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Abstract 

Data Stream Management Systems are being developed 

to process continuous queries over multiple data streams. 

These continuous queries are typically used for monitoring 

purposes where the detection of an event might trigger a 

sequence of actions or the execution qf a set of specified 

tasks. Such events are identified by tuples produced by a 

query and hence, it is important to produce the available 

portions (�fa query result as early as possible. 

A core element f(Jr improving the interactive pelj(Jr­

mance (�f a continuous query is the operator scheduler. 

An operator scheduler is particularly important when the 

processing requirements and the productivity qf different 

streams are highly skewed. The needf(Jr an operator sched­

uler becomes even more crucial when tuples from different 

streams arrive asynchronously. To meet these needs, we are 

proposing a Preemptive Rate-based scheduling policy that 

handles the asynchronous nature (�f tuple arrival and the 

heterogeneity in the query plan. Experimental results show 

the significant improvements provided by our proposed pol­

icy. 

1 Introduction 

A Data Stream Management System (DSMS) hosts ap­
plications which rely on data that is continuously generated 
at remote sources. The DSMS is responsible for processing 
these data streams according to the applications' require­
ments and for streaming the relative results to each appli­
cation. Such applications include monitoring a data net­
work performance, fraud detection in telecommunication 
networks, monitoring the stock market, personalized Web 
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pages, and environmental monitoring via sensor networks. 

Recently, a number of prototype system have been de­
veloped to accommodate the growing need for supporting 
the processing of data streams. Examples include: Aurora 
[3], STREAM [8], TelegraphCQ [5], and NiagaraCQ [6]. 
In these systems, continuous queries are registered at the 
DSMS and run continuously over the data streams. The ar­
rival of new data triggers the execution of one or more con­
tinuous queries. The objective of these systems is to provide 
data processing techniques that is tailored for the continu­
ous nature of data handled by DSMSs. 

The requirements of a DSMS are more demanding than 
those of a traditional DBMS for several reasons. In a tra­
ditional DBMS, data is stored as relations and queries are 
posed on the stored relation. However, in a DSMS, data 
arrives in the form of continuous, unbounded, and pos­
sibly bursty data streams. Moreover, a DSMS typically 
supports multiple long-running continuous queries over the 
data streams [10]. 

Continuous queries are typically used for monitoring 
purposes where the detection of an event might require trig­
gering a sequence of action. This creates an interactive en­
vironment where tuples produced by a query might activate 
the execution of specified tasks. In such an environment, it 
is important to optimize for producing the available portions 
of the result as early as possible rather than optimizing the 
computing of the entire result as in traditional database sys­
tems. The timely generation of the initial results increases 
the probability of detecting events earlier. 

The two main elements for improving the interactive per­
formance of a continuous query are: 1) query optimizer, 

and 2) operator scheduler. The query optimizer decides 
the dependencies between the query operators, whereas the 
scheduler decides the order of execution of the query oper­
ators. An operator scheduler is particularly important when 
a query is defined on multiple relations or streams. 

In a naive approach, scheduling could be delegated to the 
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underlying operating system. However, this approach over­
looks chances for improvement that are possible by exploit­
ing the available information about the query operators. The 
Rate-based scheduling presented in [12] exploits such infor­
mation for improving the interactive query performance in 
traditional databases and in Web databases. Basically, it em­
ploys a prioritizing scheme where the priority of an operator 
is defined in terms of its cost and selectivity. 

Since the Rate-based policy was proposed for traditional 
database systems, it assumes priorities are static. However, 
in DSMSs, tuples continuously arrive at the system, some 
of which might correspond to a higher priority operator 
than the one currently executing. Thus, under Rate-based 
scheduling, high-priority operators might be blocked wait­
ing for a low-priority one to complete its execution. 

To alleviate this priority-inversion problem, in this pa­
per, we propose a Preemptive Rate-based scheduling pol­
icy. The intuition is that preemption enables the adjust­
ment of a previous scheduling decision based on the current 
state that is determined by the arrival of new data. The 
idea of using preemption in scheduling query operators has 
already showed success in reducing the memory require­
ments for processing bursty streams [1]. In this paper, we 
are also using the preemption mechanism but for improv­
ing the interactive performance of queries with stateless op­
erators. Our experimental evaluation shows the significant 
improvements provided by our proposed scheduling policy 
compared to the existing ones. 

