
The VLDB Journal (2004) 13: 384–403 / Digital Object Identifier (DOI) 10.1007/s00778-004-0138-0

Balancing energy efficiency and quality of aggregate data in sensor networks�

Mohamed A. Sharaf, Jonathan Beaver, Alexandros Labrinidis, Panos K. Chrysanthis

Department of Computer Science, University of Pittsburgh, Pittburgh, PA 15260, USA
(e-mail: {msharaf, beaver, labrinid, panos}@cs.pitt.edu)

Edited by J. Gehrke and J. Hellerstein. Received: October 22, 2003 / Accepted: April 16, 2004
Published online: November 12, 2004 – c© Springer-Verlag 2004

Abstract. In-network aggregation has been proposed as one
method for reducing energy consumption in sensor networks.
In this paper, we explore two ideas related to further reducing
energy consumption in the context of in-network aggregation.
The first is by influencing the construction of the routing trees
for sensor networks with the goal of reducing the size of trans-
mitted data. To this end, we propose a group-aware network
configuration method that “clusters” along the same path sen-
sor nodes that belong to the same group. The second idea
involves imposing a hierarchy of output filters on the sensor
network with the goal of both reducing the size of transmit-
ted data and minimizing the number of transmitted messages.
More specifically, we propose a framework to use temporal
coherency tolerances in conjunction with in-network aggre-
gation to save energy at the sensor nodes while maintaining
specified quality of data. These tolerances are based on user
preferences or can be dictated by the network in cases where
the network cannot support the current tolerance level. Our
framework, called TiNA, works on top of existing in-network
aggregation schemes. We evaluate experimentally our pro-
posed schemes in the context of existing in-network aggre-
gation schemes. We present experimental results measuring
energy consumption, response time, and quality of data for
Group-By queries. Overall, our schemes provide significant
energy savings with respect to communication and a negligi-
ble drop in quality of data.

Keywords: Sensor networks – In-network query processing
– Semantic routing – Power-aware computing

1 Introduction

Advances in microelectronics have brought on a new class
of computing devices that combine sensing instrumentation
with computation and communication capabilities, including

� This work is supported in part by NSF award ANI-0123705. The
first author is supported in part by the Andrew Mellon Predoctoral
Fellowship. This paper expands on the material presented in two
workshops [31,2].

having mini operating systems embedded in the sensor [14].
These sensor nodes, such as the Berkeley MICA Mote [13], are
capable of collecting various measurements such as light, mo-
tion/acceleration, and temperature. Until recently, these sensor
nodes were used within the confines of laboratories, factory
equipment, or buildings. As they become smaller and cheaper,
sensor nodes are expected to be ubiquitously deployed in the
environment. This would enable them to collectively form
large sensing networks over broad geographical areas.

Such large sensor networks can be used for various pur-
poses, from monitoring endangered species [17,23] to moni-
toring structural integrity of bridges [19] to patrolling borders.
As such, sensor networks offer today an unprecedented level
of interaction with the physical environment [6]. Within a few
years, miniaturized, networked sensors have the potential to
be embedded in all consumer devices, in all vehicles, or as part
of continuous environmental monitoring. However, there are
still many crucial problems with the deployment of such large
sensor networks: limited storage, limited network bandwidth,
poor internode communication, limited computational ability,
and limited power of the sensor nodes. In this paper, we fo-
cus on the latter problem, i.e., reducing power consumption in
sensor networks.

Several techniques have been proposed to alleviate the
problem of limited power at the network level (such as energy-
efficient routing and clustering [9,36,10]) and at the data man-
agement level (such as sampling [22], prediction [8], approx-
imation [4], power-based query optimization [22], and data-
centric storage [28]). Another method at the data management
level is in-network query processing (or aggregation). With
in-network aggregation, a part of the computational work of
the aggregation is performed within the sensor node before it
sends the results out to the network. The reason in-network
aggregation reduces power consumption is that sensor power
usage is dominated by transmission costs, as has been shown
in [10,16]. This can be easily illustrated by the following sim-
ple example of a sensor network used to monitor the average
or the maximum temperature in a building (e.g., in order to
quickly detect a fire or adjust the air conditioning). The de-
fault way to implement this is to have each sensor send its
temperature reading up the network to the base station, with
intermediate nodes responsible for just routing packets. In in-

M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks 385

network aggregation, communication among sensor nodes is
structured as a (routing) tree with the base station as its root.
In this scheme, each node would incorporate its own read-
ing together with the average computed so far by its children.
As such, only one packet needs to be sent per node and each
intermediate node computes the new average temperature be-
fore sending information further up the network. As a result,
being able to transmit less data (because of aggregation in-
stead of having to forward all the packets) will reduce energy
consumption at the sensor nodes.

In this work we explore two ideas related to further reduc-
ing energy consumption in the context of in-network aggrega-
tion:

1. Influencing the construction of the routing trees for sensor
networks with the goal of reducing the size of transmitted
data; and

2. Imposing a hierarchy of output filters on the sensor net-
work with the goal of both reducing the size of transmitted
data and minimizing the number of transmitted messages
while ensuring a specified level of quality of data (QoD).

For our first idea, we consider the semantics of the query
and the properties/attributes of the sensor nodes when config-
uring the sensor network (in addition to traditional shortest-
distance criteria). We have observed that the length of the mes-
sages sent by a node when processing Group-By queries de-
pends on the number of groups existing in the routing subtree
rooted at that node. This observation leads to the principle that
reducing the number of groups considered at a sensor node
(performing in-network aggregation) will reduce the size of
the transmitted data and hence incur less energy cost for trans-
mitting them. Based on this principle, our first contribution is
a group-aware network configuration method that “clusters”
along the same path sensor nodes that belong to the same
group.

For our second idea, we exploit temporal correlation in
streams of sensor readings to suppress insignificant readings
that can be tolerated. Further, suppressing such readings po-
tentially allows nodes that do not have to transmit data to
switch into doze or sleep mode, powering down their anten-
nas. Doze mode offers the maximum possible saving in en-
ergy. To this end, our second contribution is a framework,
called TiNA (short for Temporal coherency-aware in-Network
Aggregation). TiNA works on top of existing in-network ag-
gregation schemes such as TAG [21] and Cougar [35] and aims
to balance the reduction in energy with the loss of QoD by
adhering to user-specified QoD requirements. TiNA reduces
energy consumption by using temporal coherency tolerances
in conjunction with in-network aggregation to save energy at
each sensor node while maintaining the specified QoD. These
tolerances are based on user preferences or can be dictated by
the network in cases where the network cannot support the
current tolerance level.

In order to specify temporal coherency tolerance, TiNA
introduces a new TOLERANCE clause in the SQL expression
of sensor network queries. While it is the WHERE clause that
acts as an input result filter, this new TOLERANCE clause
acts as a hierarchical output transmission filter. By being a
transmission filter, TiNA is able to save energy for two reasons.
First, at the edge nodes (i.e., the leaf nodes of the routing tree),
if a new reading falls inside the given tolerance, the reading is

not transmitted. Second, at the internal nodes, if aggregation
eliminates values, transmitted messages have smaller size.

We have experimentally evaluated both our proposed
schemes using simulation. Specifically, we have investigated
the reduction in energy for group-aware network configuration
for the sensor network implementations of TAG and Cougar,
with and without utilizing TiNA. We have also studied the
effect of TiNA on different Group-By and aggregation-type
queries, as well as how TiNA is affected by the rate that data
change. Additionally, we have looked at TiNA’s effects on the
lifetime of the sensor network.

Our results show that our method, by not sending and
by decreasing the size of messages, provides large gains in
power savings over previous methods of in-network aggrega-
tion while minimizing the impact on QoD. These results show
that TiNA can reduce power consumption used by communi-
cation by up to 60% and extend the life of the sensor network
by up to 270%. Furthermore, an additional 33% of energy used
for communication can be saved by incorporating the group-
aware network configuration with TiNA. Finally, our results
also show that in some cases where the period to send is too
short for all data to be propagated up through the network,
TiNA increases the QoD compared to existing in-network ag-
gregation methods.

The rest of this paper is organized as follows. Section 2
provides an overview of in-network aggregation. The idea of
routing in sensor networks and an introduction to our new
network configuration algorithm are presented in Sect. 3. We
describe TiNA, our framework for temporal in-network ag-
gregation, in Sect. 4. In the same section, we describe how
to implement TiNA on top of TAG and Cougar and in con-
junction with our network configuration algorithm. Section 5
describes our simulation testbed, and then in Sect. 6 we show
our experiments and results. We present related work in Sect. 7
and conclude in Sect. 8.

2 In-network aggregation

Directed diffusion [9,16] is the prevailing data dissemination
paradigm for sensor networks. In directed diffusion data gen-
erated by a sensor node is named using attribute-value pairs. A
node requests data by sending interests for named data. Data
matching the interest is then drawn towards the requesting
node. Since data is self-identifying, this enables activation of
application-specific caching, aggregation, and collaborative
signal processing inside the network, which is collectively
called in-network processing. Ad-hoc routing protocols (e.g.,
AODV[27]) can be used for request and data dissemination in
sensor networks.These protocols, however, are end-to-end and
will not allow for in-network processing. On the contrary, in
directed diffusion each sensor node is both a message source
and a message sink at the same time. This enables a sensor
node to seize a data packet that it is forwarding on behalf of
another node, perform local, in-network processing on this
packet, if applicable, and forward the newly generated packet
up the path to the requesting node.

Cougar [3,35] abstracted the named data generated by the
sensor network as an append-only relational table. In this ab-
straction, an attribute in this table is either information about
the sensor node (e.g., ID, location) or data generated by this

386 M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks

node (e.g., temperature, light). Queries that access this rela-
tional table can be either continuous [32,22] or event-based
[22]. In the former, the query result is updated periodically for
a specified interval, while in the latter the occurrence of an
event triggers the data collection. Traditional ad hoc queries
that might be issued to probe present or historical data are also
supported.

In the rest of this paper, we will only focus on continuous
queries, more specifically, on aggregate continuous queries.
Aggregate queries are particularly important in sensor net-
works where applications are often interested in summarized
and consolidated data rather than detailed data.1 For example,
queries might be posed to periodically monitor the total oc-
cupancy of an office building, the maximum temperature in a
volcanic area, or the average traffic density on a major road.

Continuous queries can be expressed using an extended
SQL select statement:

SELECT {attributes, aggregates}
FROM sensors
WHERE conditions-A
GROUP BY {attributes}
HAVING conditions-B
EPOCH DURATION i | EVERY e.

The first five clauses are the same as in standard SQL. We are
focusing on standard SQL aggregation functions (AVG, SUM,
MIN, MAX, COUNT). The two clauses in the sixth line were
introduced by TAG [21] (the aggregation service for TinyDB
[22]) and Cougar [35]. The clause EPOCH DURATION i was
introduced by TAG. Parameter i is the epoch interval and spec-
ifies the arrival rate of new results as required by the user.
Hence, once every epoch the user expects the network to pro-
duce a new answer to the posed continuous query. The clause
EVERY e was introduced by Cougar and, like EPOCH DURA-
TION, specifies the interval between two consecutive results
(which is called a round). In this paper, we will be using both
terms interchangeably.

Communication in a sensor network can be viewed as a
tree, with the root being the base station. Synchronizing the
transmission between nodes on a single path to the root is
crucial for efficient in-network aggregation. A sensor (par-
ent) needs to wait until it receives data from all nodes routing
through it (children) before reporting its own reading. This
delay is needed so that the parent node p can combine the par-
tial aggregates reported by its children with its own reading
and then send one message representing the partial aggrega-
tion of values sampled at the subtree rooted at p. The problem
of deciding how long to wait is treated differently in Cougar
and TinyDB. The details of the synchronization mechanisms
of these two systems are discussed in greater detail below.

