
CFP Taxonomy of the Approaches
for Dynamic Web Content Acceleration

Stavros Papastavrou1, George Samaras1, Paraskevas Evripidou1,
and Panos K. Chrysanthis2

1 University of Cyprus, Department of Computer Science,
P.O.Box.20537, CY-1678 Nicosia, Cyprus

{stavrosp, cssamara, skevos}@ucy.ac.cy
2 University of Pittsburgh, Department of Computer Science,

Pittsburgh, PA 15260, USA
panos@cs.pitt.edu

Abstract. Approximately a decade since it was first introduced, dy-
namic Web content technology has been gaining in popularity over sta-
tic means for content dissemination. Its rising demand for computational
and network resources has driven researchers into developing a plethora
of approaches toward efficient content generation and delivery. Motivated
by the lack of a comprehensive study on this research area, we introduce
a novel research-charting, semi-formal framework called the CFP Frame-
work, on which we survey and compare past and present approaches for
dynamic Web content acceleration. Our framework not only serves as
a reference map for researchers toward understanding the evolution of
research on this particular area, but also reveals research trends toward
developing the next generation of dynamic Web content middlewares.

1 Introduction

The Internet and the Web have become commonplace and their growth is un-
precedented. This led to a proliferation of technologies to improve its usefulness
and user satisfaction. Dynamic Web content (DWC) technologies facilitate (a)
the adaptation of content served to a particular group of people (i.e., people that
live within a certain time zone or Internet domain region), and (b) the person-
alization of content to meet an individual’s expectations and needs (i.e., Web
banking or e-commerce). According to [13], the above two categories of DWC
comprise the 20% of Internet traffic each. DWC enables a new order of Web
applications including online financial-related services, news sites, portals and
e-learning brokerage platforms.

DWC technology involves a variety of cooperating components that are largely
defined as content middleware systems. Arranged in an n-tier architecture, as
seen in Figure 1, they cooperate with the goal of delivering content on demand to
Web users. A Proxy server intercepts client requests to Web servers and delivers
cached content, if certain criteria hold. Otherwise, the request is forwarded to

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 365–378, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

366 S. Papastavrou et al.

the Web server that invokes the appropriate application server, which generates
the content by querying local and/or remote databases.

A dynamic Web page (DWP) consists of static and dynamic content junks
called fragments, typically arranged in a template file interleaved with static
HTML code. Dynamic fragments reside in templates in the form of script code
blocks that must be processed by the application server. This processing, as il-
lustrated in Figure 1, may require the execution of a significant number of script
lines for performing tasks such as database queries, image processing, complex
input Form generation, or even information retrieval and manipulation from re-
mote hosts. For instance, the template file of the PC customization dynamic Web
page of the www.higrade.com online computer retailer contains approximately
2000 lines of script code, having more than 20 database queries, distributed
across 6 dynamic fragments.

Since the generation and delivery of dynamic Web content requires increased
computational and network resources, especially during peak hours, various bot-
tlenecks occur. The study in [5] identifies the bottlenecks on three typical dy-
namic content Web applications. A significant number of research approaches
for accelerating DWC are proposed in the literature. As a result, state-of-the-
art content middleware technology is found today in many commercial products
that incorporate many of the proposed approaches, proving in this way the im-
portance and applicability of this particular research area.

DLLsDLLs

Local
Application

Content
DB

HTML
Template

.php .asp
.cfm��

��
Script
Code

Blocks
SQL has

Remote
Data

Centers

xml

Javascript
Styles

Images

.js .css

Web Server

���
Application Server(s)

Parses

 Invokes

Cached Templates

Reuses

http requests

Proxy Server

DLLs

Fig. 1. The n-tier architecture and the process of generating dynamic Web Content

Motivated by the lack of a comprehensive study on this research area, we in-
troduce the CFP Framework, a novel semiformal framework that facilitates the

CFP Taxonomy of the Approachesfor Dynamic Web Content Acceleration 367

classification of existing research approaches based on their underlying method-
ologies and principles. We then attempt a complete literature review and concep-
tual comparison of the surveyed approaches on the CFP Framework. The purpose
of the framework is not to reveal the ‘best’ approach, but to be a handy tool
for researches toward understanding the evolution of research around DWC ac-
celeration. The framework also reveals research trends that can guide researches
into defining the next generation of dynamic Web content middlewares.

The next section introduces the CFP Framework and explains the reasoning
behind its metrics. Section 3 surveys research on dynamic Web content accel-
eration and classifies the approaches. In Section 4, we gather and compare the
surveyed approaches on the CFP Framework. We recap in Section 5.