The rest of this paper is organized as follows. In Sec­
tion 2 provides an overview of query processing, optimiza­
tion and operator scheduling. Our model and scheduling 
polices are presented in Section 3. Section 4 describes our 
simulation testbed, and then in Section 5 we discuss our ex­
periments and results. We conclude in Section 6. 

2 DSMS Background 

2.1 Continuous Queries 

A Data stream management system (DSMS), as shown 
in Figure 1, is designed to handle the processing of multi­
ple queries over multiple data streams. In such a system, 
users register continuous queries that execute as new data 
arrives. Data arrives in the form of continuous streams. The 
arrival of new data is similar to an insertion operation in tra­
ditional database systems. A DSMS is typically connected 
to different data sources that generate streams at different 
rates. Moreover, a single query might receive its input from 
multiple streams (i.e., sources). 

The query evaluation plan can be conceptualized as a 
data flow diagram [3, 1], which is a tree of nodes and edges, 
where the nodes are operators that process tuples and edges 
represent the flow of tuples from one operator to another 

(Figure 2). An edge from operator 01 to operator O2 means 
that the output of operator 01 is an input to operator O2. 
The overall query cost is determined by the cost of each 
operator Ci and the selectivity of each operator Si. Recall 
that, an operator with selectivity Si produces Si tuples after 
processing one tuple for Ci time units. Si is typically less 
than or equal to 1 for simple operators like filters, but, it 
might be more than 1 for joins. 

A single continuous query in a DSMS could be quite 
complicated and expensive, especially, if the query is han­
dling data from multiple streams where tuples from each 
stream pass through several expensive operators. Moreover, 
the distribution of the processing costs of operators is typ­
ically heterogeneous. That is, the costs for processing dif­
ferent tuples from different streams could be highly skewed. 
For instance, a query plan might contain operators that per­
form simple filtering on one data stream, whereas on an­
other data stream complex operators might require join with 
stored relations or look-up indexes. Similarly, the selectiv­
ity of different operators exhibit a skewed distribution. This 
heterogeneity makes it essential for using query processing 
techniques that provide an efficient execution plan for eval­
uating the query. 

2.2 Query Execution 

In this work, we assume that each query is composed of 
only stateless operators. Queries with stateless operators is 
fairly common class of queries in data stream applications 
[1, 4]. Examples of stateless operators are scan, selection, 

projection, andjoin with stored relations. Moreover, a con­
tinuous query over multiple streams typically contains spe­
cial operators for merging different streams. Such an oper­
ator is known as union [3], merge [7], or mux [9]. Studying 
queries with statefull operators (e.g.,join over data streams) 
is part of our future work. 

Every tuple that enters the system must pass through a 
unique sequence of operators, referred to as an operator 

path [l]. The operator path corresponding to stream Str 
might contain specialized operators that are only applicable 
on tuples from Str, in addition to other operators that are 
applicable on more than one stream. A specialized operator 
is basically used for transforming an input tuple to match a 
pre-defined scheme, or to apply a certain filtering or map­
ping for which the execution method depends on the corre­
sponding data stream. For example, in Figure 2, operators 
forming the path 01, O2, 03 process tuples from Stream1, 
01 is applied only on tuples from Stream1, while O2 is 
used to merge the intermediate result tuples from Stream1 
and Stream2. Finally, 03 is used to project the final result 
tuples from both streams. 

An operator receives its input tuples either directly from 
the input stream (e.g., operators 01 and 04) or from inter-
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Figure 1. Data processing in DSMS 

mediate queues used to buffer the output of a predecessor 
operator (e.g., operators O2 aud 03). A tuple is processed 
until it is either produced at the output or discarded. A tuple 
is produced when it satisfies all the filters on the operator 
path. If a tuple does not satisfy a certain filter, it is immedi­
ately discarded since it is not used by any other query. 