Synchronization in TAG. Synchronization in TAG is accom-
plished by making a parent node wait for a certain time interval
before reporting its own reading. Specifically, TAG subdivides
the EPOCH DURATION, specified by the user in the SQL
statement, into shorter intervals called communication slots.
The number of these slots is equal to the maximum depth of

1 See [12] for a discussion about more sophisticated applications.

the routing tree (d). The duration of each communication slot
is (EPOCH DURATION) /d.

During a given communication slot, there will be one level
of the tree sending and one level listening. In the following
slot, those that were sending will go into doze mode until
the next epoch, while the nodes that were receiving will now
be transmitting. The cycle continues until all levels have sent
their readings to their parents. When a parent receives the
information, it aggregates the information of all children along
with its own readings before sending the aggregate further up
the tree. This synchronization scheme provides a query result
every epoch duration. TAG also proposes pipelining, in which
a node waits several epochs of gathering data before sending it
up the tree in order to allow increased sampling rates beyond
the rate allowed by the communication slot scheme. In this
paper, however, when we refer to TAG we will be referring to
only the basic slot-based version of synchronization in TAG.

Synchronization in Cougar. Cougar takes a pragmatic ap-
proach to synchronization. This approach is motivated by the
fact that for a long running query, the communication pattern
between two sensors is consistent over short periods of time.
Hence, in a certain round, if node p receives data from a node
c, then p will realize it is the parent of c. Node p will add c
to its waiting list and predict that it will hear from it in subse-
quent rounds. In the following rounds, node p will not report
its reading until it hears from all the nodes on its waiting list. In
order to prevent p from waiting on c indefinitely, c transmits
either a reading or a notification packet during each round.
The notification packet indicates that the current reading at c
does not satisfy the predicate associated with the query.

Since a parent only has to wait to hear from its children,
this results in messages from different parts of the tree going
up the tree at different rates. To accommodate this, a parent
must listen the entire time from the start of a round until it hears
from all its children. This ensures it hears from every child and
does not miss one by not listening from the beginning. This
synchronization scheme adapts to network dynamics. Each
node delivers its partial result as soon as it is available, which
should also reduce response time for uncongested networks.

3 Energy-efficient data routing in sensor networks

The ability to route data from the various nodes of the sensor
network toward a central sink point (i.e., the base station) is
fundamental to the operation of sensor networks. To support
the routing of data, the sensor network can be configured into
some form of hierarchy, such as routing trees [9,21] or clus-
tering [36,10]. The most commonly used routing scheme for
in-network aggregation is in the form of a tree, where each
node (child) selects a gradient [9] or parent [21] to propagate
its own readings.

The sensor network constructs the routing tree along with
the propagation of the query. The construction of the routing
tree is initiated from the base station. We assume that a new
query in our model originates at the base station, which for-
wards it to the nearest sensor node. This sensor node will then
be in charge of disseminating the query down to all the sensor
nodes in the network and to gather the results back from all
the sensor nodes.

M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks 387

There are several ways in which the routing tree can be
built. One relatively simple way is to try to create the tree in
such a way that the distance between any two nodes is min-
imized. This can be done in a greedy manner [15] by having
the first node heard from chosen as the parent. The intuition
behind this choice is the assumption that if a node is heard
from first, it was most likely the closest to the child. We call
this protocol First-Heard-From in this paper. For simplicity we
will use this protocol as a comparison basis with our new pro-
tocol Group-Aware Network Configuration, which will build
on the basis laid by the First-Heard-From protocol.

It should be noted that in an environment that is lossy in
nature, using the First-Heard-From protocol in general is not
appropriate. As pointed out in [33], packet-loss rate of a chan-
nel and distance are not directly related. A node that is closer
may actually have a higher loss rate than a node that is fur-
ther away, leading to more retransmissions and, consequently,
more energy being used. In such an environment a more ap-
propriate protocol would be the one that considers loss rates
and uses this in choosing the best parent.

3.1 First-heard-from network configuration

The basic idea behind the First-Heard-From (FHF) network
configuration algorithm is as follows. Starting from the root
node, nodes transmit the new query. Children nodes will select
as their parent the first node they hear from and continue the
process by further propagating the new query to all neighbor-
ing nodes. The process terminates when all nodes have been
“connected” via the routing tree.

The FHF method is formally described as follows.
1. The root sensor prepares a query message that includes

the query specification. The root sensor also sets the (Ls)
value in the message to its level value (i.e., Lroot, which
is 0 initially). It then broadcasts this query message to the
neighboring sensors.

2. A sensor i that receives a query message and has its level
value currently equal to ∞ will set its level to the level of
the node it heard from, plus one. That is, Li = Ls + 1.

3. Sensor i will also set its parent value Pi to Ids. It then
will set Ids and Ls in the query message to its own Idi

and Li respectively, and broadcast the query message to
its neighbors.

4. Steps 2 and 3 are repeated until every node i in the network
receives a copy of the query message and is assigned a level
Li and a parent Pi.
In cases where nodes that are adjacent are equally distant

from one another, Hellerstein et al. [12] suggest that a node
will uniformly and at random select from the available par-
ents. This uniform selection will help in balancing the load
among different nodes that are equally adequate as parents.
However, the main weakness of this method is that it in fact
creates the network in a random way (only based on network
proximity). The children assign parents based on whichever
node happened to broadcast the routing message first. This
method as well as other similar methods that consider only
the network characteristics, such as link low-loss rate, fail to
consider the semantics of the query or the properties/attributes
of the sensor nodes and hence cannot take any opportunities
for energy savings.

3.2 Group-aware network configuration

In order to have a network configuration method that considers
the semantics of the query and the properties of the sensor
nodes, we look closely at how in-network aggregation works.
In-network aggregation will depend on the query attributes
and the aggregation function. On the one hand, the list of
attributes in the Group-By clause subdivides the query result
into a set of groups. The number of these groups is equal to
the number of combinations of distinct values for the list of
attributes. Two readings from two different sensor nodes are
aggregated together only if they belong to the same group.
On the other hand, the aggregation function determines the
structure of the partial aggregate and the partial aggregation
process. For example, consider the case where the aggregate
function is SUM. In this case, the partial aggregate generated
by a routing sensor node is simply the sum of all readings
that are forwarded through this sensor node. However, if the
aggregate function is AVERAGE, then each routing sensor
node will generate a partial aggregate that consists of the sum
of the readings and their count. Eventually, the root sensor
node will use the sum and count to compute the average value
for each group before forwarding it to the base station for
further processing and dissemination.

Because aggregation combines all the readings for a partic-
ular group into one group aggregate reading, creating a routing
tree that keeps members of the same group within the same
path in the routing tree should help decrease the energy used.
The reason is simple: by “clustering” along the same path
nodes that belong to the same group, the messages sent from
these nodes will contain fewer groups (i.e., be shorter, thus re-
ducing communication costs). With this intuition in mind we
introduce our Group-Aware Network Configuration method,
or GaNC for short.

The way in which the GaNC algorithm constructs the rout-
ing tree is as follows.

1. The root sensor prepares a query message that includes
the query specification. The root sensor also sets the (Ls)
value in the message to its level value (i.e., Lroot, which
is initially set to 0). It also sets the (Gs) to be its group ID.
It then broadcasts this query message to the neighboring
sensors.

2. A sensor i that receives a query message and has its level
value currently equal to ∞ will set its level to the level of
the node it heard from, plus one. That is, Li = Ls + 1.

3. Sensor i will also set its parent value Pi to Ids and its par-
ent’s group ID PGi to Gs. It will then set Ids, Ls, and Gs

in the query message to its own Idi, Li, and Gi, respec-
tively, and broadcast the query message to its neighbors.

4. While there are still query messages being propagated
around the network, node i continues to listen to all mes-
sages it can hear.

5. If node i hears a message from a node at the same level as
itself minus one (Li − 1), it uses tie-breaker conditions to
decide if this new node should become its new parent. If
so, node i makes Ids its new parent.

6. Steps 2–5 are repeated until all query messages in the net-
work have been sent out and received.

The GaNC algorithm is built on the basis of the FHF proto-
col. The main difference is that a child under the GaNC method

388 M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks

can switch to a better parent while the tree is still being built.
This switch is based on a set of tie-breaker conditions that go
beyond the network characteristics to introduce the semantics
of aggregation. GaNC works with semantic groups that are
static in nature and are based on hard-coded sensor attributes,
such as floor number or location.

The goal of the group-aware network configuration algo-
rithm is to incorporate group identity into the routing tree con-
struction. As such, the first tie-breaker condition (for step 5 of
the algorithm) is whether the child has the same group ID as
the parent. As long as a child is within listening distance of
multiple parent choices, a child will choose a parent that has
the same group ID as itself instead of a parent from a different
group. This is a choice that will allow parents and children to
be in the same group as much as possible.

In the general case, a sensor node will be within listening
range of multiple other nodes. Despite the savings in clustering
nodes of the same group along the same path, a node that is far
away will require significantly more transmission energy and
as such is not a good candidate. For that reason, we introduce
a distance factor, df , that will limit the maximum range for
which we consider candidate sensor nodes (for coming up
with a “better” parent node). Under this approach, if di is the
shortest distance seen so far (based on an estimation from
signal strength), we will only consider nodes whose distance
from a child node is at most df ×di, for example, for df = 1.2
we will only allow up to 20% more than the minimum distance.

Thus, the second tie breaker is the estimated distance from
the child to the parent. The parent with the lowest distance
will be chosen in cases when there is more than one parent to
choose from (that is, in the same group as the child) or when
no parents are in the same group as the child. The reason for
this is that in both cases, routing through the closest parent
will save transmission energy for the child.

To better illustrate the basic motivation and benefit of
GaNC, we use the simple example shown in Fig. 1. In this fig-
ure, nodes 2, 4, and 6 (the shaded ones) belong to one group,
whereas nodes 1, 3, 5, and 7 belong to a different group. Let
us assume that under the standard FHF network configura-
tion (Fig. 1a), nodes 4 and 5 pick 2 as their parent, whereas
nodes 6 and 7 pick 3 as their parent. Using in-network aggre-
gation, the message sizes from nodes 2 and 3 to the root of the
network will both be 2 (i.e., contain partial aggregates from
two groups). On the other hand, if we cluster along the same
path nodes that belong to the same group (Fig. 1b), we reduce
the size of messages from nodes 2 and 3 in half: each message
will only contain the partial aggregate from a single group.

1

2

4 65 7

3

|msg|=2 |msg|=2
1

2

4 65 7

3

|msg|=1 |msg|=1

a b

Fig. 1. a,b Benefits of group-aware network configuration. a Group-
unaware. b Group-aware

Overall, this algorithm uses more information to create a
better routing tree for aggregation-type queries. The idea of
using the group IDs to put children with parents should de-
crease energy consumption by decreasing message sizes: less
groups are being sent from a single parent since its children
are in the same group as itself. In addition, nodes are trans-
mitting over shorter distances since distance is being used as a
secondary tie-breaker criterion. This in general will decrease
the transmission energy used, which increases exponentially
with distance. These two effects should decrease the overall
energy consumed by the network and make the routing tree
more efficient with aggregation queries.

4 Temporal coherency-aware in-network aggregation

In this section, we focus on the actual in-network aggregation
on top of a routing tree. Specifically, we present TiNA (short
for Temporal coherency-aware in-Network Aggregation) that
exploits the temporal correlation in a sequence of sensor read-
ings to reduce energy consumption by suppressing readings
that do not affect the expected quality of data as defined by
the user or application.

TiNA is built as a layer that operates on top of in-network
aggregation systems in order to minimize energy consump-
tion throughout the entire sensor network. In designing TiNA
we considered the different features of the existing in-network
aggregation systems, namely, Cougar and TAG. As discussed
above, in these systems all sensor readings are passed up the
tree once per epoch or round, as defined in the query. Ag-
gregation is done at the internal nodes while information is
forwarded up the routing tree.

