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Abstract

Data Stream Management Systems are being developed
to process continuous queries over multiple data streams.
These continuous queries are typically used for monitoring
purposes where the detection of an event might trigger a
sequence of actions or the execution of a set of specified
tasks. Such events are identified by tuples produced by a
query and hence, it is important to produce the available
portions of a query result as early as possible.

A core element for improving the interactive perfor-
mance of a continuous query is the operator scheduler.
An operator scheduler is particularly important when the
processing requirements and the productivity of different
streams are highly skewed. The need for an operator sched-
uler becomes even more crucial when tuples from different
streams arrive asynchronously. To meet these needs, we are
proposing a Preemptive Rate-based scheduling policy that
handles the asynchronous nature of tuple arrival and the
heterogeneity in the query plan. Experimental results show
the significant improvements provided by our proposed pol-
icy.

1 Introduction

A Data Stream Management System (DSMS) hosts ap-
plications which rely on data that is continuously generated
at remote sources. The DSMS is responsible for processing
these data streams according to the applications’ require-
ments and for streaming the relative results to each appli-
cation. Such applications include monitoring a data net-
work performance, fraud detection in telecommunication
networks, monitoring the stock market, personalized Web
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pages, and environmental monitoring via sensor networks.

Recently, a number of prototype system have been de-
veloped to accommodate the growing need for supporting
the processing of data streams. Examples include: Aurora
[3], STREAM [8], TelegraphCQ [5], and NiagaraCQ [6].
In these systems, continuous queries are registered at the
DSMS and run continuously over the data streams. The ar-
rival of new data triggers the execution of one or more con-
tinuous queries. The objective of these systems is to provide
data processing techniques that is tailored for the continu-
ous nature of data handled by DSMSs.

The requirements of a DSMS are more demanding than
those of a traditional DBMS for several reasons. In a tra-
ditional DBMS, data is stored as relations and queries are
posed on the stored relation. However, in a DSMS, data
arrives in the form of continuous, unbounded, and pos-
sibly bursty data streams. Moreover, a DSMS typically
supports multiple long-running continuous queries over the
data streams [10].

Continuous queries are typically used for monitoring
purposes where the detection of an event might require trig-
gering a sequence of action. This creates an interactive en-
vironment where tuples produced by a query might activate
the execution of specified tasks. In such an environment, it
is important to optimize for producing the available portions
of the result as early as possible rather than optimizing the
computing of the entire result as in traditional database sys-
tems. The timely generation of the initial results increases
the probability of detecting events earlier.

The two main elements for improving the interactive per-
formance of a continuous query are: 1) query optimizer,
and 2) operator scheduler. The query optimizer decides
the dependencies between the query operators, whereas the
scheduler decides the order of execution of the query oper-
ators. An operator scheduler is particularly important when
a query is defined on multiple relations or streams.

In a naive approach, scheduling could be delegated to the
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underlying operating system. However, this approach over-
looks chances for improvement that are possible by exploit-
ing the available information about the query operators. The
Rate-based scheduling presented in [ 12] exploits such infor-
mation for improving the interactive query performance in
traditional databases and in Web databases. Basically, it em-
ploys a prioritizing scheme where the priority of an operator
is defined in terms of its cost and selectivity.

Since the Rate-based policy was proposed for traditional
database systems, it assumes priorities are static. However,
in DSMSs, tuples continuously arrive at the system, some
of which might correspond to a higher priority operator
than the one currently executing. Thus, under Rate-based
scheduling, high-priority operators might be blocked wait-
ing for a low-priority one to complete its execution.

To alleviate this priority-inversion problem, in this pa-
per, we propose a Preemptive Rate-based scheduling pol-
icy. The intuition is that preemption enables the adjust-
ment of a previous scheduling decision based on the current
state that is determined by the arrival of new data. The
idea of using preemption in scheduling query operators has
already showed success in reducing the memory require-
ments for processing bursty streams [1]. In this paper, we
are also using the preemption mechanism but for improv-
ing the interactive performance of queries with stateless op-
erators. Our experimental evaluation shows the significant
improvements provided by our proposed scheduling policy
compared to the existing ones.