The mechanism of invoking an operator depends on the 
underlying query execution architecture. In the single­
thread architecture, all operators are running in the same 
thread and invoking an operator is equivalent to a procedure 
call. In the multiple-thread architecture, each operator runs 
in a separate thread aud invoking au operator requires con­
text switching between threads. 

The scheduler is the system component responsible for 
invoking operators according to a special order of execu­
tion. Specifically, it decides the following: 1) the order of 
query execution among the registered queries, and 2) the or­
der of operator execution within a query. In this work, we 
are focusing on the latter problem of scheduling operators 
within a query. Specifically, we are interested into an opera­
tor scheduling policy that improves interactive performance 
of continuous queries. 

2.3 Operator Scheduling 

Traditionally, query optimizers are cost-based in that 
they decide among alternative execution plans by minimiz­
ing the query cost. That is, the estimated cost of evaluat­
ing the query until the last result tuple appears [13]. How­
ever, with the advent of the Internet, interactive query per­
formauce became an important criterion for evaluating the 
success of an online system. In such an interactive environ­
ment, it is important to optimize for producing the available 
portions of the result as early as possible rather than opti­
mizing the computing of the entire result. The same inter­
active behavior is desirable in data stream systems for two 
main reasons. The first reason stems out of the nature of 
data stream processing; in DSMS data arrives continuously, 
hence, optimizing for producing the full result is obviously 
infeasible. The second reason depends on the timely re­
quirements of the application supported by the DSMS. For 

Stream1 

Figure 2. Query plan over streams 

example, a user's continuous query might be used to pro­
cess readings gathered by sensor networks that monitor en­
vironmental phenomena. In such a case, producing results 
as soon as they are available helps in accelerating the detec­
tion of abnormal behaviors that require immediate actions. 

The two main elements for improving the interactive per­
formance of a continuous query are: 1) query optimizer, and 
2) operator scheduler. The query optimizer decides the de­
pendencies between the query operators, whereas the sched­
uler decides the order of execution of the query operators. 
The work in [13] proposed a rate-based query optimization 
technique that maximizes the output rate of query evalua­
tion plans. This technique provides optimization solutions 
for the case when a query contains operators that joins two 
streams which have different data arrival rates. For all other 
cases, the plans generated by the rate-based optimization 
are the same as those generated using a cost-based opti­
mizer. Moreover, for both of the optimization strategies, 
the way operators are scheduled and how the flow of data is 
controlled can lead to significantly different kinds of output 
behavior for the same generated query plan [12]. 

For an optimized query plan, Pipe lined query execution 
is one technique that can improve the interactive perfor­
mance of a query. In a pipelined execution model, the unit 
of execution is the processing of a single tuple on a single 
stream. In a fully pipelined execution plan, result tuples 
are delivered as soon as they are computed from the input 
tuples. Pipelining works only as long as operators are non­
blocking, i.e., they do not stage the data without producing 
results for a long time. Filters are non-blocking operators 
by nature, whereas for blocking operators (e.g., join), win­

dowing is used to allow result streaming. However, for a 
multiple-relation query (or multiple streams), pipelined ex­
ecution does not specify the order of execution of operators 
on different streams. A scheduling policy is needed to de­
termine which stream to process when more thau one has 
available tuples. 

The problem of operator scheduling has been the fo­
cus of the work in [12]. It proposed a dynamic rate-based 

pipeline scheduling policy that produces more results dur­
ing the early stages of query execution to improve a query 

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 18:15:11 UTC from IEEE Xplore.  Restrictions apply. 



response time. Aurora [3, 4] also uses a technique similar to 
the rate-based pipeline scheduling to minimize the average 
tuple latency. 

2.4 Performance Metric 

The performance of scheduling policies is typically mea­
sured using the average response time. In traditional 
database systems, the response time of a query is defined as 
the amount of time from the time when the query is posed 
until the time when the last tuple in the result is produced. 

However, in DSMSs, queries are continuous where a 
query is executed whenever new data arrives. That behavior 
is the opposite from traditional database systems; in tradi­
tional systems, the response is due to the arrival of a query, 
whereas in data streams system, the response is triggered by 
the arrival of a tuple. 