The contribution of TiNA comes in how it selectively de-
cides what information to forward up the routing tree by ap-
plying a hierarchy of filters along each path of the network.
To perform data filtering in a controlled, well-defined man-
ner, TiNA introduces the TOLERANCE clause in the query
specification as follows:

SELECT {attributes, aggregates}
FROM sensors
WHERE conditions-A
GROUP BY {attributes}
HAVING conditions-B


 Standard SQL

EPOCH DURATION i | EVERY e
]

TAG and Cougar
TOLERANCE tct

]
Introduced by TiNA.

The tct parameter of the TOLERANCE clause is used by
the user to specify the temporal coherency tolerance for the
query. The tct value acts as an output filter at the readings level,
suppressing readings within the range specified by tct. For ex-
ample, if the user specifies tct = 10%, the sensor network will
only report sensor readings that differ from the previously re-
ported readings by more than 10%.Values for tct range from 0,
which indicates that readings should be reported if any change
occurs, to any positive number.This tct is the maximum change
that can occur to the overall quality of data in the system using
TiNA.

In this paper, we use a relative definition of tct, although
a similar absolute formulation of tct is possible. However,
the relative formulation of tct allows a uniform, easy-to-
understand definition of user tolerance on heterogeneous data

M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks 389

sources, where the domain of sensed values is different from
one sensor to another. This is especially important when all
readings and groups in the aggregated result are equally im-
portant.

A TiNA sensor node must keep additional information in
order to utilize the temporal coherency tolerance. The infor-
mation kept at a certain sensor depends on its position in the
routing tree (i.e., a leaf or an internal node). Leaf nodes keep
only the last reported reading, which is defined as the last
reading successfully sent by a sensor to its parent. Internal
nodes, in addition to the last reported reading for that node,
keep the last reported data it received from each child. These
data can either be a simple reading reported by a leaf node or
a partial result reported by an internal node.

• At a leaf node, when a new reading of value Vnew is avail-
able, this new value is compared against the last reported
reading (say, Vold). The new value is reported iff

| Vnew − Vold |
Vnew

> tct,

otherwise the value Vnew is suppressed.
• At an internal (i.e., parent) node, the following sequence

of operations takes place when the node is listening and
aggregating data:
1. It collects the data reported by its children. If a parent

does not receive complete data from any of its children,
it fills in the missing data using some or all of the last
reported data from that child.

2. It combines the complete data for each child together
to compute the partial result for the subtree rooted at
this parent node.

3. The internal node then takes its own reading. If its own
reading can be aggregated within a group that already
exists in the partial result, then the reading is aggre-
gated regardless of its tct value. By doing this, TiNA is
taking advantage of the in-network aggregation mech-
anism where the aggregation at the parent will improve
the accuracy of the query results without increasing the
size of the partial result.

4. If including the new reading would result in creating a
new group, then the reading is added only if it violates
the tct value; otherwise it is suppressed in order to
minimize the partial result size while still maintaining
the specified tolerance.

5. Finally, the internal node takes an old partial result (one
computed from all children’s old data and its own old
reading) and compares it against the new partial result
it has created. For any tuple where the partial aggregate
value has not changed, that tuple is eliminated from
the final partial result. This elimination is equivalent
to applying tct = 0 at the partial aggregate level, which
serves as an upper level filter.

Having the last operation repeated at every parent node
along all the network paths provides a hierarchy of filters on
every path. Setting the tct to zero for the hierarchical filtering
at intermediate nodes ensures that the partial aggregates, and
eventually the final aggregates, are always within the user-
specified tct.

This hierarchy of filters is important for the incremental
processing of aggregate queries as it captures cases of temporal

correlation that cannot be captured at the reading level by in-
dividual sensors. For example, consider the SUM aggregation
function; readings from different sensors might change from
one round to another; however, it is possible that the overall
sum will stay the same. This can only be detected at a parent
node that intercepts the stream of readings generated by these
sensors and acts as an intermediate centralized stream proces-
sor. Note that this operation can provide a completely empty
partial result or a partial result that is missing few groups com-
pared to the old partial result. In both cases, this node relies on
the fact that its parent stored its last reported data and it will
use it to supply the missing groups, as mentioned in step 2.

Since parent nodes store the last reported reading of their
children, supporting the WHERE clause and handling node
failures becomes a nontrivial issue. In both cases, the par-
ent needs to know whether the stored readings from a child
are still valid. Specifically, the issue that arises when using the
WHERE clause and having fault tolerance is how to determine
the difference between (a) a value not meeting the conditions
of the WHERE clause, (b) a value not being sent because it
is inside the given tolerance range, and (c) a node dying and
thus no longer being in the network. One simple way to deal
with these cases is to adopt the notion of a notification packet
from Cougar and expand its usage to support TiNA function-
ality. The notification packet is simply a packet containing a
notification bit.

To handle the WHERE clause, a child uses the notification
packet with the notification bit turned off as a way to inval-
idate stored readings at its parent. When a parent receives a
notification packet from a child with a notification bit set to
0(off), it knows that the reading it has stored for that child is
invalid and cannot be used in future aggregations. It will not
substitute any readings for that child until the child supplies it
with a new data. The notification bit could also be appended
into partial data in the case of internal nodes to allow parents
to know which group values to stop using as well.

To handle node failures, children are required to send
heartbeat messages to their parents at regular intervals while
they are suppressing values. This heartbeat is simply a noti-
fication packet with the notification bit set to 1(on). This lets
the parent know the child is still alive and its reading is still
valid and should be used to substitute in aggregations. If a
parent does not receive a heartbeat message from a child after
a certain period of time, the parent will mark the child as dis-
connected until it hears from the child again. This heartbeat
technique will also work for mobile sensors, where a sensor
might change its location in the network, thus switching par-
ents.

In the case of parent node failures, we utilize the periodic
network reconfiguration to reconnect the children back to the
sensor network (through a new parent). In these cases, the
children nodes must first transmit their new value regardless
of the tct, as the new parent will not have any of the old state
information.

In the remaining of this section, we describe how TiNA
works on top of TAG and on top of Cougar. We also describe
the synergy between TiNA and GaNC.

390 M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks

4.1 TiNA on top of TAG

TiNA works on top of TAG by taking advantage of the pre-
defined sending and receiving communication slots in each
epoch. During a given communication slot, all children would
usually be sending their readings with the parents listening. In
TiNA, the parents are still listening, but it may be the case that
a child does not send a reading. In this case, when the commu-
nication slot expires, the parent checks to see if it heard from
all its children. For each child it did not hear from, the parent
takes the last reported data it has for that child and aggregates
it with data from the other children. The rest of the scheme
then operates as usual for TiNA.

Example execution of TiNA. Figures 2 and 3 show a compari-
son between two in-network aggregation schemes during one
epoch. Figure 2 shows the execution of the TAG base case,
whereas Fig. 3 shows the execution of TiNA on top of TAG.
We assume a query gets the total light for all rooms, while
grouping by floor, with the tct = 10%:

SELECT {FLOOR, SUM(LIGHT)}
FROM SENSORS
GROUP BY {FLOOR}
EPOCH DURATION 30s
TOLERANCE 10%.

Nodes are represented as circles in the figures and the
flow of data from child to parent is represented with arrows.
The boxes connected to each node represent the current state
at the node. The current state consists of the last reported

New: (2,4)
Old: (2,6)

1

2 3

4

New: (2,11)
Old: (2,10)

152

SumX
New: (1,4.1)
Old: (1,4)

4.11

SumX

41
212

SumX

4New: (2,6)
Old: (2,5)

Cost: 2
Cost: 2

Cost: 2

212
4.11
SumX

Cost: 4

172

SumX

62

SumX

Fig. 2. Query using TAG

New: (2,4)
Old: (2,6)

1

2 3

4

New: (2,11)
Old: (2,10)

152

SumX
New: (1,4.1)
Old: (1,4)

4.11

SumX

41
212

SumX

4New: (2,6)
Old: (2,5)

Cost: 2
Cost: 0

Cost: 2

212
4.11
SumX

Cost: 0

172

SumX

62

SumX

Fig. 3. Query using TiNA on top of TAG

reading, called Old, the current reading, called New, and a table
representing that node’s previously reported partial result. As
an example, consider node 3, its Old reading is 10, its New
reading is 11, and its previously reported partial result is (2,15).
In this partial result, the value 2 is the group identifier (e.g., the
x-coordinate), and 15 is the previous partial aggregate value
generated by summing its own old reading (= 10) to the old
reading reported by node 4 (= 5).

Tables along the connection lines represent the data being
sent from child to parent. The cost number under each of these
tables is the cost to send these data from child to parent. The
cost is just the size of the table since it is used to illustrate
relative costs. For example, a table with cost 4 is twice as big
as a table with cost 2, and thus will need to send twice as much
information, resulting in twice the transmission cost.

In Fig. 2, we see a one-epoch execution of the query using
TAG without TiNA. In this example, every reading is sent
from child to parent. We illustrate the benefit of using TiNA
on top of TAG in Fig. 3. The setup is the same as before,
but now the sensor network has employed the TiNA scheme.
Savings from TiNA (parts of messages that do not need to be
sent) are shown by being shaded out. Note that in the epoch
demonstrated, heartbeat messages are not needed because all
old values were sent in the previous epoch.

When it is time for node 4 to send, it first checks its new
reading against its old reading. Since the new reading (= 6)
differs by more than 10% from its old reading (= 5), it will
send its new reading and replace the old one. During the next
communication slot, nodes 2 and 3 check their readings against
their last readings. For both nodes, the change is less than 10%.
However, node 2 will suppress transmission, while node 3
will aggregate its new reading with the reading reported from
node 4 since they both belong to the same group. As explained
above, this operation improves the result accuracy at no extra
transmission costs. In the final slot, node 1 will aggregate its
own reading into the partial results it received from node 3.
However, for group 2, the new partial aggregate value (= 21)
happened to be equal to the one previously reported by node 1.
Thus, the partial aggregate for group 2 is suppressed and node 1
will not transmit any messages for this epoch.

As shown in the example execution of TiNA above, sensor
nodes save significant energy by suppressing transmission at
the reading level and the partial aggregate level. These savings
are propagated up the levels of the routing tree. In our example,
the sum of sizes of all messages under the plain TAG approach
was 10, which was reduced to 4 when using TiNA. Such a 60%
decrease in the transmission cost reduces energy consumption
dramatically but comes with a slight decrease in the accuracy
of the results (4.0 instead of 4.1 in one of the groups).

4.2 TiNA on top of Cougar

Using TiNA on top of Cougar does not involve any change to
the underlying Cougar framework. However, implementing
TiNA on top of Cougar is a little different than implementing
TiNA on top of TAG. In Cougar, parents wait to hear from
all their children before aggregating their own reading and
sending the result further up the routing tree.

Using TiNA on top of Cougar, TiNA does not suppress
the notification messages of Cougar but it replaces them with

M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks 391

those of TiNA. Thus, when a child would choose not to send
a reading because the reading did not violate the given tct,
it would send a heartbeat message (i.e., a TiNA notification
packet with the notification bit on). This will inform the parent
that the stored reading of that child is still valid and that the
parent can proceed with its processing.

It should be noted that the size of the notification packet
is typically one bit in addition to the header, which allows
for significant savings when compared to the size of a data
packet that contains a reading. These savings are even more
noticeable if that heartbeat is sent instead of transmitting a
partial result that consists of multiple aggregates that are all
within the tct.

We illustrate how TiNA works on top of Cougar using
Figs. 2 and 3 from the TAG example. Instead of each sensor
sending during its given time slice (in TAG), a sensor will send
once it hears from all its children (in Cougar). Furthermore,
in Fig. 3 nodes 2 and 1 will transmit a heartbeat instead of
sending nothing. The rest of the figure is exactly the same,
with the group data that are not sent in TiNA on top of TAG,
not being sent in TiNA on top of Cougar either. As long as the
parent hears from the child, it can fill in any information that
is necessary. Finally, note that in the case of TiNA on top of
Cougar the savings would come not only from the decrease in
transmission size, but also from the decrease in response time.
Since a parent has to listen until it hears from all its children,
by using TiNA, the time a parent hears from all its children is
also decreased, thus increasing the overall savings.