2 The CFP Framework

Since a quantitative comparison (i.e., a performance comparison) between the
approaches that we survey in the next section is rather unfeasible due to realistic
and complexity constrains, we focused instead on establishing a theoretical, com-
parative semi-formal framework. We consider the fact that the majority of the
surveyed approaches employ and combine to some extend three common char-
acteristics or practices. Those are Caching, Fragmentation and Polymorphism
and comprise the three principles of the CFP Framework.

The principle of Caching suggests a multi-tier reuse of content on network
sites such as proxies, Web servers, application servers, or even at the client
browser. The principle of Fragmentation suggests the breaking of a dynamic
Web page down to computationally, but not necessarily semantically, distinct
parts. This principle enables (a) finer-grained Caching and (b) concurrency in
DWC generation. The notion of Polymorphism allows for a dynamic Web page
to be assembled in more than one way without the need to regenerate any con-
tent. More specifically, the layout of the DWC fragments is decided dynamically
according to, for example, the client’s preferences. Polymorphism, in this way,
enables another dimension of content dynamism by allowing the templates to
be dynamic themselves. In the CFP acronym, Caching precedes the other two
principles as the earlier to appear, and Polymorphism is the most recent.

The intuition behind the use of the CFP Framework is that the three prin-
ciples of the framework can be viewed as orthogonal dimensions along which
different research approaches can be classified. Thus, the framework can be rep-
resented as a cube as shown in Figure 2.

We make use of the CFP Framework by plotting a particular approach on
the cube, given its corresponding values for each principle. For that purpose,
we define value to be the extend of employment of a particular principle. Since
the three principles are rather qualitative and subjective than quantitative, this
evaluation requires assumptions and approximations in order to define the ap-
propriate metric for each principle. For readability, Figure 2 illustrates the basic
metrics only for the principles of Caching and Fragmentation.

The metric for the principle of Caching is the proximity of cached docu-
ments. Therefore, we state that an approach that supports Caching of dynamic

368 S. Papastavrou et al.

�

�
�
�

Fine-Grained
Client

Caching �
�
�
�
�

Some support
for (Server-side)
Fragmentation

Server-side
Caching

�

Fine-Grained
Server-side

Caching

Proxy-side
Caching

�
�

Fine-Grained
Proxy Caching

& Active
Caching

Arbitrary
(Server-side)
Fragmentation

Client-side
Caching of

whole pages

Y

Fragmentation

Polymorphism

Caching

Server-side
Dynamic
arrangement of
fragments

Caching
document
fragments

at the client

Not
Applicable

Not
Applicable

X

Fig. 2. The CFP Framework and its Approximate Metrics

content closer to Web users is evaluated higher from others that cache content
closer to the Web server. Moreover, we state that an approach is fully employing
Fragmentation if it supports for an arbitrary number of fragments in a dynamic
Web page and of any computational type and size. Finally, an approach fully em-
ploys Polymorphism if it provides support for an arbitrary number of alternative
arrangements for a dynamic Web page. Since we realize the notion of Polymor-
phism in combination with Fragmentation, we assert that it cannot be employed
as a stand-alone principle or in combination only with Caching. Therefore, it
appears as ‘not applicable’ at the corresponding edges of the CFP framework.

For example, the approach ‘X’ plotted on the framework in Figure 2 refers
to an approach that (a) supports proxy-side Caching of DWC, and (b) fully
supports Fragmentation. In another example, approach ‘Y’ caches arbitrary
DWC fragments at the client-side and provides some basic support for differ-
ent arrangements of the fragments.

3 Taxonomy of Approaches

In this Section, we survey the proposed approaches for accelerating the genera-
tion and delivery of dynamic Web content. We present the taxonomies in a more
natural and reader-friendly way, rather than applying a strict technical order.
Due to the lack of space, we exclude early, assorted and hardware techniques
not directly related to the CFP framework.