Hence, in DSMS, it is more appropriate to define the re­
sponse time from the data perspective rather than the query 
perspective. Therefore, we will define the tuple response 

time (or tuple latency) (Ri) for tuple i as follows: 

Definition 1 Ri = Di - Ai, where Ai is the tuple arrival 

time and Di is the tuple departure time. Accordingly, the 

average response time for N tuples is: tv I:;' Ri. 

Notice that tuples that are filtered out during query process­
ing do not contribute to this metric [11]. 

Example Let us illustrate that measuring the tuple av­
erage response time better reflects the interactive perfor­
mance achieved by a scheduling policy. In Figure 2, as­
sume that the costs of operators 01, O2, 03, 04 are 10, 
10, 10, 40 units respectively. Further, assume that there 
is one tuple available for processing at each input stream. 
First, consider a scheduling policy that will activate opera­
tors in the following order: 01, O2, 03 to process the tuple 
from Stream1, then 04, O2, 03 to process the tuple from 
Stream2. Such a policy will provide an average tuple re­
sponse time of 60 units. An alternative scheduling might 
decide to schedule operator paths in the opposite order. That 
is, 04, O2, 03 to process the tuple from Stream2, then 
01, O2, 03 to process the tuple from Stream1. This al­
ternative policy will provide an average response time of 75 
units. Though both policies take the same time to complete 
execution (i.e., 90 units), they provide different response 
times. The improvement exhibited by the first policy is due 
to producing result tuples as early as possible which is the 
behavior desired for interactive performance. 

3 Operator Scheduling Policies 

In this section, we first discuss two operator scheduling 
policies, namely, Round Robin and Rate-based, which are 

currently used in the prototype DSMSs. Then we will de­
scribe our proposed preemptive version of the Rate-based 
scheduling policy. 

3.1 Round Robin 

Round Robin has been the policy used the most for pro­
cessing sharing. It is simple and easy to implement. In 
Round Robin, each operator is assigned a time interval 
called quantum. At the end of the quantum, the processor is 
preempted and given to another operator. 

By nature, Round Robin does not take advantage of the 
available parameters of operators (i.e., cost and selectivity). 
This is in contrast to using a priority-based scheduling pol­
icy which assigns each operator a priority based on its pa­
rameters. Ignoring this information makes Round Robin 
fall short in improving the interactive performance men­
tioned above. For example, it is known that a priority­
based policy like Shortest-Remaining-Processing-Time sig­
nificantly outperforms Round Robin in improving the re­
sponse time [2]. However, Round Robin does not need to 
recover from a wrong scheduling decision because simply 
there is no decision taken and preemption allows all opera­
tors to execute sequentially. 

3.2 Rate-based 

The Rate-based scheduling policy was proposed for 
scheduling the execution of operators in a single query for 
the pipelined execution in traditional database systems [12]. 
Each operator 0 has a value called the global output rate 

which is defined in terms of its ancestor operators. The out­
put rate of an operator 0 is basically the number of tuples 
produced per time unit by processing one tuple by the se­
quence of operators starting at 0 all the way up to the out­
put. Formally, the global output rate for operator 01 on the 
path 01, O2, ... , On is computed as: 

(1) 

Where Ci and Si are the cost and the selectivity of operator 
Oi, respectively. 

The priority of each operator is set to its global output 
rate. At each scheduling point, the operator with the highest 
priority among all operators with non-empty input queues is 
the one scheduled for execution. In this policy, the sched­
uler is triggered (i.e., scheduling point is reached) when an 
operator finishes processing an input tuple. The new opera­
tor scheduled for execution can be the ancestor of the previ­
ously scheduled operator since it already has a higher prior­
ity. This higher priority is due to the increased probability 
of producing the tuple and/or the decrease in the remaining 
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execution time required to produce the tuple. Alternatively, 
the new scheduled operator might be the leaf node of a dif­
ferent operator path for which a corresponding tuple has ar­
rived at the scheduling point or during the execution of the 
previous operator. 

The intuition underlying this policy is to produce the ini­
tial output tuples as fast as possible. This is achieved by 
giving higher priority to operator paths that are productive 
and inexpensive or, in other words, select the operator path 
with the minimum latency for producing one tuple. 