The rest of this paper is organized as follows. In Sec-
tion 2 provides an overview of query processing, optimiza-
tion and operator scheduling. Our model and scheduling
polices are presented in Section 3. Section 4 describes our
simulation testbed, and then in Section 5 we discuss our ex-
periments and results. We conclude in Section 6.

2 DSMS Background
2.1 Continuous Queries

A Data stream management system (DSMS), as shown
in Figure 1, is designed to handle the processing of multi-
ple queries over multiple data streams. In such a system,
users register continuous queries that execute as new data
arrives. Data arrives in the form of continuous streams. The
arrival of new data is similar to an insertion operation in tra-
ditional database systems. A DSMS is typically connected
to different data sources that generate streams at different
rates. Moreover, a single query might receive its input from
multiple streams (i.e., sources).

The query evaluation plan can be conceptualized as a
data flow diagram [3, 1], which is a tree of nodes and edges,
where the nodes are operators that process tuples and edges
represent the flow of tuples from one operator to another

(Figure 2). An edge from operator O, to operator O, means
that the output of operator O; is an input to operator O-.
The overall query cost is determined by the cost of each
operator ('; and the selectivity of each operator .S;. Recall
that, an operator with selectivity S; produces .S; tuples after
processing one tuple for C; time units. .S; is typically less
than or equal to 1 for simple operators like filters, but, it
might be more than 1 for joins.

A single continuous query in a DSMS could be quite
complicated and expensive, especially, if the query is han-
dling data from multiple streams where tuples from each
stream pass through several expensive operators. Moreover,
the distribution of the processing costs of operators is typ-
ically heterogeneous. That is, the costs for processing dif-
ferent tuples from different streams could be highly skewed.
For instance, a query plan might contain operators that per-
form simple filtering on one data stream, whereas on an-
other data stream complex operators might require join with
stored relations or look-up indexes. Similarly, the selectiv-
ity of different operators exhibit a skewed distribution. This
heterogeneity makes it essential for using query processing
techniques that provide an efficient execution plan for eval-
uating the query.

2.2 Query Execution

In this work, we assume that each query is composed of
only stateless operators. Queries with stateless operators is
fairly common class of queries in data stream applications
[1, 4]. Examples of stateless operators are scan, selection,
projection, and join with stored relations. Moreover, a con-
tinuous query over multiple streams typically contains spe-
cial operators for merging different streams. Such an oper-
ator is known as union 3], merge [7], or mux [9]. Studying
queries with statefull operators (e.g.,join over data streams)
is part of our future work.

Every tuple that enters the system must pass through a
unique sequence of operators, referred to as an operator
path [1]. The operator path corresponding to stream Str
might contain specialized operators that are only applicable
on tuples from Str, in addition to other operators that are
applicable on more than one stream. A specialized operator
is basically used for transforming an input tuple to match a
pre-defined scheme, or to apply a certain filtering or map-
ping for which the execution method depends on the corre-
sponding data stream. For example, in Figure 2, operators
forming the path O, O2, O3 process tuples from Stream,
O, is applied only on tuples from Stream;, while O is
used to merge the intermediate result tuples from Stream,
and Streams,. Finally, Os is used to project the final result
tuples from both streams.

An operator receives its input tuples either directly from
the input stream (e.g., operators O; and O4) or from inter-
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Figure 1. Data processing in DSMS

mediate queues used to buffer the output of a predecessor
operator (e.g., operators O and O3). A tuple is processed
until it is either produced at the output or discarded. A tuple
is produced when it satisfies all the filters on the operator
path. If a tuple does not satisfy a certain filter, it is immedi-
ately discarded since it is not used by any other query.

The mechanism of invoking an operator depends on the
underlying query execution architecture. In the single-
thread architecture, all operators are running in the same
thread and invoking an operator is equivalent to a procedure
call. In the multiple-thread architecture, each operator runs
in a separate thread and invoking an operator requires con-
text switching between threads.

The scheduler is the system component responsible for
invoking operators according to a special order of execu-
tion. Specifically, it decides the following: 1) the order of
query execution among the registered queries, and 2) the or-
der of operator execution within a query. In this work, we
are focusing on the latter problem of scheduling operators
within a query. Specifically, we are interested into an opera-
tor scheduling policy that improves interactive performance
of continuous queries.

