
HDC - Hot Data Caching in Mobile Database Systems

Vijay Kumar, Nitin Prabhu

SCE, Computer Networking

University of Missouri-Kansas City

Kansas City, MO 64110.

Panos K. Chrysanthis

Computer Science

University of Pittsburgh

Pittsburgh, Pennsylvania.

panos@cs.pitt.edu {kumarv, npp21c}@umkc.edu

Index terms: Mobile computing, caching, wireless chan­
nel and Prefetching.

Abstract

Data caching is an eflective way of improving system

petjormance. This is especially crucial in mobile databases

because (�f' the limited bandwidth and slower communica­

tion speed (�f' wireless channels. In this paper we present

a data caching algorithm, referred to as HDC (Hot Data

Caching), and compare its petj(Jrmance with LRU (Least

Recently Used) cache replacement scheme through simula­

tion.

1 Introduction

In any data processing system [1] it is crucial to effi­
ciently utilize available resources for achieving high per­
formance and scalability. This is especially true for mo­
bile systems where critical resources (wireless bandwidth,
RAM, etc.) are inherently limited and continuous connec­
tivity cannot be taken for granted. In this paper we describe
our investigation on data caching in Mobile Database Sys­
tems (MDS). Caching stores desired data in the local stor­
age of data processing node to improves data availability
and data access time. There are two important activities of
a caching scheme: (a) identification of data set for caching
and (b) transferring data from the remote storage to the local
storage of the processing node. An efficient caching scheme
tries to optimize these activities within the constraints of
system resources. On wired system there may not be any
constraints especially in transferring data from the remote
location, however, on MDS the situation is entirely dif­
ferent. In this paper we present a caching mechanism for
MDS, called HDC -Hot Data Caching and compare its per­
formance with most commonly used LRU (Least Recently
Used) cache replacement scheme through simulation. Note
that HDC can be used in any distributed system equally effi-

0-7803-873S-X/OS/$20.00©200S IEEE

ciently. In this paper we do not discuss the problem of cache
consistency and assume that it is maintained by MDS.

2 Mobile Database System (MDS)

We envision an information processing system based on
a wireless communication discipline, which we refer to as
Mobile Database System (MDS). MDS of the future will
perform differently than conventional centralized and dis­
tributed database systems and they will impose more con­
straints and demands on the wireless systems of today for
performing transaction management activities efficiently.
Transaction processing in MDS will be quite diverse proba­
bly with many different transaction models and processing
modes.

The architecture of the Mobile Database System (MDS)
we are investigating is shown in Figure 1. We have added a
number of DB S s (database Servers) to incorporate database
processing capability without affecting any aspect of the
generic mobile network [5].

PSTN

MU

•
••

MU

Figure 1. A reference architecture of MOS.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:34:42 UTC from IEEE Xplore. Restrictions apply.

A set of general purpose computers (PCs, workstations,
etc.) are interconnected through a high speed wired net­
work. These computers are categorized into Fixed hosts

(FH) and Base stations (BS) or mobile support stations

(MSS). A number of mobile computers (laptop, PDAs,
etc.), referred to as Mobile Hosts (N! H) or Mobile Units

(MU) are connected to the wired network components only
through BSs via wireless channels. A BS maintains and
communicates with its MUs via the air interface [5, 6] and
has some processing capability [6].

3 HDC - Hot Data Caching Algorithm

We desire that HDC should be able to satisfy the data
needs of maximum number of transactions running at MUs.

This can be achieved if the desired data sets for the present
and also for recent future sets of transactions are identified
reasonably accurately and made them available locally.

To achieve very high cache hit rate, we propose to in­
tegrate the idea of immediate caching, prefetching, and
broadcasting. With prefetching we cache the future require­
ments, through broadcasting we create a reservoir of future
data in the "channel space" (set of wireless channels avail­
able to a cell), and we immediately cache "hot data" through
a wireless channel.

3.1 Data Identification for Caching and Transac­
tion Execution

A user initiates transactions through his MU. Every MU

has some upper limit of the number of transactions it can ex­
ecute concurrently. A MU performs the following steps for
precisely identifying the data requirements of a transaction.

• Preprocesses the transaction and identifies its data re­
quirement.

• Builds a data structure, refer to as "cache matrix", to
store these data.