4.3 TiNA with group-aware network configuration

TiNA can further improve its energy efficiency when it is de-
ployed together with a group-aware network configuration
method (GaNC). TiNA suppresses values at internal nodes
based on the aggregate values of each group. The more values
from a single group, the more chances that changes in these
values will counteract each other and, as such, transmission
of the group will be suppressed.

There is an added benefit to using GaNC that is unique to
TiNA and can improve the overall quality of data. Remember
that TiNA will “piggyback” new readings of an internal node
regardless of the amount of change if the internal node’s group
was going to be transmitted because of children input. In this
optimization, the energy remains the same since adding an
extra item into the aggregation of a group does not increase
the message size. In the case of GaNC, by clustering along the
same path to the root nodes that belong to the same group we
increase the probability that a parent node matches the group
of its children and thus include its own reading (i.e., get a “free
ride”). This is expected to increase the overall quality of data
without increasing energy consumption.

Let us now illustrate how TiNA can further boost the en-
ergy savings that are gained from using GaNC. Consider, for
example, a network of nodes deployed within a building keep-
ing track of the number of people in the building, grouped by
floors. Figure 4a shows a section of the tree in this building’s
network as it would be built using the FHF network configu-
ration method and Fig. 4b shows the same section of the tree
using GaNC instead. These trees are the same as in Fig. 1.
The nodes are shown as circles and the groups they belong to

1

2

4 65 7

3

m m m

2mm

−5+5 +12

1

2

4 65 7

3

+5 +12

m

m m
m

−5
a b

Fig. 4. a,b Benefits of group-aware network configuration with TiNA.
Nodes in boxes indicate change in value more than tct (the value dif-
ference is listed underneath). m indicates transmission of a message
of unit size. a Group-unaware. b Group-aware

are based on the color [there are two groups, shaded (S) and
not shaded (NS)]. Finally, nodes in boxes indicate that their
value changed by more than the tct and thus need to report the
new values (the value difference in number of people is listed
underneath).

In Fig. 4a, normal TiNA execution would show a total of
five messages being sent. The three messages from children to
parents at the lowest level would be of size 1 (one group with
value) and the messages from the second level to the top level
would be of size 1 and 2. This leads to a total message size
of 6. In addition, we have node 2 changing by less than the tct,
so its reading is not sent unless its group is already being sent
up; the remainder of the nodes are unchanged in value. Finally,
nodes 5 and 7 at the lowest level change by complementary
amounts (five people left that room, node 7, and moved to the
other room, node 5).

If instead of the configuration in Fig. 4a we use the new
configuration shown in Fig. 4b, the benefits of GaNC are more
apparent. In this case, we first get the benefit that nodes 5 and 7
are routed through the same parent, so their complementary
data changes cancel each other. This makes sense because the
number of people on the floor did not change, they just moved
their meeting to another room. This will save the transmission
from node 3 to node 1. In addition, since node 2 now has a child
in its own group that is sending through it, it can add its own
reading into the message, thus increasing the quality of data
for the query. By configuring the tree in a group-aware fashion,
the total size of all messages was reduced to 4. In addition, the
overall quality of data has increased because more nodes are
sending more precise information. This shows that by using
TiNA with GaNC, the overall energy used in the network can
be decreased and the overall quality of data increased.

5 Evaluation testbed

In order to study the effects of the proposed TiNA framework,
we created a simulation environment using CSIM [29]. Fol-
lowing typical sensor network simulation practices, the simu-
lated network was configured as a grid of sensors. We assumed
a lossless communication environment in which each node
could transmit data to sensor nodes that were at most one hop
away from it. In a grid this means it could only transmit to at
most eight other nodes. When experimenting with the GaNC
protocol we will only use group semantics for network config-

392 M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks

uration (the first tiebreaker) since the distance tiebreaker (the
second tiebreaker) is not applicable in such a grid setting.

We simulated a simplified version of the CSMA/CA con-
tention-based MAC protocol, where a sender node will per-
form a channel sensing before initiating a transmission. If a
node fails to get the medium, it goes to sleep for a random
backoff period and then starts sensing the channel again. The
node will only transmit its message when the channel is free.
Before transmitting the message, the sender node will send a
Request to Send (RTS) packet to the destination, which replies
with a Clear to Send (CTS) packet. These packets are used to
ensure that other nodes in the destination transmission range
will seize transmission so that collision will not occur. In our
CSMA/CA implementation, we do not explicitly include the
extra costs for the RTS and CTS packets; however, we do
study the impact of the communication protocol overhead in
Sect. 6.7.

Using the simulator, we performed extensive experiments
to evaluate the performance of TiNA when used on top of TAG
or on top of Cougar. For fairness in comparisons, we simulated
the optimized version of TAG where a child cache is used [21].
In this caching scheme, a parent stores the partial aggregates
reported by its children and uses those aggregates when new
ones are not available. This scheme is particularly important
in the cases where communication is unreliable or the epoch
duration is too short.

In the following experiments, the Group-By query is of the
form described in Sect. 3.2, and the sensor network produces
a result at intervals defined in the query. The objective of the
query is to aggregate a measure (e.g., temperature) across dif-
ferent regions of the network. In the default case, the set of
attributes used by the SELECT and the GROUP BY clauses
is any valid combination of the sensors’ X and Y coordinates,
hence, attributes = {}, {X}, {Y}, or {X,Y}, for example, a
query where attributes = X subdivides the sensors’ readings
into a number of groups equal to the number of possible values
of X (i.e., the width of the grid). In the answer for this query,
readings from all sensors that have the same X coordinate are
aggregated together according to the aggregate function. For
our experiments, we focused on the standard SQL aggregation
functions SUM,AVERAGE, and MAX. We did not include the
MIN function, which is similar to MAX, nor did we include
COUNT, which is similar to SUM.

We summarize all the experimental parameters in Table 1.
Next, we will present the models we used for generating our
synthesized data, whereas an analysis of real data is deferred
to Sect. 6.4.

5.1 Random walk

One model we used for data generation is the random walk
model. In this model, the domain of values was between 1
and 100 (to approximate temperature readings in Fahrenheit).
A sensor reading is generated once at the beginning of each
query interval. The value changes between one interval to the
next with a probability known as the randomness degree (RD).
Each time a sample is to be generated, a coin is tossed. If the
coin value is less than RD, then a new value is generated;
otherwise the sample value will be the same as before. For
example, if RD = 0.0, then the value sampled by a sensor

Table 1. Simulation parameters

Parameter Value Default

Grid size 11×11 – 45×45 15×15
Packet header size 2–8 bytes 4
Aggregate MAX, SUM, AVG SUM
Number of attributes 0–2 1
Epoch durations 240–7404 ms 1408 ms
tct 0–30%
Number of epochs 100

In-network Aggregation Cougar, TAG Cougar
Routing scheme FHF, GaNC FHF

Randomness degree 0.0–1.0 0.5
Random step size limit 5–25% of domain 5%

Peak amplitude(A) 50
Period(T) 20 – 60 20
Phase(φ) 0◦–180◦ 0◦

will never change, while if RD = 0.5, then there is a 50%
chance that the new value at time t is different from the value
at time t+1. We used the random step size limit to restrict how
much the new value can deviate from the previous value. This
limit is expressed as a percentage over the domain of values.
In our case, a 5% step size limit implies that a new temperature
reading can be at most 5◦ less/more than the previous reading.

5.2 Sinusoidal data

In the sinusoidal data model, each sensor generates a stream
of values similar to a sinusoidal signal of the form

f(t) = A sin
(

t

T
2π + φ

)
,

where A is the peak amplitude, t is the current round/epoch, T
is the period in terms of number of epochs, and φ is the phase.
We set the value of A to 50 and we also set f(t) = f(t)+A+1
at any time t in order to retain the same domain of values
provided by the random walk model.

Using this model, we can control generating data streams
with different properties. One such property is the temporal
correlation between values sensed at different sensors at the
same instance. This correlation can be controlled using the
φ parameter, which enables us to set the relative direction of
changes in values. This correlation is especially important for
aggregate functions where the interaction between values can
lead to a constructive or destructive aggregation. A destructive
aggregation is when values are changing in different directions
but the net results does not change significantly.A constructive
aggregation is when values change in the same direction so that
the net aggregate changes significantly.

5.3 Performance metrics

In our experiments we focused on three measurements: energy
consumption for communication, relative error, and response
time.

M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks 393

Energy. Energy is consumed in four main activities in sensor
networks: transmitting, listening, processing, and sampling.
We focused on transmission and listening power since the
amount of time spent sampling is the same for all techniques.
We did not include energy required for processing because it
is negligible compared to that needed for communication.

As mentioned before, a sensor node will send its data to
the root through its assigned parent. A parent node is one hop
away from its child and one hop closer to the root than its
child. So every node sends its data exactly one hop away, all
of which are the same distance from one another. This allows
us to assume a uniform cost of transmitting data. However, the
overall energy consumed to transmit a partial result depends
on the size of the partial results and the number of messages.

The values of the parameters needed to calculate the trans-
mission cost were the same as in [13]. Specifically, we simu-
lated sensors operating at 3V and capable of transmitting data
at a rate of 40 Kbps. The transmit current draw is 0.012Amp,
while the receive current is 0.0018. Hence, the cost of trans-
mitting one bit in terms of energy consumption units (Joules)
is computed as

Tcost = 3Volt ∗ 0.012Amp ∗ 1/40, 000 Sec = 0.9 µJoules .

The cost of listening for 1 s is computed as

Rcost = 3Volt ∗ 0.0018Amp = 0.0054 Joules .

The energy consumed during listening is independent of the
number of messages received by the sensor. It only depends
on the time spent by the sensor being active and listening. In
TAG that time is specified by the communication slot interval.
Cougar does not specify when a sensor stops listening and
switches to doze mode. Hence, in our simulation, we assumed
that each sensor would start listening at the beginning of each
round.After a sensor receives data from all nodes on its waiting
list, it will switch to doze mode.

Relative error metric. The relative error metric (REM) is a
measure of how close the exact answer and the approximate
answer are. The exact answer is generated if all sensors de-
liver their current readings within the epoch/round time. An
approximate answer is one where some sensors fail to send
their current reading or decide not to send it. A sensor fails to
report a reading because of network congestion or short epoch
interval. A sensor decides not to send a message because of
the user-specified temporal coherency tolerance.

In order to compute REM, we first need to measure the
error over the Group-By query. We measured this error as
described in [1]. Assume a query aggregates over a measure
attribute M . Let {g1, . . . , gn} be the set of all groups in the
exact answer to the query. Finally, let mi and m′

i be the exact
and approximate aggregate values over M in the group gi.
Then, the error εi in group gi is defined to be the relative error,
i.e.,

εi =
(|mi − m′

i |)
mi

.

The error δ over the Group-By query is defined as

δ =
1
n

n∑
i=1

εi.

Finally, the average REM (or simply REM) over time is de-
fined as

REM =
1
T

T∑
t=1

δt,

where δt is the query error at epocht.
We are using REM as an indication of the quality of data

(QoD), where a high REM reflects a low QoD, while a low
REM corresponds to a high QoD. Hence we will be using both
terms interchangeably.

Response time. The response time is a metric that applies only
to Cougar. As we mentioned earlier, the Cougar synchroniza-
tion method allows results to be delivered before the end of
the round interval, especially in the case of a lightly loaded
network. In the case of TAG, the response time is always equal
to the epoch duration.

6 Experiments and results

6.1 Sensitivity to temporal coherency tolerance

In the first experiment, we vary the tct value and measure its
effect on the relative error metric (REM), response time, and
energy for TiNA versus the base cases for Cougar and TAG.
The experiment uses the default values from Table 1 except
for the tct, which we varied from 0 to 30%. Unless otherwise
noted, the sensor network in all experiments was configured
using the FHF method (as described in Sect. 3).