3.1 Server-Side Fragmentation

The first class of approaches that we survey relate to the principle of Fragmen-
tation. An early form of Fragmentation is encountered in Server-Side Includes

CFP Taxonomy of the Approachesfor Dynamic Web Content Acceleration 369

(SSI) [2]. According to SSI, some simple dynamic parts of a page can be isolated
and regenerated every time the page is requested such as a counter, the time at
the server, and date last modified. [8] suggests a more general form a Fragmenta-
tion that allows the dissection of a dynamic page into distinct parts (fragments)
that are assembled according to a template file. A fresh version of a fragment
is generated every time its underlying data objects are modified, using database
triggers. With its fresh fragments in place, a dynamic page can be either im-
mediately delivered or cached (as discussed next). More recently, [21] proposes
a technique for accelerating template parsing and execution by processing the
dynamic fragments of the template in a concurrent fashion. This approach, how-
ever, achieves increased server throughput and lower client response times when
the system is not fully loaded. It is worth mentioning that the identification of
the fragments takes place at run time (during parsing) and requires no a-priori
compilation or special handling of the template.

3.2 Server-Side Caching

Content Caching boosts dynamic content generation by eliminating redundant
server load. There are many interesting approaches for server-side Caching that
vary mostly on the granularity and level of Caching. In [16] and [14], the Caching
of dynamic documents at the granularity of a page is proposed for early con-
tent middlewares such as CGI, FastCGI, ISAPI and NSAPI. Extending their
work in [14], the authors in [24] propose a Dynamic Content Caching Protocol
(DCCP) that can be implemented as an extension to HTTP. This protocol allows
for content middlewares, such CGI and Java Servlets, to specify full or partial
equivalence amongst different URIs (HTTP GET requests). The equivalence in-
formation is inserted by the content middleware into the HTTP response header
of a dynamically generated page, and stored at the Caching module along with
the cached page. For example, the URI http://www.server.com/LADriveTo.php
?DestCity=newyork instructs the content middleware to generate a page with
driving directions from Los Angeles to New York. Prior to transmitting the result
page, the middleware inserts the “cache-control:equivalent result=Dest=queens”
attribute in the HTTP response header. The Caching module will cache the page,
transmit it to the client, and store the cache-control directive for future use. A
subsequent client request for the same URL, but for a different DestinationCity
value, will be evaluated by the cache module for a possible mach with the value of
“queens” or “newyork”. If a much is found, then the cached page is transmitted
to the client.

3.3 Fine-Grained Server-Side Caching

To achieve greater reuse of cached content, across both time and multiple users,
Caching at finer granularities is proposed. The authors in [28] suggest the Caching
of static HTML fragments, XML fragments and database query results. This
approach, however, applies to Web applications that follow a strict declarative
definition and follow a certain implementation. In addition, Caching cannot be

370 S. Papastavrou et al.

applied to arbitrary parts of a DWP. A more general, flexible, and easier-to-
use method for fragment Caching is introduced later on in [10] and studied
more thoroughly in [9]. According to this method, Caching can be applied to
an arbitrary fragment of a template by first wrapping it around with the appro-
priate tags (explicit tagging). XCache [3], is a commercial product that installs
as a plug-in on popular dynamic content middlewares, and supports fragment
Caching of any type using explicit tagging. Also, the Cold Fusion content mid-
dleware provides tags for explicitly defining the fragment to be cached.

3.4 Caching at the Proxy Server

Proxy Caching is the most popular approach for faster delivery of reusable sta-
tic content such as static HTML pages and media files [26]. A Proxy degrades
bandwidth consumption by eliminating unnecessary traffic between clients and
servers, given that it is strategically located1 between them. Proxy servers are
found in many network points along the client/server path, with most popular
those that reside on an enterprise’s network boundaries. It has been identified
that the usual hit ratio for proxy caches is around 40% [27], while another 40%
of the traffic is redundant when proxies are employed [25].

A popular approach for Web sites to meet the growing demand on DWC de-
livery is to lease cache space on a service-based network of interconnected proxy
servers called Content Distribution Networks (CDN). A typical CDN employs a
set of proxy servers strategically arranged by geographical, or network location.
Client requests for content are routed to the closest proxy server of the CDN net-
work. The list of popular CDNs includes brand names such as Akamai, Yahoo,
Intel and Nortel. It is noteworthy that for a Web site to be registered and served
by a CDN network, an off-line procedure of tagging the source code (HTML
script files) of the Web site is required. A thorough survey on the procedures,
practices and performance of CDNs can be found in [17].

Despite the location of cached content, Server and Proxy Caching find their
major implementation difference on how data consistency between the cached
content and the underlying database objects is enforced. For the former, cache
consistency is easier to be enforced since the Caching module is local to the
content middleware (as seen in [8]). For the latter case, efficient cache invalidation
techniques are required as discussed later on.