2.3 Operator Scheduling

Traditionally, query optimizers are cost-based in that
they decide among alternative execution plans by minimiz-
ing the query cost. That is, the estimated cost of evaluat-
ing the query until the last result tuple appears [13]. How-
ever, with the advent of the Internet, interactive query per-
formance became an important criterion for evaluating the
success of an online system. In such an interactive environ-
ment, it is important to optimize for producing the available
portions of the result as early as possible rather than opti-
mizing the computing of the entire result. The same inter-
active behavior is desirable in data stream systems for two
main reasons. The first reason stems out of the nature of
data stream processing; in DSMS data arrives continuously,
hence, optimizing for producing the full result is obviously
infeasible. The second reason depends on the timely re-
quirements of the application supported by the DSMS. For

Figure 2. Query plan over streams

example, a user’s continuous query might be used to pro-
cess readings gathered by sensor networks that monitor en-
vironmental phenomena. In such a case, producing results
as soon as they are available helps in accelerating the detec-
tion of abnormal behaviors that require immediate actions.

The two main elements for improving the interactive per-
formance of a continuous query are: 1) query optimizer, and
2) operator scheduler. The query optimizer decides the de-
pendencies between the query operators, whereas the sched-
uler decides the order of execution of the query operators.
The work in [13] proposed a rate-based query optimization
technique that maximizes the output rate of query evalua-
tion plans. This technique provides optimization solutions
for the case when a query contains operators that joins two
streams which have different data arrival rates. For all other
cases, the plans generated by the rate-based optimization
are the same as those generated using a cost-based opti-
mizer. Moreover, for both of the optimization strategies,
the way operators are scheduled and how the flow of data is
controlled can lead to significantly different kinds of output
behavior for the same generated query plan [12].

For an optimized query plan, Pipelined query execution
is one technique that can improve the interactive perfor-
mance of a query. In a pipelined execution model, the unit
of execution is the processing of a single tuple on a single
stream. In a fully pipelined execution plan, result tuples
are delivered as soon as they are computed from the input
tuples. Pipelining works only as long as operators are non-
blocking, i.e., they do not stage the data without producing
results for a long time. Filters are non-blocking operators
by nature, whereas for blocking operators (e.g., join), win-
dowing is used to allow result streaming. However, for a
multiple-relation query (or multiple streams), pipelined ex-
ecution does not specify the order of execution of operators
on different streams. A scheduling policy is needed to de-
termine which stream to process when more than one has
available tuples.

The problem of operator scheduling has been the fo-
cus of the work in [12]. It proposed a dynamic rete-based
pipeline scheduling policy that produces more results dur-
ing the early stages of query execution to improve a query
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response time. Aurora [3, 4] also uses a technique similar to
the rate-based pipeline scheduling to minimize the average
tuple latency.

2.4 Performance Metric

The performance of scheduling policies is typically mea-
sured using the average response time. In traditional
database systems, the response time of a query is defined as
the amount of time from the time when the query is posed
until the time when the last tuple in the result is produced.

However, in DSMSs, queries are continuous where a
query is executed whenever new data arrives. That behavior
is the opposite from traditional database systems; in tradi-
tional systems, the response is due to the arrival of a query,
whereas in data streams system, the response is triggered by
the arrival of a tuple.

Hence, in DSMS, it is more appropriate to define the re-
sponse time from the data perspective rather than the query
perspective. Therefore, we will define the tuple response
time (or tuple latency) (R;) for tuple ¢ as follows:

Definition 1 R; = D; — A;, where A; is the tuple arrival

time and D; is the tuple departure time. Accordingly, the
. - . 1 N

average response time for N tuples is: 5 5. R;.

Notice that tuples that are filtered out during query process-
ing do not contribute to this metric [11].

Example Let us illustrate that measuring the tuple av-
erage response time better reflects the interactive perfor-
mance achieved by a scheduling policy. In Figure 2, as-
sume that the costs of operators O;, 03,003,004 are 10,
10, 10, 40 units respectively. Further, assume that there
is one tuple available for processing at each input stream.
First, consider a scheduling policy that will activate opera-
tors in the following order: O;, Oz, O3 to process the tuple
from Stream;, then Oy, Oz, O3 to process the tuple from
Streams. Such a policy will provide an average tuple re-
sponse time of 60 units. An alternative scheduling might
decide to schedule operator paths in the opposite order. That
is, O4,01, 03 to process the tuple from Streams, then
01, 05,03 to process the tuple from Stream,. This al-
ternative policy will provide an average response time of 75
units. Though both policies take the same time to complete
execution (i.e., 90 units), they provide different response
times. The improvement exhibited by the first policy is due
to producing result tuples as early as possible which is the
behavior desired for interactive performance.