3.3 Preemptive Rate-Based 

In data stream systems, tuples continuously arrive at the 
system; query execution is triggered by the arrival of new 
tuples. That is different from traditional database systems, 
for which the Rate-based policy was originally proposed. 
The problem with the continuous arrival of tuples is that a 
newly arriving tuple might correspond to a higher-priority 
path. Toward this, we are proposing a preemptive version 
of the rate-based policy so that a higher-priority path can be 
selected if such a path become available. 

In this preemptive version, if operator Oi is already se­
lected for execution then the next scheduling point could be 
triggered while Oi is still in progress. That is, scheduling 
occurs in the following cases: 

1. Operator Oi finishes processing: This case is the 
same as in the non-preemptive version where a new 
scheduling decision is made every time an operator fin­
ishes executing. 

2. The arrival of a new tuple at a leaf operator OJ: In 
this case, the priority of operator OJ is compared to 
the current priority of Oi where the latter is computed 
given the interval IS it already spent processing the cur­
rent tuple. In other words, the global output rate of Oi 
is recomputed by replacing Ci with Ci - IS in Equa­
tion 1. Then the operator with the highest priority is 
scheduled for execution. 

The intuition in using preemption is to be able to adjust 
the scheduling decision based on the current situation that 
is determined by the arrival of new data. In the absence of 
preemption, not only an inexpensive operator might have 
to wait until the currently relatively expensive operator fin­
ishes execution, but also, a productive operator might have 
to wait until a less productive operator finishes execution. 
U sing preemption is particularly important when the dis­
tribution of operators costs and/or selectivities is highly 
skewed. In such a case, the priority assigned to operators 
span a long range of values. This is in contrast when the 
operators parameters are homogeneous, then the priority 
values assigned to operators are fairly close and blocking a 

Preemptive Non-Preemptive 
Pipelined PRE RE, FIFO 
Non-Pipelined RR Train Processing 

Table 1. Classification of Scheduling Policies 

high priority operator until finishing the execution of a less 
priority one will have a little impact on the performance. 

It is worth mentioning that if Oi is preempted due to the 
arrival of new a tuple at OJ, then Oi will not resume execu­
tion again until all the operators on the operator path starting 
at OJ finish execution. This is because of the following: 1) 
the priority of Oi does not increase while executing OJ, and 
2) the priority of all the operators on the path from OJ to the 
output is higher than the current priority of Oi. The latter 
observation follows from the fact that OJ has a higher pri­
ority than Oi and that an ancestor of OJ will have a higher 
priority than OJ as explained above. Thus, a preempted 
operator is not considered again until higher priority oper­
ators finish execution. This shows the limited increase in 
scheduling overhead introduced by allowing preemption. 

3.4 Discussion 

Above, we described three policies for scheduling query 
operators, namely, Round Robin (RR), Rate-based (RE), 
and our proposed Preemptive Rate-based (PRB). In the next 
section, we provide a performance evaluation of these poli­
cies in addition to the First-In-First-Out (FIFO) scheduling 
policy. FIFO is implemented following the pipelined execu­
tion model where a tuple is completely processed along its 
operator path before the processing of a new tuple starts. 
However, in the presence of ready tuples from multiple 
streams, we use the tuple' timestamp as a tie-breaker to de­
cide the order, where a tuple's timestamp is the time when 
the tuple entered the system. 

Table I shows a classification of the four policies accord­
ing to two features, namely, preemption and pipe lining. The 
table also includes the Train processing mechanism used by 
Aurora for controlling the flow of tuples along a path [4]. 
A train is a sequence of tuples that are executed as a batch 
within an operator that is selected for execution using a rate­
based policy. The goal of tuple train processing is to mini­
mize the low-level overheads in a single-thread query exe­
cution architecture. In the case where the length of the train 
is one tuple, then train processing is fully pipelined and is 
similar to the Rated-based policy. Hence, we will only use 
the Rate-based policy as a representative of the two tech­
niques. 