With the evolution of dynamic content middlewares, proxy caches had to
adapt by providing support for dynamic documents. Early research conducted
in [24], proposes the Caching of dynamic content at the granularity of a page
by using the Dynamic Content Caching Protocol as previously discussed. The
Caching protocol is applicable for both server-side and proxy-based Caching,
and works by allowing the manipulating of HTTP header information and URL
query string parameters (GET variables).

Another interesting approach for Caching dynamic pages is found in [19].
Analogous to the Caching protocol approach discussed earlier, this one suggests

1 Closer in terms of network latency, topology or geographic location.

CFP Taxonomy of the Approachesfor Dynamic Web Content Acceleration 371

that the proxy server be allowed to examine the HTTP POST variables that are
submitted as part of a client HTTP request for a URI . In brief, the proxy server
attempts to reuse cached SQL query results by looking up on a predefined map-
ping called Query Template Info. This mapping establishes a relation between
(a) the HTML form fields that are submitted with a URI request, and (b) the
SQL query that uses those form fields as query parameters such as WHERE and
ORDER BY clauses. Two strong points of this work is that (a) the proxy ex-
tracts and reuses portions of cached query results, if necessary, to satisfy future
requests, and (b) it compliments a cached query result on demand by negotiat-
ing with the content middleware. Since the HTTP post variables are generated
from HTML form fields, this approach is called form-based. The manipulation of
cached content at the proxy server lies under the more general notion of Active
Caching as we discussed later on in 3.10.

Both the form-based and the protocol-based approaches discussed above do
not address the important issue of cache consistency. The authors in [6] pro-
pose an invalidation technique for cached dynamic pages, which uses a (triple)
mapping between (a) the database content, (b) the SQL queries and (c) the dy-
namical Web pages. This mapping explicitly identifies the database objects that
affect a set of queries which in turn are involved in generating a set of DWPs.
According to this technique, a cached page is invalidated once a database object
that relates to an SQL query which, in turn, is involved in generating that page
is updated. Extending their work in [6], the authors in [18] illustrate how this
triple-mapping invalidation approach is applied in a real world scenario when all
four the database server, the content middleware, the Web server and the proxy
cache are entirely independent Vendor products. Additionally, a technique for
cached content freshness based on parameters such as user request, database
content update rate and network latency is proposed.

3.5 Fine-Grained Proxy Caching

Caching at the granularity of a fragment is consequently proposed for proxy
caches. According to fine-grained proxy Caching, the template file is cached
at the proxy server whereas its dynamic fragments are either reused from the
proxy cache or fetched fresh from the Web server. Edge Side Includes (ESI) was
introduced as a standard for Caching page templates along with their fragments
on proxy servers [1]. According to ESI, the dynamic fragments of a page are
explicitly marked using tag-based macro-commands inside the page’s template
file. An ESI-compliant proxy server must provide support for parsing the cached
template file and executing macros that dictate whether a fragment should also
be retrieved from cache, or pulled from the original server. ESI macros have
access to a client’s HTTP request attributes (cookies, URL string, browser used)
in order to choose between fragment alternatives. An example of that would be
the identification of the client’s browser version or vendor in order to pick the
appropriate fragment that meets the browser capabilities. Endorses of the ESI
technology are leading CDN brands such as Akamai, database vendors such as
Oracle, and content management leader Vignette.

372 S. Papastavrou et al.

3.6 Client-Side (Fine-Grained) Caching

Surprisingly, the notion of assembling a dynamic page away from the original
content middleware was firstly introduced in [12] not for proxy caches, but for
client browsers. The proposed technique, called HPP (HTML pre-processing),
requires from the client browsers the extra functionality of Caching and process-
ing (parsing) a template file, containing blocks of macro-commands, prior to
rendering a dynamic page. Each macro-command block generates from scratch
a page fragment by manipulating local variables and strings. This idea can be
overview as the client-side equivalent to Server-Side Includes discussed earlier.

Extending their work in [12], the authors in [23] propose the Client-Side
Includes (CSI) by merging HPP and ESI. In order to provide support for CSI in
the Internet Explorer Web browser, the authors propose a generic downloadable
wrapper (plug-in) that uses JavaScript and ActiveX. The wrapper pulls and
caches at the client side the template and fragments that are associated with a
requested DWP, assembles them together according to the ESI directives in the
template, and finally renders the page. According to the authors, CSI is suitable
for ‘addressing the last mile’ along the client-server network path suitable for
low-bandwidth dial-up users, even in the absence of an edge server (i.e., a CDN).