3 Operator Scheduling Policies

In this section, we first discuss two operator scheduling
policies, namely, Round Robin and Rate-based, which are

currently used in the prototype DSMSs. Then we will de-
scribe our proposed preemptive version of the Rate-based
scheduling policy.

3.1 Round Robin

Round Robin has been the policy used the most for pro-
cessing sharing. It is simple and easy to implement. In
Round Robin, each operator is assigned a time interval
called quantum. At the end of the quantum, the processor is
preempted and given to another operator.

By nature, Round Robin does not take advantage of the
available parameters of operators (i.e., cost and selectivity).
This is in contrast to using a priority-based scheduling pol-
icy which assigns each operator a priority based on its pa-
rameters. Ignoring this information makes Round Robin
fall short in improving the interactive performance men-
tioned above. For example, it is known that a priority-
based policy like Shortest-Remaining-Processing-Time sig-
nificantly outperforms Round Robin in improving the re-
sponse time [2]. However, Round Robin does not need to
recover from a wrong scheduling decision because simply
there is no decision taken and preemption allows all opera-
tors to execute sequentially.

3.2 Rate-based

The Rate-based scheduling policy was proposed for
scheduling the execution of operators in a single query for
the pipelined execution in traditional database systems [12].
Each operator O has a value called the global output rate
whichis defined in terms of its ancestor operators. The out-
put rate of an operator O is basically the number of tuples
produced per time unit by processing one tuple by the se-
quence of operators starting at O all the way up to the out-
put. Formally, the global output rate for operator O; on the
path Oy, O, ..., Oy, is computed as:

St X 8y x ... xS,
Ci4+Cox S +...+C, X 8,21 x...x 51

(1

Where C'; and S; are the cost and the selectivity of operator
O;, respectively.

The priority of each operator is set to its global output
rate. At each scheduling point, the operator with the highest
priority among all operators with non-empty input queues is
the one scheduled for execution. In this policy, the sched-
uler is triggered (i.e., scheduling point is reached) when an
operator finishes processing an input tuple. The new opera-
tor scheduled for execution can be the ancestor of the previ-
ously scheduled operator since it already has a higher prior-
ity. This higher priority is due to the increased probability
of producing the tuple and/or the decrease in the remaining
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execution time required to produce the tuple. Alternatively,
the new scheduled operator might be the leaf node of a dif-
ferent operator path for which a corresponding tuple has ar-
rived at the scheduling point or during the execution of the
previous operator.

The intuition underlying this policy is to produce the ini-
tial output tuples as fast as possible. This is achieved by
giving higher priority to operator paths that are productive
and inexpensive or, in other words, select the operator path
with the minimum latency for producing one tuple.

3.3 Preemptive Rate-Based

In data stream systems, tuples continuously arrive at the
system; query execution is triggered by the arrival of new
tuples. That is different from traditional database systems,
for which the Rate-based policy was originally proposed.
The problem with the continuous arrival of tuples is that a
newly arriving tuple might correspond to a higher-priority
path. Toward this, we are proposing a preemptive version
of the rate-based policy so that a higher-priority path can be
selected if such a path become available.

In this preemptive version, if operator O; is already se-
lected for execution then the next scheduling point could be
triggered while O; is still in progress. That is, scheduling
occurs in the following cases:

1. Operator O; finishes processing: This case is the
same as in the non-preemptive version where a new
scheduling decision is made every time an operator fin-
ishes executing.

2. The arrival of a new tuple at a leaf operator O;: In
this case, the priority of operator O; is compared to
the current priority of O; where the latter is computed
given the interval ¢ it already spent processing the cur-
rent tuple. In other words, the global output rate of O;
is recomputed by replacing C; with C; — ¢ in Equa-
tion 1. Then the operator with the highest priority is
scheduled for execution.