Figure 5 shows the tradeoff between energy savings and
relative error when using TiNA on top of Cougar. We have
the ratio of energy required compared to that needed by plain
Cougar on the X-axis and the relative error (which is 0% for
Cougar) on the Y-axis. For perfect QoD, and thus no relative
error (tct=̃0%), TiNA on top of Cougar uses only 56% of
the energy required by Cougar. For tct = 30%, TiNA on top
of Cougar only uses 24% of the energy required by Cougar,
whereas REM increases to 3.3%.

Figure 6 shows the energy savings and corresponding re-
duction in response time. The ratio of energy required com-
pared to that needed by plain Cougar is on the X-axis, whereas
the ratio of response time compared to that of Cougar is on
theY-axis. Because TiNA can send notifications instead of the
readings for those cases that do not violate the tct, the time
needed to hear from all children decreases. This decrease in
response time is directly related to the savings in energy and
will increase further with higher tct values. For the case of
tct=0% (i.e., no relative error), the response time of TiNA
on top of Cougar was 60% of Cougar’s (while consuming
only 56% of the energy required by Cougar). For the case of
tct=30%, where only 24% of Cougar’s energy was used, the
response time when using TiNA on top of Cougar was 27% of
Cougar’s. This shows that using TiNA can result in substantial
savings in energy and further decrease the query response time
when used on top of Cougar.

Figure 7 shows the effects of TiNA on relative error and
energy when used on top of TAG. In this case, TiNA on
top of TAG uses between 86% (for tct=0%) and 74.9% (for

394 M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks

Energy Ratio

0.00 0.25 0.50 0.75 1.00

R
E

M
(%

)

0%

1%

2%

3%

4%

5%

increasing
tct

Cougar+TiNA(0%)

Cougar+TiNA(30%)

Cougar

Fig. 5. Relative error metric (REM)
of TiNA on top of Cougar, where

Energy ratio =
Energy using TiNA

Energy using Cougar

Energy Ratio

0.00 0.25 0.50 0.75 1.00

R
es

po
ns

e
T

im
e

R
at

io

0.00

0.25

0.50

0.75

1.00

Cougar

Cougar+TiNA(0%)

Cougar+TiNA(30%)

increasing
tct

Fig. 6. Response time of TiNA on top
of Cougar, where Response time ratio =

Response time using TiNA
Response time using Cougar

Energy Ratio

0.00 0.25 0.50 0.75 1.00

R
E

M
(%

)

0%

1%

2%

3%

4%

5%

TAG

TAG+TiNA(0%)

increasing
tct

TAG+TiNA(30%)

Fig. 7. Relative error metric (REM)
of TiNA on top of TAG, where

Energy ratio =
Energy using TiNA
Energy using TAG

Epoch Duration (mSec)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

TAG
TAG+TiNA(0%)
TAG+TiNA(5%)
TAG+TiNA(10%)
TAG+TiNA(20%)
TAG+TiNA(30%)

Fig. 8. Energy usage vs. epoch duration

tct=30%) of the energy of the TAG base case with corre-
sponding REM of 0% and 3.7%. Compared to Cougar, these
reductions are smaller. The reason behind this is that TiNA,
when used on top of Cougar, saves energy both by not trans-
mitting readings and by reducing the time spent listening. In
TAG, however, TiNA only saves in transmission power since it
must listen for its entire assigned time slice. This means TiNA
uses the same receiving energy as in TAG, hence the savings
for TiNA on top of TAG are limited to only transmission en-
ergy. Finally, we do not show the response times for TAG or
TiNA over TAG since they are always the same as the epoch
duration.

In our experiments, we have focused only on the energy
consumed for communication. In order to put these energy
savings due to communication in perspective of the total sys-
tem savings (as mentioned in Sect. 5), we need to take into
consideration the cost of performing many other actions in-
cluding sampling, processing, and even dozing. These over-
heads depend on the type of the individual sensor nodes. Take,
for example, the case of energy used for taking different kinds
of readings (e.g., light, temperature, etc.) as reported in [22].
In this case, the savings provided by our scheme would de-
pend on the kind of sensing activity. Sensing the temperature
would require 90µJoules of energy while the transmission, as
reported above in the case of Cougar, would take 500µJoules
for the regular implementation of Cougar and 280µJoules for
Cougar with TiNA and tct=0. This leads to savings of 44%;
however, including 90µJoules overhead for taking the reading,
the savings drop slightly, to 37%. If instead of taking tempera-
ture readings a more costly sampling type was performed, for

Epoch Duration (mSec)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

R
E

M
(%

)

0%

1%

2%

3%

4%

5%

6%

TAG
TAG+TiNA(0%)
TAG+TiNA(5%)
TAG+TiNA(10%)
TAG+TiNA(20%)
TAG+TiNA(30%)

Fig. 9. REM vs. epoch duration

example, using a magnetometer that uses 1500µJoules to do
a reading, the savings would only be 11%.

6.2 Sensitivity to the epoch duration

In cases where a sensor is in a dense portion of the network, its
data will suffer high latency due to congestion and retransmis-
sion. Recall that in TAG, the epoch is broken up into communi-
cation slots during which a given level is sending and another
level is listening. If the epoch duration is short (or if the routing
tree is skewed), it may happen that the communication slot is
too short for all nodes at a given level to successfully transmit
their readings. In this case some nodes will be able to send
their data while other nodes will not be able to transmit. This
will give query results of poor data quality, as the aggregation
will be missing data from sensors that failed to communicate
their readings.

In this experiment, we test the effect of epoch size on TAG
and compare it with TiNA on top of TAG. Up to now the epoch
has always been large enough to allow all sensors to send in
all their values during the assigned time slice. The goal of this
experiment is to show to what degree TiNA can alleviate this
problem by suppressing the transmission of relatively static
readings in favor of the more dynamic ones, which contribute
the most to the quality of the final aggregate.

Figure 8 shows that when the epoch duration is increased,
the amount of energy also increases in direct proportion. The
reason for this is that as the epoch length increases, more
sensors are able to send their readings. This behavior continues

M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks 395

Number of Attributes

0 1 2 3

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Cougar
Cougar+TiNA(0%)
Cougar+TiNA(5%)
Cougar+TiNA(10%)
Cougar+TiNA(20%)
Cougar+TiNA(30%)

Fig. 10. Energy vs number of attributes

up to the point where all sensors can send all of their readings,
after which the increase in energy is due to parent nodes having
to listen for the entire time slice. The power used by TiNA
follows a similar pattern. The amount of savings by TiNA
decreases as the epoch time increases since all the energy
savings by TiNA on top of TAG are on transmission power.

Figure 9 shows the effects on REM when we increase the
epoch size. In this case, we only get 0% relative error if there
is enough time for all sensors to send their data. This figure
shows that, for smaller epochs,TiNA on top ofTAG has a better
QoD than TAG. The reason is that TiNA is “wisely” choosing
to send only those values that change, allowing parents to
have more information with which to produce more accurate
results. While TAG also has a cache to use, it is sometimes
sending data already in the cache, which means some new
information cannot be sent. After a certain point, the epoch
size is large enough to accommodate all nodes being able to
send, and thus the relative error levels off for all schemes.
Clearly, TAG will be dependent on finding the optimal epoch
size for each workload, so we decided to use Cougar for the
remaining experiments.

6.3 Sensitivity to degree of in-network aggregation

In this experiment we show the behavior of TiNA under dif-
ferent degrees of in-network aggregation. The degree of in-
network aggregation is controlled by setting the number of
attributes in the Group-By clause.

Figure 10 shows the energy usage for Cougar and for TiNA
with various tct levels in the cases when we have no Group-
By, when we have Group-By with one attribute, and when we
have Group-By with two attributes. In-network aggregation
is at the maximum in the case of no Group-By, where all
sensors belong to the same group and a parent is always able
to aggregate its reading with the readings reported from its
children. On the contrary, in-network aggregation cannot be
used in the case of a Group-By query with two attributes (i.e.,
the X and Y coordinates). In this case, each sensor represents
its own group and thus a parent and a child can never belong
to the same group. Hence the performance of the network is
similar to that provided by centralized query processing.

Figure 10 shows that energy usage increases when the
number of attributes increases. However, the rate of increase
in energy usage for TiNA is less than that for Cougar. For in-
stance, consider the performance of TiNA(0%) in the case of

Randomness Degree (RD)

0.00 0.25 0.50 0.75 1.00

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Cougar
Cougar+TiNA(0%)
Cougar+TiNA(5%)
Cougar+TiNA(10%)
Cougar+TiNA(20%)
Cougar+TiNA(30%)

Fig. 11. Energy vs. randomness degree

no Group-By attributes and in the case of two Group-By at-
tributes. In the case of no Group-By (i.e., maximal in-network
aggregation), using TiNA on top of Cougar reduces the energy
consumption by 20% compared to plain Cougar; this reduction
is 52% for Group-By with two attributes (i.e., no in-network
aggregation).

6.4 Sensitivity to variability of sensor readings

This experiment focuses on the rate at which data change and
on the magnitude of change. We compared Cougar against
TiNA on top of Cougar with various tct levels. Figure 11 shows
the energy savings based on the rate of data change. The be-
havior of Cougar is not affected by the rate of data change
(top line in graph). In the case of RD = 0, TiNA uses almost
no power since it exploits the fact that sensor readings do not
change. Actually, each node only sends once throughout its
life; the rest of the time it only sends very small notification
messages. At a 50% change rate, TiNA’s power savings range
from 44% (for tct = 0%) to 76% (for tct = 30%). In general, the
less often data change, the higher the chance that readings will
be the same as before and the greater the chance to save on
transmission costs when using TiNA. The worst case will be
when data are completely random (RD = 1), which is atyp-
ical for most applications. Even in this case, we show energy
savings between 8.2 and 68%. The 8.2% energy savings for
TiNA(0%) compared to Cougar occurs because TiNA exploits
the few cases where, although the individual sensor readings
change, some of the partial aggregates remain the same (and
thus the aggregate is not transmitted).

Table 2 shows the relative error for each of the different
tolerance levels. This table shows the case where the random-
ness degree is set at 0.5, the default case for our experiments.
Even as the tct increases, the relative error increases at a much
slower rate. For example, in the case where tct = 30%, the in-
crease in relative error is only 3.3%.

Figure 12 shows the energy consumption based on the
magnitude of change (i.e., random step size limit). The figure
shows that Cougar is not affected by the magnitude of change

Table 2. REM vs. tct (RD = 0.5) for TiNA over Cougar

tct 0% 5% 10% 15% 20% 30%
REM 0% 0.5% 1.2% 1.7% 2.6% 3.3%

396 M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks

Random Step Size Limit

5% 10% 15% 20% 25%

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Cougar
Cougar+TiNA(0%)
Cougar+TiNA(5%)
Cougar+TiNA(10%)
Cougar+TiNA(15%)
Cougar+TiNA(20%)

Fig. 12. Energy vs. step size

(the same behavior shown in Fig. 11). It also shows that, for
a fixed tct value, increasing the step size results in an increase
in energy consumption. This increase in energy is due to an
increase in the rate of readings violating the tct requirement
between successive rounds. This also explains the decrease
in relative error when the step size increases, as shown in
Fig. 13. At a step size that is relatively small compared to tct,
a reading could change many times while still being within the
specified tolerance level; however, these changes contribute to
an increase in relative error. Increasing the step size makes the
change more noticeable and hence more changes are captured
by the tct filter, which leads to the shown decrease in REM,
i.e., an improvement in QoD.