3.7 Polymorphism: A Second Dimension of Content Dynamism

Caching at the fragment level requires the existence of a page layout/template
that dictates a strict arrangement for cached DWC fragments. If we loose up
this restriction, by allowing for more than one template per dynamic page, we
achieve Polymorphism (in Greek: the ability for something to show different
phases-morphs) in DWC Caching. It is, therefore, left to the content middleware
to pick the right template, according to the user’s preferences (e.g., the Yahoo!
Web site). A recent study in [11] proposes the use of multiple templates for
a specific dynamic page along with proxy-cached page fragments. Following a
client’s request for a dynamic page (e.g., www.server.com/page1.php?id=2), the
proxy server always routes the request to the origin content server and causes
the execution of the original script (for example homepage.php). This routing
is necessary for determining the desired template for page1.php at run time.
The selected template is then pushed to the proxy server where it is parsed for
identifying which fragments are reused from cache and which ones are requested
fresh from the server. After all the fragments are inserted into the template, the
complete assembled page is transmitted to the client. The performance analy-
sis conducted in [11] demonstrated solid bandwidth reductions when applying
fragment Caching, however, performance analysis for other critical metrics, such
as scalability and responsiveness, remains to be seen. We believe that both the
necessary routing of each request to the origin content server and the invoca-
tion of the original script can heart client response time and server scalability
respectively. Nevertheless, the techniques introduced in this approach are an ex-
cellent starting point for further research. Polymorphism is also supported by
the ESI technology in an indirect manner. Instead of choosing from a pool of
templates, basic ESI branching commands may reorganize the layout inside a
template according to client credentials (HTTP request header information).

CFP Taxonomy of the Approachesfor Dynamic Web Content Acceleration 373

3.8 Support for Inter-dependent Fragments

Caching of dynamic content at the fragment level, as employed today by proxy
servers, assumes that individual page fragments have independent Caching char-
acteristics. This assumption has simplified the design and deployment of proxy
caches based on either the Edge Side Includes or other proposals. There exist,
however, Web applications for which two or more fragments of the same dynamic
page are dependent to each other. An example is an online retailer’s Web page
that includes among others (a) a fragment containing script code for evaluat-
ing and regenerating an HTML form used for product customization, and (b)
a fragment with script code for calculating and rendering the shopping cart’s
total charge (including the value of the product being customized by the previ-
ous fragment). Upon client submission, the second fragment cannot execute to
calculate the total charge unless the previous fragment has evaluated the HTML
form input. In this case, the two fragments must execute in a sequential (ser-
ial) manner to ensure consistency between the total charge and the customized
product’s value.

The notion of fragment dependency in dynamic content generation has been
studied first in [8] and later on in [21]. In brief, the former study suggests the
construction of a separate Object Dependency Graph (ODG) where the objects
in this case are the fragments ids (generated fragments are stored as separate
files). Furthermore, a dynamic page is defined by a template file with references
to fragment files using include statements. In addition, database triggers are
installed to ensure that upon database content update, the affected fragments
(and their dependent ones) are regenerated in the right order. Client requests
for a particular page are fulfilled by inserting into the appropriate template the
already generated fragment files. Although the whole procedure requires a quite
complex setup, this approach is suitable for publishing heavily requested por-
tals and news sites with frequently updated content and less client interaction.
The latter study, suggests a simpler and more general approach for identifying
dependencies between page fragments. Instead of using an external fragment
dependency graph in conjunction with database triggers, the fragment depen-
dencies are defined at the beginning of each template file. For example, the
tag <dependency source fragment=3 target fragment=5> informs the content
middleware that the third fragment to be encountered during parsing must be
executed before the fifth fragment. This inline and immediate definition of frag-
ment dependencies ensures consistency between dependent fragments, since this
approach attempts to execute all the fragments of a template in a concurrent
fashion (see Section 3.1). As opposed to the former approach, this one is suitable
for more interactive Web applications i.e., an online retailer shop.

3.9 Caching with Delta Encoding

Delta encoding is a popular technique for efficiently compressing a file rela-
tively to another one called the ’base’ file [15]. This is achieved by computing
and storing the difference between the file being compressed and the base file.