The intuition in using preemption is to be able to adjust
the scheduling decision based on the current situation that
is determined by the arrival of new data. In the absence of
preemption, not only an inexpensive operator might have
to wait until the currently relatively expensive operator fin-
ishes execution, but also, a productive operator might have
to wait until a less productive operator finishes execution.
Using preemption is particularly important when the dis-
tribution of operators costs and/or selectivities is highly
skewed. In such a case, the priority assigned to operators
span a long range of values. This is in contrast when the
operators parameters are homogeneous, then the priority
values assigned to operators are fairly close and blocking a

Preemptive
Pipelined PRB
Non-Pipelined RR

Non-Preemptive
RB, FIFO
Train Processing

Table 1. Classification of Scheduling Policies

high priority operator until finishing the execution of a less
priority one will have a little impact on the performance.

It is worth mentioning that if O; is preempted due to the
arrival of new a tuple at O;, then O; will not resume execu-
tion again until all the operators on the operator path starting
at O; finish execution. This is because of the following: 1)
the priority of O; does not increase while executing O;, and
2) the priority of all the operators on the path from O; to the
output is higher than the current priority of O;. The latter
observation follows from the fact that O; has a higher pri-
ority than O; and that an ancestor of O; will have a higher
priority than O; as explained above. Thus, a preempted
operator is not considered again until higher priority oper-
ators finish execution. This shows the limited increase in
scheduling overhead introduced by allowing preemption.

3.4 Discussion

Above, we described three policies for scheduling query
operators, namely, Round Robin (RR), Rate-based (RB),
and our proposed Preemptive Rate-based (PRB). In the next
section, we provide a performance evaluation of these poli-
cies in addition to the First-In-First-Out (FIFO) scheduling
policy. FIFO is implemented following the pipelined execu-
tion model where a tuple is completely processed along its
operator path before the processing of a new tuple starts.
However, in the presence of ready tuples from multiple
streams, we use the tuple’ timestamp as a tie-breaker to de-
cide the order, where a tuple’s timestamp is the time when
the tuple entered the system.

Table 1 shows a classification of the four policies accord-
ing to two features, namely, preemption and pipelining. The
table also includes the Train processing mechanism used by
Aurora for controlling the flow of tuples along a path [4].
A train is a sequence of tuples that are executed as a batch
within an operator that is selected for execution using a rate-
based policy. The goal of tuple train processing is to mini-
mize the low-level overheads in a single-thread query exe-
cution architecture. In the case where the length of the train
is one tuple, then train processing is fully pipelined and is
similar to the Rated-based policy. Hence, we will only use
the Rate-based policy as a representative of the two tech-
niques.

It is worth mentioning that the proposed Preemptive
Rate-based policy could be used for scheduling operators
from multiple queries in order to improve the overall sys-
tem response time. However, with multiple queries fairness
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Parameter Value |
Query Depth 1-6
Query Fan-Out 2-50

Cost Skewness 0.0-0.9
Selectivity Skewness 0.0-0.9
System Utilization 0.9
Expensive Operator Depth 0-6

No. of Expensive Operators 0-32
Expensive Operator Cost 25 =300 units
Overhead Cost 0 - 50 units

Table 2. Simulation Parameters

in scheduling is an issue to be considered. Such a problem
is the focus of our future work.

4 Evaluation Testbed

In our experimental evaluation, we have used the aver-
age tuple response time metric from Section 2 to compare
the query performance provided by the scheduling policies
mentioned above. Accordingly, we simulated the execution
of a continuous query as in [4] where the query is speci-
fied by two parameters: depth and fan-out. The depth of the
query specifies the number of levels in the query tree and the
fan-out specifies the number of children for each operator.

The costs and selectivities of the query operators are
generated according to a Zipf distribution which is speci-
fied using the Zipf parameter. Setting the Zipf parameter
to zero results in a uniform distribution, whereas increasing
the value of the Zipf parameter increases the skewness of
the generated values.

Each leaf operator is attached to a data stream where tu-
ples arrive according to a Poisson distribution. The mean
inter-arrival time for the Poisson distribution is set accord-
ing to the simulated system utilization (or load). For a uti-
lization of 1.0, the inter-arrival time is equal to the time re-
quired to complete the query execution, whereas for lower
utilizations, the mean inter-arrival time is increased propor-
tionally. All the results reported here are at a utilization of
0.9 and stream length of 10K tuples.