Random Step Size Limit

5% 10% 15% 20% 25%

R
E

M
(%

)

0%

1%

2%

3%

Cougar
Cougar+TiNA(0%)
Cougar+TiNA(5%)
Cougar+TiNA(10%)
Cougar+TiNA(15%)
Cougar+TiNA(20%)

Fig. 13. REM vs. step size

Period(T)

10 20 30 40 50 60 70

R
E

M
(%

)

0%

1%

2%

3%

4%

5%

6%

Cougar
Cougar+TiNA(0%)
Cougar+TiNA(5%)
Cougar+TiNA(10%)
Cougar+TiNA(15%)
Cougar+TiNA(20%)

Fig. 14. REM vs. sinusoidal period (T)

The above observation is further illustrated using Fig. 14.
In this figure we used the sinusoidal data model to generate
readings as explained in Sect. 5. In this setting, all sensors
generated readings that were in phase (same φ); however, we
varied the sinusoidal period (T) between runs. In other words,
a sensor reading is changing all the time and the magnitude of
change depends on the period. That is, a short period (i.e., 20)
is equivalent to a high frequency and a significant change in
value between successive readings, while a longer period (i.e.,
60) is equivalent to a low-frequency sinusoidal and a small
change between successive readings. The results presented
in Fig. 14 show how the REM decreases by decreasing the
sinusoidal period, which agrees with the results previously
shown in Fig. 13.

Real data analysis. In order to put our results in a real perspec-
tive, we analyzed some available environmental readings from
[25] that had previously been used in [18]. We conducted this
analysis to extract the real data variability parameters, namely,
randomness degree and step size.

These data are gathered as part of the tropical atmosphere
ocean project and the measurements include surface winds, sea
surface temperature, upper ocean temperature and currents,
air temperature, and relative humidity. Samples are taken at a
resolution interval of 10 min and telemetered to shore in real
time via a satellite system.

In our analysis, we processed the air temperature readings
for the year 2003, which were available from 15 stations. We
converted the measured temperatures to the Fahrenheit scale
and assumed that a reading does not change if its integer part
stays constant. We computed the variability parameters men-
tioned above given the default 10-min sampling rate. More-
over, we computed the same parameters when readings are
sampled at longer intervals (up to 4 h).

Figure 15 shows the randomness degree and average step
size when readings are sampled at different rates, as well as
our default settings. The figure shows that, in general, the ran-
domness degree and average step size increase by increasing
the sampling interval where the gaps are longer between suc-
cessive readings. It also shows that our default experimental
settings are realistic and more demanding than the real data
settings. In our default settings, we set the randomness de-
gree to 0.5 and the step size limit to 5◦ (i.e., 2.5◦ on average).
Compared to real data sampled at 10-min intervals, our ex-
perimental setting values are � 3.6 times and � 2.3 times the
observed randomness degree and average step size, respec-
tively.

6.5 Alternative approximation method

In this experiment, we are comparing TiNA to an alternative
approximation method, namely, sampling. Sampling can be
used to reduce the number of exchanged messages and con-
sequently the transmission energy. This can be achieved by
excluding entire epochs; during an excluded epoch all sensors
are idle and no result is reported by the network.

As in TiNA, sampling will provide approximated answers
where there is an error between the reported aggregates and the
exact ones. However, in the case of sampling, this error is un-
limited, while in TiNA the error is limited by the user-specified

M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks 397

Randomness Degree (RD)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

A
ve

ra
ge

 S
te

p
S

iz
e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10 mins
30 mins

1 hr
2 hrs 3 hrs

4 hrs

Default
Settings

Fig. 15. Real data analysis

Phase(φ)

0° 45° 90° 135° 180°

R
E

M
(%

)

0%

1%

2%

3%

4%

5%

6%

7%
TiNA(10%)
Sampling

Fig. 16. REM vs. φ (tct = 10%)

Phase(φ)

0° 45° 90° 135° 180°

R
E

M
(%

)

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

TiNA(30%)
Sampling

Fig. 17. REM vs. φ (tct = 30%)

tolerance. Moreover, in TiNA the suppression or transmission
decision is guided by the previously reported state, while in
sampling the decision does not consider the previous state.

In order to compare TiNA to sampling, we use the si-
nusoidal data model (which was presented in the previous
section). The sinusoidal data model has the ability to control
the temporal correlation between streams of readings gener-
ated by different sources, which is important for assessing the
quality of each approximation method. This can be illustrated
using Figs. 16 and 17. In both figures, the X-axis represents the
maximum phase shift between any two sinusoidals generated
by two different sensors. For example, in the case of 0◦, all
sinusoidals are in phase, while in the case of 180◦, each sensor

will use a sinusoidal where φ is randomly selected from the
range [0◦ − 180◦].

Figures 16 and 17 show the REM provided by TiNA and
by sampling under the same level of energy consumption. To
ensure that they are both using the same energy, we measured
the ratio between the energy used by TiNA to that used by
Cougar (or TAG) and used this ratio as the effective sampling
rate. Since this cannot provide uniform sampling intervals, we
used that ratio to set the probability of sampling. Hence, using
sampling, the probability of the network being active during
an epoch is equal to that ratio. During the excluded epochs,
reported results from the most recent epoch are assumed to be
reported to the user and are used to measure the error.

Figure 16 compares the performance of TiNA(10%) with
that of sampling. We can see that the average REM provided
by TiNA is always less than that from sampling. However, the
difference in error diminishes with the increase in φ. For exam-
ple, consider the cases where φ = 0◦ and when φ = 180◦.
In the former case, the error provided by TiNA is 5% less
than that of sampling, while in the latter case, the resulting
error is almost equal. The reason is that when φ = 0◦ all
readings are either increasing or decreasing, which leads to
a continuous constructive interaction (as defined in Sect. 5),
where the aggregated sum is always increasing or decreasing.
Hence, exempting an epoch from sampling will increase the
error significantly. Conversely, when φ = 180◦, the readings
generated by sensors at any point in time will span the com-
plete sinusoidal, leading to an overall destructive interaction
where the rate of change in the aggregate sum is low over
time. This observation is further illustrated in Fig. 17, where
we compare TiNA(30%) to sampling. The figure shows that
TiNA outperforms sampling by 13% in the case of φ = 0◦
and with only 0.2% when φ = 180◦.

Even though sampling provided a low overall average
REM in the case of φ = 180◦, the provided individual rel-
ative errors per epoch show noticeable fluctuations. This is
illustrated in Fig. 18, where we plot the REM per epoch for
TiNA(30%) and sampling at φ = 180◦. The figure shows
that sampling provides a 0% REM when an epoch is included
in sampling, while the error is unpredictable when the epoch
is exempted. Moreover, it shows that the REM provided by
TiNA will never exceed the specified tolerance (i.e., 30%). In
the same experiment, we measured the maximum error over
the simulation time and the standard deviation of the error.
The results show that TiNA(30%) exhibits a maximum error

Time

0 20 40 60 80 100 120

R
E

M
(%

)

0%

50%

100%

150%

200%

250%

TiNA(30%)
Sampling

Fig. 18. REM vs. time (φ = 180◦)

398 M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks

tct value

0% 5% 10% 15% 20% 25% 30% 35%

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0000

0.0001

0.0002

0.0003

0.0004

SUM
MAX
AVG

Fig. 19. Sensitivity to aggregation function (energy vs tct)

tct value

0 5 10 15 20 25 30

R
E

M
(%

)

0%

1%

2%

3%

SUM
MAX
AVG

Fig. 20. Sensitivity to aggregation function (REM vs. tct)

Table 3. Energy for TiNA(0%)

Aggregate Energy for Cougar Energy for TiNA(0%)

SUM 0.0005 (100%) 0.000272 (54.5%)
MAX 0.0005 (100%) 0.00025 (50%)
AVG 0.000654 (100%) 0.00035 (53.5%)

of 21%, with a deviation of 5%, while the sampling method
shows a maximum error of 196%, with a 28% standard devi-
ation.

6.6 Sensitivity to the aggregation function

In this experiment, we test the sensitivity of TiNA and Cougar
to the different aggregation functions. In Table 3, we report
the energy used by Cougar and TiNA(0%). The numbers in
parentheses represent the ratio of energy required compared
to that needed by plain Cougar. The table shows that TiNA uses
only about half the energy for each of the different aggregation
functions. It also shows that for Cougar, both MAX and SUM
use the same amount of energy, whereas in TiNA, MAX has
lower energy requirements. This is because in MAX, changes
at the reading level have less chance of affecting the previous
partial aggregate value. Hence, one reported partial aggregate
for MAX can stay valid for several rounds, which leads to
reduced transmission costs.

Figure 19 shows the energy consumption for TiNA on top
of Cougar under different aggregation functions, with various
tct levels. In this figure, we see that AVG has higher energy

requirements than MAX and SUM. The reason for this is that
for MAX and SUM, only the max/sum of the readings needs
to be sent, while for AVG, the sum of the readings and the
count is reported.

Figure 20 compares the REM under different levels of tct
for various aggregation functions. We can observe that both
AVG and SUM have the same relative error in all cases, while
MAX provides a lower relative error. The former is because
AVG is just the sum divided by the count, and the latter is
because MAX as an aggregate is less sensitive to changes in
the sensors’ readings, as explained above.

6.7 Sensitivity to communication protocol overhead

One thing that can vary based on the wireless communica-
tion protocol is the size of the packet header. Because packet
header size can affect the size and number of packets needed to
transfer data, we wanted to make sure that making the packet
header larger or smaller would not dramatically affect our
results. Note that changing the header size is equivalent to
accounting for the additional control packets required by the
MAC protocol (e.g., CTS and RTS).

In this experiment, we allowed the packet header to vary
in size from 2 bytes to 8 bytes, while using 30 bytes as the
size of packets. The results for this experiment are shown in
Fig. 21. All the results given are for the savings in energy
normalized to the scheme on top of which TiNA lies. This
means that TAG+TiNA(0%) would be TiNA with tct = 0
normalized to the energy readings of TAG (i.e., savings using
TAG+TiNA(0%) =| EnergyTAG − EnergyTiNA(0%) | /

EnergyTAG), while Cougar+TiNA(0%) would be the same
but normalized to the energy readings of Cougar.

There are two observations from Fig. 21. First is that as the
packet header size gets larger, the savings from using TiNA
on top of TAG actually increase. This is evident for the case of
tct=0, where savings increased from 11.5% to 13.9% as the
packet header size increased from 2 to 8 bytes. The reason for
this is that as the packet header gets larger in size, the savings
from sending no data (as will be done if the data do not change)
also gets larger. In addition, there are cases where more packets
need to be sent out as the packet header increases in size. Since
there are only 30 bytes in each packet, if the packet header size
is 8, then only 22 bytes exist for the packet payload. If the data

Packet Header Size (bytes)

1 2 3 4 5 6 7 8 9

S
av

in
gs

 P
er

ce
nt

ag
e

0%

20%

40%

60%

80%

100%
TAG+TiNA(0%)
TAG+TiNA(10%)
TAG+TiNA(20%)
Cougar+TiNA(0%)
Cougar+TiNA(10%)
Cougar+TiNA(20%)

Fig. 21. Savings in energy vs. base schemes for
various packet header sizes

M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks 399

Number of Sensors

0 500 1000 1500 2000

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

Cougar
Cougar+TiNA(0%)
Cougar+TiNA(5%)
Cougar+TiNA(10%)
Cougar+TiNA(20%)
Cougar+TiNA(30%)

Fig. 22. Scalability: energy vs. number of sensors

Number of Sensors

0 500 1000 1500 2000

R
E

M
(%

)

0%

1%

2%

3%

4% Cougar
Cougar+TiNA(0%)
Cougar+TiNA(5%)
Cougar+TiNA(10%)
Cougar+TiNA(20%)
Cougar+TiNA(30%)

Fig. 23. Scalability: REM vs. number of sensors

is 28 bytes, this will require two packets to be sent in addition
to the 8 bytes of overhead. With TiNA, these 28 bytes may
be cut down to 22 bytes based on data staying within the tct,
which allows only one packet to be sent and saves not only
the 6 bytes of data but also the 8 bytes of overhead.