It is worth mentioning that the proposed Preemptive 
Rate-based policy could be used for scheduling operators 
from multiple queries in order to improve the overall sys­
tem response time. However, with multiple queries fairness 
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I Parameter Value 

Query Depth 1-6 

Query Fan-Out 2-50 

Cost Skewness 0.0 -0.9 

Selectivity Skewness 0.0 -0.9 

System Utilization 0.9 

Expensive Operator Depth 0-6 

No. of Expensive Operators 0-32 

Expensive Operator Cost 25 -300 units 

Overhead Cost 0-50 units 

Table 2. Simulation Parameters 

in scheduling is an issue to be considered. Such a problem 
is the focus of our future work. 

4 Evaluation Testbed 

In our experimental evaluation, we have used the aver­
age tuple response time metric from Section 2 to compare 
the query performance provided by the scheduling policies 
mentioned above. Accordingly, we simulated the execution 
of a continuous query as in [4] where the query is speci­
fied by two parameters: depth andjan-out. The depth of the 
query specifies the number of levels in the query tree and the 
fan-out specifies the number of children for each operator. 

The costs and selectivities of the query operators are 
generated according to a Zipf distribution which is speci­
fied using the Zipf parameter. Setting the Zipf parameter 
to zero results in a uniform distribution, whereas increasing 
the value of the Zipf parameter increases the skewness of 
the generated values. 

Each leaf operator is attached to a data stream where tu­
ples arrive according to a Poisson distribution. The mean 
inter-arrival time for the Poisson distribution is set accord­
ing to the simulated system utilization (or load). For a uti­
lization of 1.0, the inter-arrival time is equal to the time re­
quired to complete the query execution, whereas for lower 
utilizations, the mean inter-arrival time is increased propor­
tionally. All the results reported here are at a utilization of 
0.9 and stream length of 10K tuples. 

Finally, we use additional parameters to control the het­
erogeneity in the query plan, namely, Expensive Operator 

Depth, No. (�fExpensive Operators, and Expensive Opera­

tor Cost. Finally, we use the Overhead Cost parameter for 
calculating the overheads incurred by the different policies. 
The usage of the above parameters is explained along with 
the experiments in the next section. Table 2 summarizes all 
our simulation parameters. 

5 Experiments 

5.1 Skewness in Operators' Costs 

In this experiment we set the query depth to 1 and the 
fan-out to 50. This is equivalent to a query that performs 
projection and/or filtering on 50 data streams then merge 
them together. The costs of the operators are generated in 
the range 1-100 with skewness 0.9 toward the inexpensive 
operators. The selectivity for all operator is set to 1. 

Figure 3 shows the average tuple response time provided 
by the Round Robin (RR), First-In-First-Out (FIFO), Rate­
based (RE) and the Preemptive Rated-based (PRE) policies. 
The figure shows that, in general, the average response time 
decreases by increasing the skewness of operators' costs. 
For instance, the minimum response time is achieved at a 
Zipf parameter of value 0.9 where most of the operators are 
inexpensive. In the case of Zipf parameter of value 0.0, the 
operators' costs are uniformly distributed which results in 
higher response time. 

The figure also shows that as the degree of skewness in­
creases, RR outperforms FIFO. Recall that Both RR and 
FIFO ignore the operators' characteristics (i.e., cost and se­
lectivity), however, the figure shows that at high skewness, 
preemption can improve the performance. This observation 
is emphasized by comparing the response times provided by 
the Preemptive Rate-based (PRE) and the non-preemptive 
version (i.e., RE) where PRE always outperforms RE as 
well as RR and FIFO. 

This improvement is better illustrated in Figure 4. Fig­
ure 4 shows the reduction in average response time provided 
by PRE compared to RB. The figure shows that the im­
provement increases by increasing the skewness. For ex­
ample, the reduction is only 5% when the Zipf parameter is 
equal to 0.0 and it increases to 20% when the Zipf param­
eter is equal to 0.9. The increase in improvement is due to 
the increased heterogeneity in the query plan. In a plan with 
a highly skewed operators' costs, using RB might result in 
a case where a newly arriving tuple might have to wait for 
the currently executing tuple though the latter might have 
a relatively very high execution cost. PRE avoids this by 
allowing the preemption of the expensive operator. 