Finally, we use additional parameters to control the het-
erogeneity in the query plan, namely, Expensive Operator
Depth, No. of Expensive Operators, and Expensive Opera-
tor Cost. Finally, we use the Overhead Cost parameter for
calculating the overheads incurred by the different policies.
The usage of the above parameters is explained along with
the experiments in the next section. Table 2 summarizes all
our simulation parameters.

5 Experiments
5.1 Skewness in Operators’ Costs

In this experiment we set the query depth to 1 and the
fan-out to 50. This is equivalent to a query that performs
projection and/or filtering on 50 data streams then merge
them together. The costs of the operators are generated in
the range 1-100 with skewness 0.9 toward the inexpensive
operators. The selectivity for all operator is set to 1.

Figure 3 shows the average tuple response time provided
by the Round Robin (RR), First-In-First-Out (FIFO), Rate-
based (RB) and the Preemptive Rated-based (PRB) policies.
The figure shows that, in general, the average response time
decreases by increasing the skewness of operators’ costs.
For instance, the minimum response time is achieved at a
Zipf parameter of value 0.9 where most of the operators are
inexpensive. In the case of Zipf parameter of value 0.0, the
operators’ costs are uniformly distributed which results in
higher response time.

The figure also shows that as the degree of skewness in-
creases, RR outperforms FIFO. Recall that Both RR and
FIFO ignore the operators’ characteristics (i.e., cost and se-
lectivity), however, the figure shows that at high skewness,
preemption can improve the performance. This observation
is emphasized by comparing the response times provided by
the Preemptive Rate-based (PRB) and the non-preemptive
version (i.e., RB) where PRB always outperforms RB as
well as RR and FIFO.

This improvement is better illustrated in Figure 4. Fig-
ure 4 shows the reduction in average response time provided
by PRB compared to RB. The figure shows that the im-
provement increases by increasing the skewness. For ex-
ample, the reduction is only 5% when the Zipf parameter is
equal to 0.0 and it increases to 20% when the Zipf param-
eter is equal to 0.9. The increase in improvement is due to
the increased heterogeneity in the query plan. In a plan with
a highly skewed operators’ costs, using RB might result in
a case where a newly arriving tuple might have to wait for
the currently executing tuple though the latter might have
a relatively very high execution cost. PRB avoids this by
allowing the preemption of the expensive operator.

5.2 Skewness in Operators’ Selectivities

The setting for this experiment is similar to the previous
one, however, we are changing the skewness of selectivity
while setting the cost of all operators to 100 units. From
now on, we will exclude RR and FIFO from the comparison
due to their high response time as illustrated in Figure 3.

Operators take selectivities in the range 0.01 — 1.0 which
are generated using Zipf. The skewness of the Zipf param-
eter is toward the low-selectivity operators. In this setting,
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at a high value for the Zipf parameter, most of the streams
will have low priority while very few will have a relatively
high priority.

Figures 5 and 6 show the same behavior illustrated in the
previous experiment. That is, PRB always outpertorms RB
and that the significance of reduction in response time in-
creases by increasing the skewness. Hence, in order to avoid
repetition, the remaining of this section will only report on
experiments where we are varying the cost distribution.

5.3 Skewness’ Position

In the previous experiments, we changed the skewness of
the cost and selectivity distributions, yet, we had no control
on the position of the skewness in the query plan. Figure 7
shows another experiment where we are controlling the lo-
cation of skewness.

Specifically, we generated a query tree of depth 6 and
fan-out 2 where we set the cost for all operators uniformly
between 1 and 10 units. Then we introduced one expensive
operator of cost 100. This expensive operator is located on
the left-most operator path in the tree. However, the depth
of the expensive operator is defined by a parameter Expen-
sive Operator Depth. In the case where expensive operator
depth is equal to 6, the operator at the bottom-left corner of
the tree is the most expensive, accordingly, the left operator
path of the tree is the only expensive path. Decreasing the
depth of the expensive operator is equivalent to increasing
the number of expensive path. In the case where expensive
operator depth is equal to 0, the root of the tree is the most
expensive operator, hence, all the query path are relatively
expensive. Figure 7 shows that generally, the average re-
sponse time decreases by increasing the expensive operator
depth. This decrease is due to a decrease in the number of
expensive paths as mentioned above.