• Combines the data requirement set just created with
the data in the cache using EXCLUSIVE OR (EEl) to
generate the final data requirement set.

We illustrate the working of the data identification phase
of HDC with a simple example. We assume that the size of
MUs workload (number of transactions that can be sched­
uled concurrently) is 10 transactions and the average data
item requirement of transactions is 8. Dl, D2, ... , repre­
sent data items and Tl , T2, ... , represent transactions. With
the above data cache matrix 1 (Table 1) is created. A "1"
in the matrix indicates that the corresponding transaction
needs that data item. All 1 's in each column is added. A
lowest value column sum identifies the data item, which
is accessed by least number of transactions. The lowest

Table 1. Cache matrix 1

01 08 010 011 015 020 022 030
Tl 1 1 1 1

T2 I 1

T3 1 1 1

T4 I 1

T5 1 1

T6 1 1 I

T7 1

T8 I 1

T9 1 1

TlO I I

Sum 5 3 4 1 3 1 2 4

value column data and the corresponding transactions are
removed from the matrix. Thus, in the above matrix Dll
and D20 and Tl and T4 are removed, which gives Cache
matrix 2 (Table 2).

Table 2. Cache matrix 2

01 08 010 015 022 030
T2 I 1

T3 1 1 1

T5 I I

T6 1 1 1

T7 I

T8 1 1

T9 I I

TlO 1 1

Sum 4 2 3 3 2 3

The same reduction process is repeated until we get the
set, which can fit in the cache. So if we assume a cache
size of 4 data items, then the final data set is given in cache
matrix 3.

Table 3. Cache matrix 3

01 010 015 030
T2 1 1

T6 I 1 1

T8 1 1

T9 I 1

Sum 2 3 3 1

If we assume that initially the cache is empty then the
data set for caching can be identified by the following for­
mula.

DI, DIO, D15, D30 E9 current cache data = DI, DIO,

D15, D30

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:34:42 UTC from IEEE Xplore. Restrictions apply.

We refer to the data set obtained by matrix 3 as "hot data"
and the rest of the data set (data set required by transactions
Tl, T3, T4, T5, T7, and T lO) is referred to as "warm data".
Hot data set is transferred from the DBS and loaded into the
cache of the MU and T2, T6, T8, and T9 are scheduled for
execution. The other 6 transactions (Tl, T3, T4, T5, T7, and
TlO) are put into the wait queue and a record of warm data
(cache matrix 1) is kept in a safe place. Note that the data set
of cache matrix 3 contains a subset of data required by the
set of waiting transactions, which constitutes prefetching of
data.

Cache matrix 3 identifies four transaction, which can be
scheduled immediately for execution with a cache size of
4. We refer to the transactions identified by cache matrix
(i.e., T2, T6, T8, and T9) as Active Transactions (AT). In
reality the cache size would quite large and there would be
many more transactions that can be scheduled for execu­
tion. In this paper we do not elaborate on cache size iden­
tification issue. We define AT to be the set of transactions
whose data requirements are satisfied by the current cache
contents and the MU can execute them concurrently. Note
that the waiting transactions whose at least one data item is
present in the current cache are not counted in AT but the
transaction blocked due to a conflict with AT is counted.
We define an upper limit of transactions that M U can exe­
cute concurrently and its value depends on M U ' s processing
capabilities and resource availability. Our definition of the
upper limit of transactions is similar to the multiprogram­
ming level (MPL) as defined in operating systems. We will,
therefore, use MPL to indicate the upper limit of transac­
tions in this paper. Thus, MPL = AT + Waiting transactions.

New transactions continue to arrive and one of them en­
ters AT set as soon as an AT transaction terminates and
exists the system. The other aspect of HDC is to manage
transaction execution for maximum throughput, that is how
new transactions are scheduled for execution. We incorpo­
rate three scheduling schemes (a) immediately schedule the
transaction for execution, (b) add it to the waiting queue to
be scheduled later, and (c) send the new transaction to the
server for execution. These schemes can either be used in­
dividually or in an integrated way.

Immediately schedule the transaction for execution: In
this scheme a new transaction is scheduled for execution
if its desired data set is available in the cache. Although
this approaches minimizes cache refreshes, it may severely
starve other transactions. Our effort is to eliminate the star­
vation without affecting the low cache refresh. We explain
below how starvation can happen.