374 S. Papastavrou et al.

Streaming media compression, displaying differences between files (the UNIX
diff command) and backing-up data are common applications of delta encoding.
Under the assumption that consecutive client requests for a specific URI would
generate a sequence of moderately different dynamic pages, Delta encoding can
be exploited as an alternative for Caching dynamic content. [22] proposes the
Caching of a base file for each group (also called Class) of correlated documents
i.e., pages that share a common layout. With the base file cached, the next client
request would force the content middleware to compute the Delta between the
new dynamic page that the client would normally receive and the base file.
The computed Delta is then transmitted from the content middleware to the
side where the base file is cached for computation of the new dynamic page.
Eventually, the result is transmitted to the client. An interesting feature of this
’class-based delta-encoding’ approach, is that the base file can be cached either
at the server-side, proxy-side, or even at the client browser itself as long as the
required infrastructure exists. In the latter case, Delta encoding benefits could
low-bandwidth users. [22] demonstrated solid bandwidth savings and reduced
client perceived latency, however, those performance gains reduce the average
system throughput to 75% due to increase the CPU overhead of computing the
deltas. Nevertheless, we consider Delta encoding for Caching DWC as an exciting
open topic of research.

3.10 Active Caching

The notion of Active Caching refers to the ability possessed by a Caching middle-
ware to manipulate cached content instead of requesting fresh content from the
server. The approach found in [7] piggybacks a Java object into a dynamically
generated document, which is then cached at the proxy. The proxy provides a
Java runtime environment in which that object executes in order to modify the
dynamic parts of the cached document according to a client’s preferences. Ex-
amples of document modifications include advertising banner rotation, logging
user requests, Server Side Includes execution and even Delta compression. Be-
sides these general types of modification, the Java object can personalize cached
documents by retrieving personal information from the Application Database
at the server side. Data chunks of personal information are kept by the object
for future reuse. Building up on this approach, a more general form of DWC
Caching with Active Caching is suggested in [20]. This one is very similar to
the ’form-based’ approach discussed earlier in the sense that the Java object
manipulates HTTP post variables (the Form input) for filling the dynamic parts
of the cached document. In general, those two Active Caching approaches dif-
fer from other approaches that support Caching and Fragmentation since the
dynamic parts (or fragments) are not decoupled (stored separately) from the
cached document (or template).

Active Caching of this form can be viewed as a means of content middle-
ware migration. Original executable code and data, both parts of the content
middleware, can be packed along with a mobile object (called Mobile Agent)
that dispatches to a destination where it can better serve the client (i.e., a proxy

CFP Taxonomy of the Approachesfor Dynamic Web Content Acceleration 375

server). This ambitious approach aims at alleviating the processing bottleneck
from the content middleware, while reducing unnecessary network traffic by em-
ploying Caching and proxy-side computation.

Since the notion of Active Caching is supported by mobile code or function
calls that accompanies relevant data, then an alternative or indirect form of
Active Caching can be achieved by employing Active XML (AXML) [4]. Doc-
uments written according to AXML contain data in XML and calls/references
to Web Services that fill-in on demand the missing (or dynamic) parts of the
documents. In extend, AXML documents can be cached and materialized prior
to transmission to Web users.

4 Conceptual Comparison of the Approaches

4.1 General Remarks

In this Section, we plot the surveyed approaches and technologies on the CFP
Framework cube (Figure 3). This allows for a high-level comparison of the ap-
proaches, as well as for identifying research trends. In addition to the three
dimensions/principles of Caching, Fragmentation and Polymorphism, we show
how recent an approach is by using a gray scale background. At the heart of the
framework, with null values for each principle, we place CGI as the primary dy-
namic content middleware. An immediate observation from Figure 3 is that the
trend in research is toward refining and extending the employment of the three
principles while attempting to combine them. In other words, dynamic content
tends to be cached closer to the client, at finer granularities, and under different
arrangements. This is crucial for modern Web applications that require content
personalization and support for low-bandwidth (mobile) users.

4.2 Detailed Comparison and Discussion

As we observe on the CFP Framework, the majority of early research in acceler-
ating DWC has focused on Caching whole pages (or slight variations of it). Page-
level Caching does not meet the fine-grained Caching requirements of modern
Web applications. However, within this group of page-level Caching approaches
the most recent one that employs Delta Encoding appears very promising in-
terms of performance, especially for low bandwidth users such as mobile users.
Therefore, we recommend an implementation that supports Fragmentation that
would encapsulate the Caching characteristics of modern Web applications.