In Figure 8 we are illustrating the reduction in response
time provided by PRB compared to RB. Notice that the im-
provement increases by increasing the expensive operator
depth (i.e., decreasing the number of expensive paths). This
behavior is due to increasing the skewness in the query tree
where preemption is needed. The improvement reaches a

N
a

4 o o
3 a ]

Reduction in Average Response Time
a

(X} 0.1 02 03 0.4 5 06 07 08 08
Zipt Parameter (Cost)

Figure 4. Reductions by PRB vs. RB

maximum at expensive operator depth value of 4 (i.e., 4 ex-
pensive operators paths), then it starts decreasing for values
of 5 and 6. At a value of 5, there are only 2 expensive
paths in the tree and at a value of 6, there is only one ex-
pensive path. The low number of expensive paths decreases
the chances of an expensive operator to be running at the ar-
rival time of a new tuple that corresponds to an inexpensive
operator.

5.4 Skewness’ Amount

To further study the effect of skewness’ location and
amount, we conducted another experiment that is shown in
Figure 9. The settings for this experiment is similar to the
previous one, however, the location and the number of the
expensive operators are set differently. In this experiment,
we are varying the number of expensive operators between
1 and 32. Further, the expensive operators are all located
at depth 6 (i.e., the leaf nodes). Hence, the number of ex-
pensive paths is always equal to the number of expensive
operators.

Figure 9 shows the same behavior demonstrated in Fig-
ure 7. That is, the average response time increases by in-
creasing the number of expensive operator path. Moreover,
Figure 10 emphasizes the impact of the amount of skewness
on the degree of improvement. For instance, at very low
number of expensive operators/paths there are less chances
of priority conflict between current and new tuples. As the
number of expensive paths increases, the chances of a pri-
ority conflict increases. Further increase in the number of
expensive paths brings the tree close to homogeneity, hence,
less chances of priority conflict.

5.5 Skewness’ Magnitude

Figure 11 shows the results of an experiment where we
are changing the cost of the expensive operator. Specifi-
cally, there is one expensive operator in the query plan lo-
cated at depth 4. The cost of this expensive operator takes
the values between 25 and 300 time units. The figure shows
that PRB outperforms RB. Moreover, it shows that RR can
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also outperform RB when the cost of the expensive oper-
ator is set relatively high. This is because scheduling the
expensive operator for execution might result in the arrival
of many tuples that belong to inexpensive operator paths. In
such a case, RR and PRB allow preempting the currently ex-
ecuting expensive operator and proceed with executing the
less expensive one to produce more result tuples, whereas
RB will wait for the expensive operator to finish then it will
make new scheduling decisions. The higher the cost of the
operator, the longer the RB will wait, and the more the in-
crease in the average response time.

5.6 Scheduling Policy Overhead

Figure 12 shows the results of our last experiment where
we are measuring the overhead of each scheduling policy.
As mentioned earlier, the overheads depend on the under-
lying query execution architecture. However, instead of as-
suming a certain architecture, we counted the number of
transitions between states during query execution. Transi-
tions happen in the following cases: 1) invoking an operator,
2) preempting an operator, and 3) invoking the scheduler.

RR incurs the overheads of all three transitions: at the
end of each quantum an operator is preempted and the
scheduler is invoked to find the next operator in the cycle
with available tuples which is then invoked for execution. In
RB, the first and the third transitions take place, where when
an operator finishes execution, the scheduler is invoked and
the operator with the highest priority is executed. PRB in-
curs the same overheads as RB in addition to the overheads
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due to enabling preemption. Specifically, the scheduler is
invoked with the arrival of every new tuple which might re-
sult in preempting the currently executing operator.