At any time there exists a set of waiting transactions,
refer to as "WT". In the present scenario AT = {T2, T6,
T8, T9} and WT = {Tl, T3, T4, T5, T7, TlO}. Under
this scheme the system continues accepting new transac-

tions and executing them along with AT until a predefined
number of transactions have been executed. At this point a
new cache matrix is created using the WT set where some
new transactions may end up in the waiting queue or a trans­
action from WT may again be deleted from the next cache
matrix and this trend may persist for some time. We argue
that in reality such starvation is highly unlikely and present
a solution to handle this scenario.

A close observation indicates that a transaction, which
accesses rarely accessed data is likely to starve. In a real
data processing environment such situation is highly un­
likely. It is well known that transactions data items are
highly clustered [4, 2] and we believe that the starvation
situation is likely to be transient. We have verified this ob­
servation in our simulation experiment presented later.

Our aim in MDS is to process majority of transactions
with minimum cache refreshes. If a transaction starves
within the minimum cache refreshes, then we assume that it
cannot be processed by the MU where it originated within
acceptable delay, therefore, it should be sent to the server.
To implement this scheme we proceed as follows: �f a

transaction continues to starve after a predefined number qf

cache refreshes, then it is sent to the server for processing

and the final result is sent back to the MU for dispatching it

to the end user. We want to identify what is the appropriate
number of cache refreshes after which starving transactions
at MU should be sent to the server for execution.

Add new transaction to the waiting queue to be sched­

uled later: If the new transaction has at least one data
item in the current cache, then it is added to WT list. As
soon as AT transactions are terminated a new matrix is cre­
ated only with a right number of new waiting transactions
(not for WT transactions because their data set is already
known), which never participated in the cache matrix. This
cache matrix data and the WT data are combined together
again using EB to identify the hot data to be cached. Star­
vation is possible in this scheme too and we apply the same
solution as described earlier.

Rarely accessed data items may increase the number of
waiting transactions. We illustrate this situation with cache
matrix Table 4.

Table 4. Cache matrix 4

D1 05 06 015 02 03 08 09 016
T1 1 1 1 1 1

T3 I 1 1 1 1

T5 1 1 1 1 1

T6 I 1 1 1 I

T7 1 1 1 1 1

Sum 5 5 5 5 I I I 1 1

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:34:42 UTC from IEEE Xplore. Restrictions apply.

All these transactions need one rarely data items D2, D3,
D8, D9, and D16. With cache size of five data items only
one of the transactions can be executed. Here again the
cache manager has to decide which accessed one of these
five transactions' data items will be cached. All transaction
will eventually be completed, however, on the cost of long
wait time.

We argue that very few transactions show such a diverse
data access pattern and with a suitable size cache this sit­
uation can be efficiently handled. In our simulation exper­
iment we show the effect of rarely accessed data items by
transactions.

Send the new transaction to the server: In this scheme
if the new transaction has no data item in the current cache,
then it is sent to the server immediately for processing. This
will minimize its waiting time. The server sends the result
of this transaction back to MU.

4 Pulling and Caching Hot and Warm Data

in HDC

The cache matrix identifies hot and warm data sets. Our
objective is to download hot data immediately using avail­
able wireless channels. In MDS it is essential to get the
data for caching from the server before MU suffers a hand­
off. Handoff merely introduces delay in getting the data, it
does not stop data acquisition. This delay may affect MDS
throughput but does not interfere with the logic of HDC. For
this reason we did not simulate handoff process.

Broadcasting: Broadcasting is used if the user popula­
tion shares common data interest. It reduces the load on
the server as it has to broadcast only once for the multi­
ple requests for the same data. This makes the server more
scalable when there is a large client population. The server
broadcasts data on a single shared channel on which the
clients listen. The mobile users send their data requests to
the server which is identified by the cache matrix. If the
mobile user had sent his request for every transaction then
the server would have to many requests which may degrade
performance. The cache matrix uses the cache size to limit
the data set for executing transactions. Here we give two
broadcast strategies for data dissemination.

The server receives data item set requirement from every
MU. Let Di be the data set requirement from NIUi.