Active Caching, as introduced in [7] and explored more in [20], combines the
advantages of proxy-side Caching while providing some support for Fragmen-
tation. Both approaches do not employ full Fragmentation since the fragments
are not decoupled from the template (are not stored separately), and therefore
cannot be cached and reused. For the same reasons, we assert that Server Side
Includes (SSI), as discussed in Subsection 3.6, provides the same level of Frag-
mentation. On the other hand, the references to XML services that the Active

376 S. Papastavrou et al.

 Fragmentation + Server-side Caching: [8]
Active XML: [4]

ESI, CDN: [1]

CSI: [23]

Active Caching: [7, 20]

HPP: [12]

other: [6, 18]

Form-based Caching: [19]

Delta: [22]

F

PC

Server-side DCCP: [24]

Proxy-side DCCP [24]

 Server-side Fragment Caching 2: [9, 10]

[11]

 Server-side Fragment Caching 1: [28]

CGI: pioneer
method with no
optimizations

Support by modern
scripting languages

(ASP, PHP, CFM)

SSI: [2]

C: Caching
F: Fragmentation
P: Polymorphism

Fragmentation: [21, XCache, Cold Fusion]

xxxxxx

more recent

Fig. 3. The CFP Framework with the plotted proposed approaches and technologies.
The numbers relate to the reference numbers in the bibliography

XML approach embeds within a template can be reused by other templates
allowing in this way for arbitrary Fragmentation.

The early publishing system proposed in [8] supports arbitrary Fragmenta-
tion of DWC, however, it provides server-side Caching only at the granularity of
page. The recent approach found in [21] supports arbitrary Fragmentation, inner-
fragment dependency, and immediate execution of fragments with no Caching.
The former approach is more suitable for less interactive Web applications such
as portals and news sites since the generation of content is data-driven (i.e.,
triggered by database changes). The later approach better suits interactive Web
applications, such as e-commerce, where fragment generation is user-driven.

The approach proposed in [28] provides server-side Caching but does not
employ full Fragmentation. This is because even though the fragments are de-
coupled from the template, the approach allows for only specific forms of con-
tent (such as XML and queries) to be isolated and cached. The more recent
approach found in [10] and [9] works around this problem by providing support
for Caching of any type of content, at any granularity, on the server. To the same
extend, scripting languages such as PHP, Cold Fusion, ASP and XCache provide
programming-level support for arbitrary server-side Caching. Edge Side Includes
extends [10] and [9] by moving arbitrary fragment Caching from servers to prox-
ies. Finally, [11] compliments ESI (with Polymorphism) by supporting dynamic
arrangements of the cached fragments at the proxy. The original Client Side
Includes approach, as proposed in [12], employs full Caching, and it targets low-
bandwidth clients. However, for the same reasons discussed in Active Caching
and Server Side Includes, the approach does not provide full Fragmentation since

CFP Taxonomy of the Approachesfor Dynamic Web Content Acceleration 377

it does not allow for arbitrary fragment Caching. The more recent and improved
version of Client Side Includes, as proposed in [23], supports full Fragmentation
by allowing arbitrary content fragments to be cached at the client browser.

5 Conclusion

In this paper, we surveyed and classified the research approaches and technolo-
gies for accelerated dynamic Web content generation and delivery. In order to
perform a structured conceptual comparison of the approaches, we introduced
the CFP Framework. We believe that our work can be used by researches not
only as a study for understanding dynamic Web content technology, but also
as point of reference toward developing the next generation of dynamic Web
content middlewares.

References

1. The edge-side includes initiative. http://www.esi.org.
2. Server-side includes. http://hoohoo.ncsa.uiuc.edu/docs/tutorials/includes.html.
3. Xcache: The cache management solution. http://www.xcache.com.
4. Abiteboul, S., Benjelloun, O., Manolescu, I., Milo, T., Weber, R.: Active xml:

Peer-to-peer data and web services integration. In VLDB (2002)
5. Amza, C., Cecchet, E., Chanda, A., Cox, A., Elnikety, S., Gil, R., Marguerite, J.,

Rajamani, K., Zwaenepoel, W.: Specification and implementation of dynamic web
site benchmarks. In IEEE 5th Annual Workshop on Workload Characterization
(2002)

6. Candan, K. S., Li, W. S., Luo, Q., Hsiung, W. P., Agrawal, D.: Enabling dynamic
content caching for database-driven web sites. In SIGMOD Conference (2001)

7. Cao, P., Zhang, J., Beach, K.: Active cache: caching dynamic contents on the web.
In Distributed Systems Engineering 6(1) (1999) 43–50

8. Challenger, J., Iyengar, A., Witting, K., Ferstat, C., Reed, P.: A publishing system
for efficiently creating dynamic web content. In INFOCOM (2) (2000) 844–853