The second observation is that the energy savings from
Cougar decrease, but not by much. For example, in the case
of a 2-byte packet header size and tct=10 the energy sav-
ings were 70.7%, while with an 8-byte packet header size
these savings decrease to 67.4%. The reason for this has to do
with the notification packet used in TiNA on top of Cougar.
Remember that the notification is only 1 bit, but the packet
includes the header as well. With all else being equal, a bigger
packet header will cause this notification packet to be larger
and hence cause more energy to be used. This will also cause
nodes to listen for a slightly longer period of time because
more bytes are being transmitted. The result is the decrease
in energy savings; however, this decrease pales in comparison
to the savings of using TiNA on top of Cougar, showing that
the packet header size does not dramatically affect the energy
savings gained from using TiNA.

6.8 Scalability

In order to test the scalability of the proposed TiNA frame-
work, we ran an experiment increasing number of sensors in
the network (i.e., increasing the grid size). Figure 22 shows
the effect on energy when the size of the network changes: as
the size of the network increases, the amount of energy saved

In-network Aggregation Policy

Cougar TiNA 0% TiNA 5% TiNA 10% TiNA 15% TiNA 25%

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

0.00050

FHF

GaNC

Fig. 24. GaNC in 15×15 grid (energy)

In-network Aggregation Policy

Cougar TiNA 0% TiNA 5% TiNA 10% TiNA 15% TiNA 25%

R
E

M

0%

1%

2%

3%

FHF

GaNC

Fig. 25. GaNC in 15×15 grid (REM)

also increases. In the case of the 11×11 network, TiNA is
showing energy savings between 43% (for tct = 0%) and 74%
(for tct = 30%). However, for the largest grid size we tested
(45×45), we had savings of 48% and 81% for the same tct
levels.

Figure 23 shows the REM for the various tct levels when
the size of the network increases. The relative error actually
decreases as the network increases in size. For example, for
tct = 30%, the relative error decreases from 3.3% when the
grid size is 11×11 to 2.6% when the grid size is 45×45. The
reason for this decrease is that in TiNA, a parent will send its
reading if either the reading changes or the group it is a part
of is already being sent up. As the grid size increases, there
is a better chance the parent’s group is being sent up already
and that the parent can therefore add its own reading in. This
means more actual readings are being sent up the routine tree,
thus decreasing the relative error, which results in an improved
QoD.

6.9 Group-aware network configuration

In this set of experiments we study the behavior of the pro-
posed group-aware network configuration algorithm (GaNC)
and also examine the synergy between TiNA and GaNC. We
present results of using TiNA on top of Cougar and use the FHF
network configuration method as our base case.We will denote
the experiments where GaNC was used by adding +GaNC to
the method.

400 M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks

In-network Aggregation Policy

Cougar TiNA 0% TiNA 5% TiNA 10% TiNA 15% TiNA 25%

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

FHF

GaNC

Fig. 26. GaNC in 45×45 grid (energy)

In-network Aggregation Policy

Cougar TiNA 0% TiNA 5% TiNA 10% TiNA 15% TiNA 25%

R
E

M

0%

1%

2%

FHF

GaNC

Fig. 27. GaNC in 45×45 grid (REM)

For this set of experiments, the group IDs for the different
nodes are assigned at random with values between 1 and N ,
where N is the total number of groups in a particular experi-
ment.

6.9.1 Effects of group-aware network configuration

In this experiment we compare FHF with GaNC for varying
tct amounts. We will show the effects of GaNC for network
sizes of 15×15 and 45×45 and report both the energy savings
and the quality of data. Figures 24 and 25 show the energy and
relative error for the 15×15 size network and Figs. 26 and 27
show the same for the 45×45 size network. The number of
groups used in this experiment was set at 10.

The first observation is that, for the most part, using GaNC
decreases the amount of energy used by the sensor network.
This is especially prominent in larger networks. For TiNA
with tct=0%, energy savings are 4.6% for the 15×15 grid
and 29.3% for the 45×45 grid. The savings when using GaNC
with plain Cougar are even higher: 7.1% for the 15×15 grid
and 33.3% for the 45×45 grid.

This shows that the proposed group-aware network con-
figuration method can reduce energy significantly even when
it is not used in conjunction with the TiNA framework.

The next observation is that, regardless of the size of the
network, the energy savings of GaNC over FHF decrease as
the tct increases. In fact, for the 15×15 network, there is a
crossover point where FHF requires slightly less energy than
the GaNC method for high values of tct. This is illustrated in

Fig. 24 where GaNC saves 3.8% when tct=5% but uses 3.3%
more energy when tct=25%. This result is not surprising: as
a result of using GaNC, some nodes will switch to parents
that are in the same group as themselves. While this tends
to decrease the number of messages a parent sends, there are
cases where switching parents can cause more messages to be
sent.

For example, assume that, using FHF, two children of the
same group are routed through a parent of a different group.
This would result in three messages being sent overall (one
from each child and one from the parent further up the tree). If,
however, when GaNC is used each of these children changes
to be with a parent of their same group, they may end up
choosing two different parents, because the parents in their
same group are not close enough to be “clustered” together.
In order to propagate information up the tree under this setup,
four messages are needed (one from each child and one from
each parent). This is a 25% increase in the total number of
messages, which in turn causes an increase in the energy used
in the network.

For larger networks, the positive effects of using GaNC
will outweigh the negative effects (per our previous example).
As the tct increases, fewer nodes are transmitting, since their
value changes are not violating the specified tct. In larger net-
works, since there are many nodes, there will still be a lot of
nodes transmitting, even under high tcts. In Fig. 26, we can
see that for the 45×45 grid, the energy savings at tct=0% are
29.3% and they drop to down to 24.7% for tct=25% (however,
there is no crossover point in this case).

The final observation is that there is very little difference
in the relative error between using GaNC versus using FHF
to create the routing tree, even with the large savings in en-
ergy (from GaNC). For the 15×15 grid, the relative error has
decreased in the case of GaNC. This decrease is minor, rang-
ing from .005% for tct=5% to .2% for tct=25%, but it exists
nonetheless. This improvement is due to the “free” ride some
parent nodes may get by having a child already sending the
same group as the parent and therefore be able to aggregate
its own reading into the group aggregate without adding to
the amount of energy used. In the case of the 45×45 grid, the
relative error increases by a small amount. This increase was
between 0.0001% for tct=5% and 0.1% for tct=25%. This
small increase is explained by multiple nodes counteracting
each other’s changes; thus the internal node does not get the
“free” ride it may have gotten with only one child changing
values.

6.9.2 Synergy of TiNA and GaNC
under varying numbers of groups

In this experiment we examine how the number of groups
affects the behavior of GaNC. Figure 28 shows the results
from this experiment. We compared plain Cougar, TiNA over
Cougar with tct=0%, and TiNA over Cougar with tct=10%.
We run two sets of experiments, one where FHF was used for
configuring the network and one where we used GaNC instead
(we denote such cases by +GaNC). The number of groups
ranged from 2 to 50. We had a total of 45× 45 = 2025 nodes.
With just five groups, GaNC is expected to reduce energy
consumption significantly since children nodes will be able

M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks 401

Number of Groups in Network

0 10 20 30 40 50 60

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

0.0022
Cougar
TiNA 0%
TiNA 10%
Cougar+GaNC
TiNA 0%+GaNC
TiNA 10%+GaNC

Fig. 28. Energy comparison for varying numbers of groups

to select parents that are in the same group as them (in other
words, GaNC will have a lot of options to choose from). For all
three cases, using GaNC instead of FHF saves 41% in energy
for Cougar, 38% for TiNA(0%), and 37% for TiNA(10%).

Using GaNC when the number of groups is 50 will not
reduce energy as dramatically as with the case of 5 groups.
When the number of groups is high, the chances are lower
that a child can find a parent in the same group. Based on
the grid configuration (which we used in our simulations),
each child has a maximum of three different parents to choose
from. With 50 different groups, the chance that the child is in
the same group as one of those three parents is less than 1%,
so the savings will be minimal.

This can be observed from Fig. 28: for 50 groups the sav-
ings with GaNC are 12% for Cougar, 10% for TiNA(0%), and
9% for TiNA(10%). Overall, we see that when the number
of groups increases, the savings with GaNC also decrease,
but they are still significant even when there are 50 different
groups and the chance of a node actually switching parents in
an efficient way is less than 1%.

6.10 Coverage

In the last set of experiments, we compared the network cov-
erage provided by TiNA on top of Cougar versus that provided
by plain Cougar. We define the coverage of the network for
time ti as the number of sensors that are still able to send their
readings to the root sensor at that time. Obviously, sensors
with depleted energy are not counted. However, a sensor may
still be “alive”, but if its parent is dead, it is no longer counted
for the coverage measurement. For that reason, we rebuild the
routing tree for the sensor network periodically (every five
intervals in this experiment). When the routing tree is recon-
structed, a child chooses its parent in the same way as when
the tree was first created. Since previous parent nodes may be
dead, choosing former siblings as parents is possible. Finally,
in our experiment, each sensor is limited to sending 5000 bits
of information before dying.

Figure 29 shows our results for this experiment. We used
TiNA with tct = 0%, which should maintain the same relative
error as Cougar. Clearly, TiNA on top of Cougar outperforms
the plain Cougar scheme, allowing sensors to stay alive signif-
icantly longer. If we define the overall coverage as the integral
of coverage over the entire observation period (i.e., the area

Time

0 20 40 60 80 100 120 140

N
um

be
r

of
 S

en
so

rs
 C

on
ne

ct
ed

0

50

100

150

200

250

Cougar

Cougar+TiNA(0%)

Fig. 29. Measurement of lifetime of the network

under each curve in Fig. 29), then using TiNA can increase
the overall network coverage by 270% compared to the plain
Cougar approach. Also shown in this figure are several up-
ward bumps in the otherwise monotonically decreasing net-
work coverage curves. A bump indicates that reconfiguration
occurred, and several nodes that were previously disconnected
because their parents had failed have now been given new par-
ents that are still alive, and thus these nodes are once again
connected to the network.

7 Related work

The idea of using different criteria to affect the building of rout-
ing trees has been examined on several fronts. One criterion
could be to use link quality to decide on the best parent to use
because better link quality means fewer lost packets. However,
determining the quality of the link [34] is not a trivial task. An-
other criterion is to use application semantics to do the data
routing in sensor networks. This has been presented in [37,
20], where the goal is to use information-directed routing to
minimize communication cost while maximizing information
aggregation. The work in [20] showed the significant gains of
applying information-directed routing in locating and tracking
moving objects.

The use of query semantics for efficient data routing was
introduced in [22], which proposed the use of a semantic rout-
ing tree (SRT). The basic idea that motivates the use of SRT
is the fact that a given query does not apply to all nodes in
the network. Hence, those nodes for which the query does not
apply can be excluded from the query in order to save commu-
nication costs. As in GaNC, the work on SRT considered opti-
mizing the routing tree for the special case of constant-valued
attributes (e.g., location). However, the objective of the SRT
is providing a design to minimize the number of nodes partic-
ipating in a query with a predicate over that constant-valued
attribute, whereas in GaNC the objective is to cluster along the
same path sensor nodes that belong to the same group in order
to maximize the benefit of in-network aggregation in reducing
the size of messages.

Providing approximate answers to queries is an approach
that was first used to provide fast results when an exact answer
is not essential or when producing the exact answer is very time
consuming. Sampling is one technique that was used in [11,
1] to provide such approximate answers over massive stored
data. Using sampling, a posed query will be answered using

402 M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks

summary statistics that allow producing an approximate an-
swer and provide a fast response time. These summaries may
either be generated online after the query is posed [11] or be
precomputed as in [1]. Moreover, the approximate answers are
often supplemented with a statistical error bound to indicate
the quality of the approximation to the user.