RxW method: The server forms the set BDS (Broadcast

Data Set)= Di U BDS. The structure of the BDS is as fol­
lows BDS = {(dj, R, W)} Where dj is the data item re­
quested, R is the number of requests for the data item dj
and W is the wait time of the first request for the data item

dj. Broadcasting can be done using RxW [8] method. The
data item selected for the next broadcast is the one which
has maximum value of R* W. When data item dj is broad­
casted its corresponding entry from the BS set is removed.
The mobile users have to continuously monitor the channel
until all its data required is broadcasted.

Simple Broadcast: In this method the server sequentially
broadcasts the complete data set Di requested by NIUi is
broadcasted. The selection of the data set Di to be broad­
casted next is done on FCFS (First Come First Serve) basis.
In the broadcast if index is used then the client knows when
the to expect its data set and can tune in on the channel at
that time. This method avoids the necessity for the client
being continuously connected and hence saves energy of
mobile device. An optimization to this method would be
to broadcast hot data which are common in most of the data
sets. The remaining data items from the data set are broad­
casted in FCFS manner.

5 Performance Analysis

We analyzed the performance in two steps. In the first
step, we measured the behavior of HDC alone and in the
second step we compared its with Least Recently Used

(LRU) cache replacement technique through a detailed sim­
ulation experiment. We selected LRU because it is one of
the most commonly used cache replacement algorithm and
it provides a very high hit rate [7]. In LRU for our compar­
ison we maintain the access history of data item accesses.
When the number of blocked transactions is equal to MPL
cache refresh occurs. The content of cache is determined
as K-most frequently used pages where K is the size of the
cache. The set of data item from K-most frequently used
pages, which are not currently in the cache, are requested
from the server. In our method we determine the content of
the cache based on the current transaction workload.

HDC tries to minimize the cache refresh rate by identi­
fying and caching the exact data requirement set of transac­
tions. Consequently the effective wireless channel utiliza­
tion increases. In our simulation experiment we study the
cache refresh rate, the percentage of executed transactions
in each cache refresh, throughput, waiting time, and rate of
transaction dispatch to servers for execution. Table 5 list the
simulation parameter values we used to drive the simulator.

The data 110 time (data transfer rate from disk to mem­
ory) depends upon a large number of parameters and the rate
is continuously increasing. For our simulation we looked at
the data transfer rate of a number of disk units and iden­
tified a value of lams. A simple formula Data Trans­

fer per second = (Spindle speed-"c-60x Sector per track

x512)-"c-l, 000, 000 can also be used.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:34:42 UTC from IEEE Xplore. Restrictions apply.

We consulted a number of sources to identify a suitable
value for message transfer time between M U and the server
[?, 3, ?, ?]. For a 1.54Mbps bandwidth time a GSM frame
of 156 bytes will take .Sllms to reach the destination [3].
The bandwidth of 1.54Mb is usually quite high and may not
always be available. On the basis of these values and con­
sidering the size of update dispatched by MU we computed
lOms x 2 as an approximate time to send a message to the
server and to compose and send the final results to MU.

Table 5. Simulation parameters and their values

Simulation parameter Value

Database size 5000 entities

Maximum transaction size 10 entities

Minimum transaction size 2 entities

Cache size 100 -350

MU CPU speed 50 MIPS

DES CPU speed 100MTPS

No. of ins!. to perform a read from cache 1000 ins!.

No. of ins!. to perform a write from cache 2000 ins!.

Time to deliver a message over wired network 5 ms

Message delivery time over wireless network 10 ms

MUltiprogramming level (MPL) 5 -100

Update probability 0.0 -1.0

Figure 2 illustrates the flow of transactions through the
simulation model. New transactions arrive to the "Arrival
queue" from where it is scheduled for execution. Initially
when the system is empty as soon the first transaction ar­
rives, we cache all its data and schedule it for execution.
This is equivalent to creating cache matrix for one transac­
tion. This is continued until the cache is full. The other
way is to wait until system has MPL transactions and then
create the cache matrix. This approach will unnecessary in­
crease the waiting time and reduce CPU utilization. Any
new transaction is scheduled for execution only if AT list
has space and the cache has all its data items. If none of
its data item is in the cache, then it is immediately sent to
"DBS arrival queue" for execution by the DBS. If it has at
least one data item in the cache, then it is pushed to the
"Blocked queue" from where it goes to "Arrival queue after
the cache matrix is recreated. The DBS sends the result of
the transaction to M U.