5.2 Skewness in Operators' Selectivities 

The setting for this experiment is similar to the previous 
one, however, we are changing the skewness of selectivity 
while setting the cost of all operators to 100 units. From 
now on, we will exclude RR and FIFO from the comparison 
due to their high response time as illustrated in Figure 3. 

Operators take selectivities in the range 0.01 - 1.0 which 
are generated using Zipf. The skewness of the Zipf param­
eter is toward the low-selectivity operators. In this setting, 
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Figure 3. Cost Skewness 

at a high value for the Zipf parameter, most of the streams 
will have low priority while very few will have a relatively 
high priority. 

Figures 5 and 6 show the same behavior illustrated in the 
previous experiment. That is, PRE always outperforms RE 
and that the significance of reduction in response time in­
creases by increasing the skewness. Hence, in order to avoid 
repetition, the remaining of this section will only report on 
experiments where we are varying the cost distribution. 

5.3 Skewness' Position 

In the previous experiments, we changed the skewness of 
the cost and selectivity distributions, yet, we had no control 
on the position of the skewness in the query plan. Figure 7 
shows another experiment where we are controlling the lo­
cation of skewness. 

Specifically, we generated a query tree of depth 6 and 
fan-out 2 where we set the cost for all operators uniformly 
between 1 and 10 units. Then we introduced one expensive 

operator of cost 100. This expensive operator is located on 
the left-most operator path in the tree. However, the depth 
of the expensive operator is defined by a parameter Expen­

sive Operator Depth. In the case where expensive operator 
depth is equal to 6, the operator at the bottom-left corner of 
the tree is the most expensive, accordingly, the left operator 
path of the tree is the only expensive path. Decreasing the 
depth of the expensive operator is equivalent to increasing 
the number of expensive path. In the case where expensive 
operator depth is equal to 0, the root of the tree is the most 
expensive operator, hence, all the query path are relatively 
expensive. Figure 7 shows that generally, the average re­
sponse time decreases by increasing the expensive operator 
depth. This decrease is due to a decrease in the number of 
expensive paths as mentioned above. 

In Figure 8 we are illustrating the reduction in response 
time provided by PRE compared to RE. Notice that the im­
provement increases by increasing the expensive operator 
depth (i.e., decreasing the number of expensive paths). This 
behavior is due to increasing the skewness in the query tree 
where preemption is needed. The improvement reaches a 

00 01 02 03 04 05 06 
Zlpf Parameter (Cost) 

Figure 4. Reductions by PRB vs. RB 

maximum at expensive operator depth value of 4 (i.e., 4 ex­
pensive operators paths), then it starts decreasing for values 
of 5 and 6. At a value of 5, there are only 2 expensive 
paths in the tree and at a value of 6, there is only one ex­
pensive path. The low number of expensive paths decreases 
the chances of an expensive operator to be running at the ar­
rival time of a new tuple that corresponds to an inexpensive 
operator. 

5.4 Skewness' Amount 

To further study the effect of skewness' location and 
amount, we conducted another experiment that is shown in 
Figure 9. The settings for this experiment is similar to the 
previous one, however, the location and the number of the 
expensive operators are set differently. In this experiment, 
we are varying the number of expensive operators between 
1 and 32. Further, the expensive operators are all located 
at depth 6 (i.e., the leaf nodes). Hence, the number of ex­
pensive paths is always equal to the number of expensive 
operators. 

Figure 9 shows the same behavior demonstrated in Fig­
ure 7. That is, the average response time increases by in­
creasing the number of expensive operator path. Moreover, 
Figure 10 emphasizes the impact of the amount of skewness 
on the degree of improvement. For instance, at very low 
number of expensive operators/paths there are less chances 
of priority conflict between current and new tuples. As the 
number of expensive paths increases, the chances of a pri­
ority conflict increases. Further increase in the number of 
expensive paths brings the tree close to homogeneity, hence, 
less chances of priority conflict. 

