the BS, at low
or no extra energy costs. Therefore it is a good idea to use
several routing trees covering the same area as a single one.

On the other hand, if the time to reconstruct the trees
is long, then there will be a period of time when the user

does not receive any reading from the network. In this case
we cannot afford to do the tree reconstruction very often,
and when we do so, we risk to miss important events or to
have a big time gap among the sensor readings.

Finally, if long-life is the primary goal of our network
and we do not require very accurate results, thenitis crucial
to spend only a small amount of energy for the construction
(reconstruction) of the routing trees. There is no point in
performing an expensive tree reconstruction and then hav-
ing only a few accurate sensor readings from the network
afterwards, as the network would already have been drained
out of energy.

3.2 Experiments and Results

3.2.1 Time steps necessary to construct the
routing trees

We observed that placing the BS in the middle of the bor-

ders of the grid gives a very good time to construct the trees.
From two BSs and up it is as good as the case with one BS
in the center of the grid (Fig. 18 and Fig. 21). On the other

hand, placing the BSs in the corners of the grid is never
better than the middle of the borders placement, though it
does improve when the FHF policy is applied.

3.2.2 Distribution of nodes per level
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All the results shown for this distribution refer to the
ideal case. We wanted to see what is the distribution of
nodes per level for different number of BSs and different
placement too. We discovered that for one BS in the center
(Fig. 8), we have only 23 levels, but most of the nodes are
located at the terminal levels. Any minor variation of the
location of the BS (Fig. 9) gives an important variation in
the distribution of nodes per level as well. The best case is
definitely with four BSs located in the middle of the bor-
ders of the grid (Fig. 13). It has the smallest number of
levels and the tree is most balanced, with most of the sen-
sors closer to the BSs.

3.2.3 Distribution of AVERAGE number of
nodes per level for grid configuration

For the FHF case (Fig. 23), all the average numbers are
smaller than in the ideal case. Also, in the FHF case, the
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