Cache matrix created

New transaction

Blocked queue

ITf
Transaction result

Not all data

DBS arrival queue I in cache

rm MU (CPU) 1 II .1 DBS (CPU) 1
No data item in Arrival queue
cache or execution

Completed 1ransacti�n
attempts> 2

Figure 2. Simulation diagram

5.1 Behavior of HDC

Cache Vs Number of Transactions executed 100OF:::------�---...:.....:.:.:.=...:.:.:..:..:;:.:.:::.:.;;=e---e---e_

900

800

700

600

500

400

300

200

100

50

-+- Executed at DBS server
-e- Executed at MU

Cache Size

Parameters
MPL=30
Total Transaction == 1000

100 150

Figure 3. Number of transactions executed at
MUand DBS

Number of transactions executed at DBS and MU: Fig­
ure 3 shows the number of transactions executed at M U and
DBS. We expected this behavior. As cache sizes increases,
more and more number of transactions are executed at MU.
When the cache size reaches to 200 all transactions find
their data items at MU cache and executed there. This ob­
servation is also verified by data of Table 6.

Cache refreshes with cache size in HDC: Figure 4
shows how cache refresh rate declines when cache size in­
creases. Note that when MPL=30, number of cache re­
freshes is higher than when MPL=lOO. This is because with
MPL= lOO, the next cache matrix is created after 100 trans­
actions have joined the waiting queue and the hot data sat­
isfies more number of transactions. Whereas for MPL=30,
cache matrix is created after only 30 transactions are in the
waiting queue and to process 1000 transactions the cache is
refreshed more number of times. We observe that a cache
size of about 350 can handle good size workload with min­
imum cache refreshes.

Transaction wait time with cache size in HDC: Fig­
ure 5 shows the average transaction wait time as cache size
changes. The average wait time for MPL=lOO is larger than
for MPL=30 for all cache sizes. This results complements
the results of Figure 4. For MPL=lOO cache is not refreshed
until 100 transactions joins the waiting queue, where as in
MPL=30 each transaction has to wait less. Here again the
waiting time reaches to a minimum for a cache size of 350.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:34:42 UTC from IEEE Xplore. Restrictions apply.

Cache size Vs Total Number of Cache Refreshes 90,-----,------,-----,------.-----�----_,
80

70

60

50

40

30

20

10

o�----�-----L----�------�--���� __ 100 150 200 250
Cache size

300 350 400

Figure 4. Number of cache refreshes for a
cache size

.

Cache size Vs Average Waiting Time
25 ,-----,------,-----,�--�.-----�----_,

20

Parameters
� 15 Average Transaction size =10

Total number of transaction = 1000 m c =

� .
� 10
"

o�----�-----L----�------�----�� __ __ 100 150 200 250
Cache size

300 350 400

Figure 5. Average transaction wait time with
cache size

Transactions executed in a cache refresh in HDC: Ta­
ble 6 shows what percentage of transactions is completed
in each cache refresh for an average transaction size = 10
and MPL = 30. As explained before, in the initial cache, a
transaction's required data items are loaded into the cache
(cache matrix creation with one transaction). It continues
with other incoming transactions until there is no room in
the cache. We have fixed an upper limit of cache tries for
a transaction. If a transaction is not executed at MU in two
tries, then it is sent to the server for execution. Note also
that if a new transaction does not have any data item in the
cache, then this transaction is also sent to the server for ex­
ecution. We observe that with cache size of 250 data items

about 39% of transaction are executed in the initial attempt
(no cache refresh) and the rest are executed in the first cache
refresh, thus, no transaction goes to the DBS for lack of
cached data items. As the cache size decreases, the percent­
age of transactions executed in the initial attempt decreases
and the percentage of transaction executed in the first cache
refresh increases, still most of the transactions are executed
in the initial attempt (no cache refresh). We see that even
for cache size of 200 data items all transactions are executed
with initial cache and one cache refresh and no transaction
is sent to the server for execution . The situation begins to
change only when the cache size falls to 150 date items but
again the percentage in the first cache refresh remains quite
low and only 22% of transactions goes to the server. In the
worst scenario where the cache size is dropped to 100 data
items more and more transactions begins to migrate to first
cache refresh attempts and about 60% transactions go to the
DBS directly.