In Figure 12 we assigned the same cost to each type of
the transitions mentioned above. We call this parameter
overhead cost and its takes the values between 0 and 60.
The value of the overhead cost together with the number of
transitions determine the total overhead incurred by a cer-
tain scheduling policy. In Figure 12, we measured the re-
sponse time at the point where the expensive operator cost
is 300 as in Figure 11. The figure shows the increase in re-
sponse time with the increase in overhead cost. Moreover,
it shows that RR outperforms RB only when the overhead
cost is 0. As the overhead costs becomes 1, the performance
of RR is highly unacceptable (note that in this figure, we use
logarithmic scale for the Y-axis as opposed to the previous
figures). This high overhead incurred by RR is due to the
continuous preemption of operators. The rate of preemption
is determined by the quantum length. In these experiments
we assumed a quantum of length 1 time unit. Higher values
for the quantum will show lower overhead, yet, significantly
high compared to RB and PRB. The figure also shows that
PRB scheduling outperforms the non-preemptive RB for
values of overhead cost up to S0 time units. However, a
value of 50 is an unrealistic overestimation of the overhead
cost, since this represents an overhead equal to ~ 16.6% of
the expensive operator cost. Recall that an expensive oper-
ator might require looking up indexes or performing a join
with a stored relation, in either cases, the cost of that opera-
tor should be orders of magnitude the overhead cost.
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6 Conclusions

The rapid growth of DSMSs introduces more challenges
to the database systems research. Challenges are mainly due
to the continuous nature of data and the timely requirements
of the continuous queries. This new environment requires
rethinking the existing data processing techniques for effi-
cient design of DSMSs. In this paper, we addressed one of
those techniques, namely, query processing. Specifically,
we focused on the operator scheduling component of query
processing. The paper makes the tollowing contributions:

1. It emphasizes the importance of the rate-based
pipelined scheduling policies for scheduling query op-
erators over multiple heterogeneous data streams.

2. It points out the importance of preemption in query op-
erator scheduling which is particularly crucial to suit
the asynchronous nature of tuple arrival.

3. It proposes the Preemptive Rate-based scheduling pol-
icy which combines the advantages of pipelined exe-
cution, rate-based scheduling, and preemption.

Our extensive experimental evaluation shows the signif-
icant improvements provided by our proposed Preemptive
Rated-based policy. Currently, we are studying the problem
of scheduling multiple queries over data streams.

References

[1] B.Babcock, S. Babu, M. Datar, and R. Motwani. Chain: Op-
erator scheduling for memory minimization in data stream
systems. In ACM SIGMOD Conf., 2003.

Reduction in Average Responss Time
B

o 4 8 12 16 20 24 28 32 36
Number of Expensive Operators

Figure 10. Reductions by PRB vs. RB

(2]

3

[4

(5]
(6]

[7

(8]

[9

[10]

(11]

[12]

(13]

1e46

145 |

1e14

j’.ﬂ,.,r—l"' -
g

Average Tuple Response Time (log scale)

v
a
142 - -
—— RR
v RB
—=— PRB
e+t - - - -
o 10 20 30 40 50 60 70

Overhead Cost

Figure 12. Impact of Overheads

N. Bansal and M. Harchol-Balter.  Analysis of SRPT
scheduling: Investigating unfairness. In ACM SIGMETRICS
Conf., 2001.

D. Carney et al. Monitoring streams: A new class of data
management applications. In VLDB Conf., 2002.

D. Carney et al. Operator scheduling in a data stream man-
ager. In VLDB Conf., 2003.

S. Chandrasekaran et al. TelegraphCQ: Continuous dataflow
processing for an uncertain world. In CIDR Conf., 2003.

J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A
scalable continuous query system for internet databases. In
ACM SIGMOD Conf., 2000.

C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk.
Gigascope: A stream database for network applications. In
ACM SIGMOD Conf., 2003.

R. Motwani et al. Query processing, resource management,
and approximation in a data stream management system. In
CIDR Conf., 2003.

M. Sullivan. A stream database manager for network traffic
analysis. In VLDB Conf., 1996.

D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Contin-
uous queries over append-only databases. In ACM SIGMOD
Conf., 1992.

F. Tian and D. J. DeWitt. Tuple routing strategies for dis-
tributed eddies. In VLDB Conf., 2003.

T. Urhan and M. J. Franklin. Dynamic pipeline schedul-
ing for improving interactive query performance. In VLDB
Conf., 2001.

S.D. Viglas and J. F. Naughton. Rate-based query optimiza-
tion for streaming information sources. In ACM SIGMOD
Conf., 2002.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 18:15:11 UTC from |IEEE Xplore. Restrictions apply.