9. Datta, A., Dutta, K., Ramamritham, K., Thomas, H. M., VanderMeer, D. E.:
Dynamic content acceleration: A caching solution to enable scalable dynamic web
page generation. In SIGMOD Conference (2001)

10. Datta, A., Dutta, K., Thomas, H. M., VanderMeer, D. E., Ramamritham, K.,
Fishman, D.: A comparative study of alternative middle tier caching solutions to
support dynamic web content acceleration. In The VLDB Journal (2001) 667–670

11. Datta, A., Dutta, K., Thomas, H. M., VanderMeer, D. E., Suresha, K. Ramam-
ritham, K.: Proxy-based acceleration of dynamically generated content on the
world wide web: An approach and implementation. In SIGMOD Conference (2002)
97–108

12. Douglis, F., Haro, A., Rabinovich, M.: HPP: HTML macro-preprocessing to sup-
port dynamic document caching. In USENIX Symposium on Internet Technologies
and Systems (1997)

13. Feldmann, A., Caceres, R., Douglis, F., Glass, G., Rabinovich, M.: Performance of
web proxy caching in heterogeneous bandwidth environments. In INFOCOM (1)
(1999) 107–116

378 S. Papastavrou et al.

14. Holmedahl, V., Smith, B., Yang, T.: Cooperative caching of dynamic content on
a distributed web server. In IEEE International Symposium on High Performance
Distributed Computing (1998) 243

15. Hunt, J. J., Vo, K. P., Tichy, W. F.: Delta algorithms an empirical analysis. ACM
Transactions on Software Engineering and Methodology (1998) 7(2):192–214

16. Iyengar, A., Challenger, J.: Improving web server performance by caching dynamic
data. In USENIX Symposium on Internet Technologies and Systems (1997)

17. Krishnamurthy, B., Wills, C. E., Zhang, Y.: On the use and performance of content
distribution networks. In Internet Measurement Workshop (2001) 169–182

18. Li, W. S., Candan, K. S., Hsiung, W. P., Po, O., Agrawal, D.: Engineering high per-
formance database-driven e-commerce web sites through dynamic content caching.
In EC-Web (2001) 250–259

19. Luo, Q., Naughton, J. F.: Form-based proxy caching for database-backed web sites.
In The VLDB Journal (2001) 191–200

20. Luo, Q., Naughton, J. F., Krishnamurthy, R., Cao, P., Li, Y.: Active query caching
for database Web servers. (2000) 92–104

21. Papastavrou, S., Samaras, G., Evripidou, P., Chrysanthis, P. K.: Fine-grained
parallelism in dynamic web content generation: The parse dispatch and approach.
In CoopIS/DOA/ODBASE (2003) 573–588

22. Psounis, K.: Class-based delta-encoding: A scalable scheme for caching dynamic
web content. In ICDCS Workshops (2002) 799–805

23. Rabinovich, M., Xiao, Z., Douglis, F., Kalmanek, C. R.: Moving edge-side includes
to the real edge - the clients. In USENIX Symposium on Internet Technologies
and Systems (2003)

24. Smith, B., Acharya, A., Yang, T., Zhu, H.: Exploiting result equivalence in caching
dynamic web content. In USENIX Symposium on Internet Technologies and Sys-
tems (1999)

25. Spring, N. T., Wetherall, D.: A protocol-independent technique for eliminating
redundant network traffic. In Proceedings of ACM SIGCOMM (2000)

26. Wang, J.: A survey of Web caching schemes for the Internet. ACM Computer
Communication Review (1999) 25(9):36–46

27. Wolman, A., Voelker, G. M., Sharma, N., Cardwell, N., Karlin, A. R., Levy, H. M.:
On the scale and performance of cooperative web proxy caching. In Symposium
on Operating Systems Principles (1999) 16–31

28. Yagoub, K., Florescu, D., Issarny, V., Valduriez, P.: Caching strategies for data-
intensive web sites. In The VLDB Journal (2000) 188–199

	Introduction
	The CFP Framework
	Taxonomy of Approaches
	Server-Side Fragmentation
	Server-Side Caching
	Fine-Grained Server-Side Caching
	Caching at the Proxy Server
	Fine-Grained Proxy Caching
	Client-Side (Fine-Grained) Caching
	Polymorphism: A Second Dimension of Content Dynamism
	Support for Inter-dependent Fragments
	Caching with Delta Encoding
	Active Caching

	Conceptual Comparison of the Approaches
	General Remarks
	Detailed Comparison and Discussion

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