Table 6. No. of tries Vs. Percentage of trans­
actions executed

Cache Initial cache 1 refresh 2 refresh To server

100 12% 21% 7% 60%

150 23% 48% 7% 22%

200 30% 70% 0% 0%

250 39% 61% 0% 0%

5.2 Performance Comparison

In this section we compare the performance of HDC and
LRU algorithms. We maintained identical execution envi­
ronment for a meaningful comparison. In LRU the least
recently used data items were replaced by new data re­
quests. We simulated this algorithm as follows. Initially
the cache is empty. As transactions arrive their data items
were cached until cache became full. If a new transaction
found all its data in the cache, then the transaction is sched­
uled for execution otherwise the transaction is blocked. A
list for frequently accessed data items was maintained and
continuously updated as each transaction enters the system.
When an active transaction left the system, a new transac­
tion is scheduled for execution and its data items are cached
under LRU. The transactions that remain blocked after more
than two cache refreshes are sent to the server for execu­
tion. Note that in this simulation our goal is to compare the
caching scheme with LRU. So we did not simulate broad­
casting which depends on the broadcast scheduling and is
independent of mechanism used for caching at the mobile
client. Since we are focusing only on caching we assumed
presence of on demand channel for every mobile client. In

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:34:42 UTC from IEEE Xplore. Restrictions apply.

future we plan to study effect of broadcasting strategies dis­
cussed in previous section using our caching scheme.

Transaction executed at MU and cache size: One of the
objectives of HDC is to process maximum number of trans­
actions at MUs for improving wireless channel utilization.
Figure 6 shows the relation ship between the percentage of
transactions executed at M U and the cache size. We observe
that HDC executes significantly higher percentage of trans­
actions at MU compared to LRU scheme. The LRU needs a
large size cache (i.e., 350) to execute all transactions at MU

whereas HDC needs only a cache size of 200 to handle the
same workload.

Cache size Vs Percentage of Transaction Executed at MU 1oo,---------:===�-'-----____j---____j---____;il'

90

=> 80
"
"

ai 70
�
.ri 60
g

1 50
I'.
'0 40
.
E j 30

20

10

-+- Cache Matrix Algorithm
-e- Least Frequently Used

MPl=30
Average Transaction Size == 10
Total Number of Transaction == 1000

obc==�====--�-�-� 100 150 200 250 300 350
Cache size

Figure 6. Percentage of transactions exe­
cuted at MU in HOC and LRU.

Cache refreshes with cache size: Figure 7 shows the re­
lationship between the number of cache refreshes and cache
size in these two algorithms. In HDC the number of cache
refreshes are significantly less compared to LRU and the de­
cline in cache refreshes is faster in HDC compared to LRU.
The difference in cache refreshes between HDC and LRU
begins to narrow down only when the cache size = 250. This
difference significantly improves channel utilization (uses
wireless channels less frequently to satisfy transactions' re­
quirements) in HDC.

Transaction wait time: Transaction wait time also affect
system performance. We measured the average wait time
of transactions in HDC and LRU. Figure 8 shows the aver­
age wait time of transaction in HDC and LRU. In HDC the
overall waiting time is significantly less compared to LRU.
The average time converges only when the cache size is 350.
The wait time begins to narrow down after cache size = 300.

Cache size Vs Total Number of Cache Refreshes
120,c---�--�---�--7'-+-=;=� C'''''h':'e M"',:5,,;C", A"',g=O,= ;'h= m'il

-e- Least Frequently Used

100

80

60

40

20

O�--�---L--�---�--���� 100 150 200 250
Cache size

300 350 400

Figure 7. Number of cache refreshes in HOC
and LRU

.
E
CO
�

� 3
. m

j
2

Cache size Vs Average Waiting Time

-+- Cache Matrix Algorithm
-e- Most frequentl Used AI orothm

MPL=30
Average Transaction Slze=10
Total Number of Transactlon= 1000

90LO------�, 5LO------�20� 0------�25� 0------�30�0 ----�350
Cache size

Figure 8. Transaction wait time in HOC and
LRU

Throughput: We compared the throughput of HDC and
LRU for a number of different cache sizes under different
MPLs. All showed similar behavior. Here we have pre­
sented results of two cache sizes.

Figure 9 and Figure 10 show how and MPL affects their
throughput with cache sizes of 70 and 150 respectively. We
see that the throughput of HDC is consistently higher com­
pared to LRU.