5.5 Skewness' Magnitude 

Figure 1 1  shows the results of an experiment where we 
are changing the cost of the expensive operator. Specifi­
cally, there is one expensive operator in the query plan lo­
cated at depth 4. The cost of this expensive operator takes 
the values between 25 and 300 time units. The figure shows 
that PRE outperforms RE. Moreover, it shows that RR can 
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Figure 7. Location of Skewness 

also outperform RB when the cost of the expensive oper­
ator is set relatively high. This is because scheduling the 
expensive operator for execution might result in the arrival 
of many tuples that belong to inexpensive operator paths. In 
such a case, RR and PRB allow preempting the currently ex­
ecuting expensive operator and proceed with executing the 
less expensive one to produce more result tuples, whereas 
RB will wait for the expensive operator to finish then it will 
make new scheduling decisions. The higher the cost of the 
operator, the longer the RB will wait, and the more the in­
crease in the average response time. 

5.6 Scheduling Policy Overhead 

Figure 12 shows the results of our last experiment where 
we are measuring the overhead of each scheduling policy. 
As mentioned earlier, the overheads depend on the under­
lying query execution architecture. However, instead of as­
suming a certain architecture, we counted the number of 
transitions between states during query execution. Transi­
tions happen in the following cases: 1) invoking an operator, 
2) preempting an operator, and 3) invoking the scheduler. 

RR incurs the overheads of all three transitions: at the 
end of each quantum an operator is preempted and the 
scheduler is invoked to find the next operator in the cycle 
with available tuples which is then invoked for execution. In 
RB, the first and the third transitions take place, where when 
an operator finishes execution, the scheduler is invoked and 
the operator with the highest priority is executed. PRB in­
curs the same overheads as RB in addition to the overheads 
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Figure 8. Reductions by PRB vs. RB 

due to enabling preemption. Specifically, the scheduler is 
invoked with the arrival of every new tuple which might re­
sult in preempting the currently executing operator. 

In Figure 12 we assigned the same cost to each type of 
the transitions mentioned above. We call this parameter 
overhead cost and its takes the values between 0 and 60. 
The value of the overhead cost together with the number of 
transitions determine the total overhead incurred by a cer­
tain scheduling policy. In Figure 12, we measured the re­
sponse time at the point where the expensive operator cost 
is 300 as in Figure 11. The figure shows the increase in re­
sponse time with the increase in overhead cost. Moreover, 
it shows that RR outperforms RB only when the overhead 
cost is O. As the overhead costs becomes 1, the performance 
of RR is highly unacceptable (note that in this figure, we use 
logarithmic scale for the Y-axis as opposed to the previous 
figures). This high overhead incurred by RR is due to the 
continuous preemption of operators. The rate of preemption 
is determined by the quantum length. In these experiments 
we assumed a quantum of length 1 time unit. Higher values 
for the quantum will show lower overhead, yet, significantly 
high compared to RB and PRB. The figure also shows that 
PRB scheduling outperforms the non-preemptive RB for 
values of overhead cost up to 50 time units. However, a 
value of 50 is an unrealistic overestimation of the overhead 
cost, since this represents an overhead equal to � 16.6% of 
the expensive operator cost. Recall that an expensive oper­
ator might require looking up indexes or performing a join 
with a stored relation, in either cases, the cost of that opera­
tor should be orders of magnitude the overhead cost. 
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6 Conclusions 

The rapid growth of DSMSs introduces more challenges 
to the database systems research. Challenges are mainly due 
to the continuous nature of data and the timely requirements 
of the continuous queries. This new environment requires 
rethinking the existing data processing techniques for effi­
cient design of DSMSs. In this paper, we addressed one of 
those techniques, namely, query processing. Specifically, 
we focused on the operator scheduling component of query 
processing. The paper makes the following contributions: 

1. It emphasizes the importance of the rate-based 
pipe lined scheduling policies for scheduling query op­
erators over multiple heterogeneous data streams. 

2. It points out the importance of preemption in query op­
erator scheduling which is particularly crucial to suit 
the asynchronous nature of tuple arrival. 

3. It proposes the Preemptive Rate-based scheduling pol­
icy which combines the advantages of pipelined exe­
cution, rate-based scheduling, and preemption. 

Our extensive experimental evaluation shows the signif­
icant improvements provided by our proposed Preemptive 
Rated-based policy. Currently, we are studying the problem 
of scheduling multiple queries over data streams. 
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