In networked database systems, approximation remains
a very attractive technique to improve the utilization of the
limited resources. The work in [7] demonstrates the use of
wavelet-based summarization for storing data within the sen-
sor network for future querying. The importance of approx-
imation in networked database systems increases when it is
required to continuously process continuously generated data.
In that context, end-user tolerance to temporal coherency has
been used to reduce communications cost for dynamic data
generated by Web servers, data streams, and sensor networks.

One approach to dynamic data reduction is to use numeric
bounds and queries with explicit precision constraints. This
is the approach that TiNA follows and that does not require
a priori knowledge of the generated data pattern; it also allows
the user to control the desired degree of precision. The former
feature is especially important for cases where the changes are
abrupt and unpredictable, which makes this approach attrac-
tive for a wide range of applications.

Besides TiNA, this approach has been used in [26,5,30,
24]. In [5] the user specifies a temporal coherency requirement
for data items on a Web proxy. The work shows that combin-
ing this coherency requirement with intelligent data dissem-
ination techniques achieves efficient and scalable utilization
of Web servers and network resources. A subsequent work
[30] focuses on selecting topologies and policies to reduce the
number of messages in a network of repositories while taking
into account the data and coherency needs of users attached
to each repository.

In the context of data streams, the work in [26] proposes
a technique for reducing the communication overhead result-
ing from rapid update streams. In this technique, users regis-
ter queries with precision requirements at a central processor,
which installs filters on remote data sources. These filters are
dynamically adjusted to account for sources that change at
different rates and magnitudes. However, this adaptive adjust-
ment of filters is only feasible if data generated at different
sources follow a certain pattern, which might not be the gen-
eral case. In this paper, we address the problem of message
reduction without any assumptions about the data behavior.
Moreover, this technique assumes a centralized system, which
is equivalent to a one-level network. In a hierarchical sensor
network, where in-network aggregation is typically used to
support aggregate queries, additional procedures are needed to
ensure the efficient interaction between message suppression
and in-network aggregation. Such procedures were discussed
along with the steps describing the functionality of TiNA in
Sect. 4.

The PREMON paradigm for motion detection uses the spa-
tiotemporal correlation in sensor readings to reduce transmis-
sions [8]. In PREMON, the base station monitors the read-
ings of sensors, generates a prediction model for each sensor,
and sends these models back to the sensors. The performance
of the PREMON approach is highly dependent on the accu-
racy with which prediction models can be generated and the
percentage of readings that can be successfully predicted by

them. The APTEEN protocol [24], like TiNA, attempts to re-
duce the number of transmitted readings in a sensor network.
APTEEN uses filters to exploit temporal correlation in order
to suppress values (using a soft threshold). However, unlike
TiNA,APTEEN does not consider the semantics of the queries
(specifically of aggregation queries).

To the best of our knowledge, TiNA is the first frame-
work that exploits temporal correlation to support energy-
efficient, QoD-aware in-network aggregation. As explained
above, TiNA allows the user to specify a temporal coherency
tolerance that is satisfied by applying numeric bound filters on
sensor readings and partial aggregates.

8 Conclusions

In this work we explored two ideas related to further reducing
energy consumption in the context of in-network aggregation:
(1) influencing the construction of the routing trees for sen-
sor networks with the goal of reducing the size of transmitted
data and (2) imposing a hierarchy of output filters on the sensor
network with the goal of both reducing the size of transmitted
data as well as minimizing the number of transmitted messages
needed to ensure a specified level of quality of data. Our pro-
posed methods provide a balance between energy efficiency
and quality of aggregate data in sensor networks.

Specifically, this paper makes the following contributions:

• It proposed GaNC, a new network configuration algorithm
for sensor networks, which considers the semantics of
Group-By queries and the properties of the sensor nodes.

• It proposed TiNA, a framework of hierarchical output
transmission filters that can reduce energy consumption
while bounding the loss in the quality of aggregate data,
based on user preferences. Our framework is independent
of the underlying synchronization protocol used for send-
ing and receiving data between the sensor nodes.

• It presented extensive simulation results that show clear
gains for each proposed method in isolation and greater
benefits when the two proposed schemes are combined.

We have shown experimentally that our schemes result in
large savings in energy over typical in-network aggregation
methods without significant loss in quality of data. Specifi-
cally, we showed that TiNA can reduce the energy used for
communication by up to 60%. We have also shown that using
GaNC in addition to TiNA can result in an additional 29%
savings in energy.

We also experimentally compared TiNA to a temporal
sampling method. For the same energy consumption levels,
TiNA had up to 13% higher overall quality of data than
sampling. However, the relative error when using sampling
reached up to 196% in our experiment, while on the other
hand TiNA maintained the relative error within the specified
bounds (30% in this case) at all times. Therefore, such tem-
poral sampling cannot be used to reduce energy consumption
when user-specified preferences must be satisfied.

TiNA has also been shown to increase quality of data in
cases where the period to transmit is too small and can increase
the lifetime of the network by 270% compared to existing ap-
proaches. The TiNA scheme is particularly attractive for ex-
ploratory applications. In this case, TiNA is tuned to minimize

M. A. Sharaf et al.: Balancing energy efficiency and quality of aggregate data in sensor networks 403

energy consumption during the preliminary analysis and iden-
tify interesting trends in the sensor network. Once a trend is
identified and higher accuracy is needed, TiNA is tuned to in-
crease the quality of delivered data while consuming minimal
energy.

In conclusion, both proposed schemes (GaNC and TiNA)
work synergistically with existing in-network aggregation me-
thods to further reduce communication energy consumption
while maintaining quality of data within user-specified pref-
erences.

Acknowledgements. We would like to thank the anonymous review-
ers for their thoughtful and constructive comments.

References

1. Acharya S, Gibbons PB, Poosala V (2000) Congressional sam-
ples for approximate answering of group-by queries. In: Pro-
ceedings of ACM SIGMOD Conf.

2. Beaver J, Sharaf MA, Labrinidis A, Chrysanthis PK (2003)
Location-aware routing for data aggregation for sensor networks.
In: Proceedings of Geo Sensor Networks Workshop

3. Bonnet P, Gehrke J, Seshadri P (2001) Towards sensor database
systems. In: Proceedings of MDM Conf.

4. Considine J, Li F, Kollios G, Byers J (2004) Approximate aggre-
gation techniques for sensor databases. In: Proceedings of IEEE
ICDE Conf.

5. Deolasse P, Katkar A, Panchbudhe A, Ramamritham K, Shenoy
P (2001) Adaptive push-pull: disseminating dynamic web data.
In: Proceedings of WWW Conf.

6. Estrin D, Culler D, Pister K, Sukhatme G (2002) Connecting the
physical world with pervasive networks. IEEE Pervasive Com-
puting 1(1):59–69

7. Ganesan D, Greenstein B, Perelyubskiy D, Estrin D, Heidemann
J (2003) An evaluation of multi-resolution search and storage in
resource-constrained sensor networks. In: Proceedings of ACM
SenSys Conf.

8. Goel S, Imielinski T (2001) Prediction-based monitoring in sen-
sor networks: taking lessons from MPEG. Computer Communi-
cation Review 31(5)

9. Heidemann J, Silva F, Intanagonwiwat C, Govindan R, Estrin D,
Ganesan D (2001) Building efficient wireless sensor networks
with low-level naming. In: Proceedings of ACM SOSP

10. Heinzelman WR, Chandrakasan A, Balakrishnan H (2000)
Energy-efficient communication protocol for wireless microsen-
sor networks. In: Proceedings of HICSS

11. Hellerstein J, Haas P, Wang H (1997) Online aggregation. In:
Proceedings of ACM SIGMOD Conf.

12. Hellerstein J, Hong W, Madden S, Stanek K (2003) Beyond aver-
age: toward sophisticated sensing with queries. In: Proceedings
of IPSN Workshop

13. Hill J, Culler D (2002) Mica: a wireless platform for deeply
embedded networks, IEEE Micro 22(6):12–24

14. Hill J, Szewczyk R, Woo A, Hollar S, Culler D, Pister K (2000)
System architecture directions for networked sensors. In: Pro-
ceedings of ACM ASPLOS Conf.

15. Intanagonwiwat C, Estrin D, Govindan R, Heidemann J (2002)
Inpact of network density on data aggregation in wireless sensor
networks. In: Proceedings of IEEE ICDCS Conf.

16. Intanagonwiwat C, Govindan R, Estrin D (2000) Directed diffu-
sion: a scalable and robust communication paradigm for sensor
networks. In: Proceedings of ACM MobiCom Conf.

17. Juang P, Oki H, Wang Y, Martonosi M, Peh L-S, Rubenstein D
(2002) Energy-efficient computing for wildlife tracking: design
tradeoffs and early experiences with zebranet. In: Proceedings
of ACM ASPLOS Conf.

18. Lazaridis I, Mehrotra S (2003) Capturing sensor-generated time
series with quality guarantees. In: Proceedings of IEEE ICDE
Conf.

19. Lin C, Federspiel C, Auslander D (2002) Multi-sensor single
actuator control of hvac. http://www.cbe.berkeley.edu/
RESEARCH/xyz/FederspielICEBO2002.pdf

20. Liu J, Zhao F, Petrovic D (2003) Information-directed routing in
ad hoc sensor networks. In: Proceedings of ACM WSNA Work-
shop

21. Madden S, Franklin M, Hellerstein J, HongW (2002) TAG: a tiny
aggregation service for ad-hoc sensor networks. In: Proceedings
of OSDI

22. Madden S, Franklin M, Hellerstein J, Hong W (2003) The de-
sign of an acquisitional query processor for sensor networks. In:
Proceedings of ACM SIGMOD Conf.

23. Mainwaring A, Polastre J, Szewczyk R, Culler D, Anderson J
(2002) Wireless sensor networks for habitat monitoring. In: Pro-
ceedings of ACM WSNA Workshop

24. Manjeshwar A, Agrawal DP (2002) APTEEN: A hybrid protocol
for efficient routing and comprehensive information retrieval in
wireless sensor networks. In: Proceedings of IPDPS

25. McPhaden MJ (1994) Tropical atmoshphere ocean project, pa-
cific marine environmental laboratory.
http://www.pmel.noaa.gov/tao/

26. Olston C, Jiang J, Widom J (2003)Adaptive filters for continuous
queries over distributed data streams. In: Proceedings of ACM
SIGMOD Conf.

27. Perkins C, Royer EM (1999) Ad hoc on-demand distance vector
routing. In: Proceedings of IEEE WMCSA Workshop

28. Ratnasamy S, Estrin D, Govindan R, Karp B, Shenker S, Yin L,
Yu F (2001) Data-centric storage in sensornets. In: Proceedings
of HotNets Workshop

29. Schwetman H (2001) CSIM user’s guide, MCC Corp, Austin,
TX

30. Shah S, Dharmarajan S, Ramamritham K (2003) An efficient
and resilient approach to filtering and disseminating streaming
data. In: Proceedings of VLDB Conf.

31. Sharaf MA, Beaver J, LabrinidisA, Chrysanthis PK (2003) Tina:
A scheme for temporal coherency-aware in-network aggrega-
tion. In: Proceedings of ACM MobiDE Workshop

32. Terry DB, Goldberg D, Nichols D, Oki BM (1992) Continuous
queries over append-only databases. In: Proceedings of ACM
SIGMOD Conf.

33. WooA, Culler D (2001)A transmission control scheme for media
access in sensor networks. In: Proceedings of ACM MobiCom
Conf.

34. Woo A, Tong T, Culler D (2003) Taming the underlying chal-
lenges of reliable multihop routing in sensor networks. In: Pro-
ceedings of ACM SenSys Conf.

35. Yao Y, Gehrke J (2003) Query processing for sensor net. In:
Proceedings of CIDR Conf.

36. Younis M, Youssef M, Arisha K (2002) Energy-aware routing in
cluster-based sensor networks. In: Proceedings of MASCOTS

37. Zhao F, Shin J, Reich J (2002) Information-driven dynamic sen-
sor collaboration for tracking applications. IEEE Signal Process
Mag 19(2):61–72