At the server also they are subjected to some delay be­
fore they are executed and results are sent to the M U. We
have simulated these delays as follows. We assumed that
every cell has 25 wireless channels for communication. If a
transaction has to be dispatched to the server for processing,

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:34:42 UTC from IEEE Xplore. Restrictions apply.

MPL Vs Throughput
3.5 ,�-�-����---=--;

r=-+-'C'=;'H"'O'''''Da:O:'a =:',"''''h'''e('''H D2c)
:====il

-e- Least Frequently Used(LRU)

25

15

Cache Size == 70
Average Transaction Size == 10
Total Number of Transaction == 1000

05��-�-����-�-�-�-�-� 10 20 40 60 80 100 120 140 160 180 200
MPl

Figure 9. Throughput with different MPLs

then on the average it experiences a delay of 25ms (com­
munication delay lOms + channel assignment and waiting
for the channel 15ms). This value is based on an MPL of
100. Similarly, it experiences a delay of 15ms at the server
side (scheduling delay 5ms + communication delay lOms).
The effect of these delays in LRU is only partially com­
pensated by the reduction in execution time at the server
because server is much faster than the MU.

MPL Vs Through put
3 5,�-�-�-�-�-�r=-+-�c=aC�he7.Ma�"�;XA�,gCO'�lth =il

m
-e- Least Frequently Used

1.5

Cache size == 150
Average Transaction size == 10
Total number of transaction == 1000

0.5
0�� 20:-----':40

--6-':-0
--:8':-0 -�'O::-O --,L"0:---':":40,-----:'":-60--:18':-0 ----:-'

200
MPl

Figure 10. Throughput with different MPLs

The throughput with cache size 70 (Figure 9) is lower
than the throughput with cache size of 150 (Figure 10),
however, this difference is not significant. This increase
is mainly due to the reduction in communication overhead
and waiting time because less number of transactions are
dispatched when cache size = 150. Note that HDC is not
significantly affected mainly because the number of trans­
actions executed at MU with these cache sizes do not differ

significantly (Figure 6). This clearly indicates that HDC
utilizes the cache far efficiently than LRU does.

6 Conclusions

In this paper we presented a caching algorithm, referred
to as HDC (Hot Data Caching), especially suitable for Mo­
bile Database Systems. In addition to HDC, we also pre­
sented a number of scheduling schemes for MUs for effi­
ciently utilizing cached data by transactions.

We compared the performance of HDC with Least Re­
cently Used (LRU), which is most commonly used cache re­
placement algorithm. Our performance comparison through
detailed simulation showed that HDC uses fewer wireless
channels and cache refreshes compared to LRU for process­
ing the same workload. We also observed that the through­
put of HDC is consistently superior to LRU mainly because
in LRU majority of transactions are processed at the server.
This delays transaction procesing and also increases com­
munication overhead.

References

[1] Chrysanthis, P. K., "Transaction Processing in Mobile
Computing Environment". In IEEE Workshop on Ad­

vances in Parallel and Distributed Systems, pages 77-
82, October 1993.

[2] Gray, J., and Franco Putzolu, "The Five Minute Rule
for Trading Memory for Disc Accesses and the 5 Byte
Rule for Trading Memory for CPU Time", Technical
report 86.1, February 1986, Tandem Computers.

[3] Vijay K. Garg and Joseph E. Wilkes. "Wireless Per­
sonal Communication Systems", PH PTR, 1996.

[4] v. Kumar. "Performance of Concurrency Control
Mechanisms in Centralized Database Systems", Pren­
tice Hall, 1996.

[5] R. Kuruppillai, M. Dontamsetti, and F. J. Cosentino.
"Wireless PCS", McGraw-Hill, 1997.

[6] M. Mouley and M-B. Pautet. "The GSM System for
Mobile Communications", Cell and Sys., 1992.

[7] A. Silberschatz, P. Galvin, and G. Gagne. "Applied
Operating System Concepts", John Wiley, 2000.

[8] Demet Aksoy, Michael Franklin, RxW: A Scheduling
Approach for Large Scale on-demand Data Broadcast,
IEEE/ACM Transactions On Networking, Volume 7,
Number 6, December 1999.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 22:34:42 UTC from IEEE Xplore. Restrictions apply.

