The VLDB Journal (2004) 13: 240-255 / Digital Object Identifier (DOI) 10.1007/s00778-004-0131-7

Exploring the tradeoff between performance and data freshness

in database-driven Web servers

Alexandros Labrinidis', Nick Roussopoulos?

! Department of Computer Science, University of Pittsburgh, Pittburgh, PA, 15260, USA (e-mail: labrinid @cs.pitt.edu)
2 Department of Computer Science, University of Maryland, College Park, MD, 20742, USA (e-mail: nick@cs.umd.edu)

Edited by S. Abiteboul. Received: January 17, 2004 / Accepted: March 23, 2004

Published online: August 19, 2004 — (©) Springer-Verlag 2004

Abstract. Personalization, advertising, and the sheer volume
of online data generate a staggering amount of dynamic Web
content. In addition to Web caching, view materialization has
been shown to accelerate the generation of dynamic Web con-
tent. View materialization is an attractive solution as it de-
couples the serving of access requests from the handling of
updates. In the context of the Web, selecting which views to
materialize must be decided online and needs to consider both
performance and data freshness, which we refer to as the online
view selection problem. In this paper, we define data freshness
metrics, provide an adaptive algorithm for the online view se-
lection problem that is based on user-specified data freshness
requirements, and present experimental results. Furthermore,
we examine alternative metrics for data freshness and extend
our proposed algorithm to handle multiple users and alterna-
tive definitions of data freshness.

1 Introduction

The frustration of broken links from the early Web has been
replaced today by the frustration of Web servers stalling or
crashing under the heavy load of dynamic content. In addition
to data-rich online Web services, even seemingly static Web
pages are usually generated dynamically in order to include
personalization and advertising features. However, dynamic
content has significantly higher resource demands than static
Web pages (at least one order of magnitude) and creates a huge
scalability problem at Web servers.

Dynamic Web caching [11,5,7,8,17, 1] has been proposed
to solve this scalability issue. The biggest problem of em-
ploying caching techniques for dynamic Web content is the
coupling of serving access requests and handling of updates,
since an update that invalidates a cached object will result in
the object being recomputed on the next access request. For
example, imagine a cache that can store dynamically gener-
ated Web pages. During normal operation we get an 80% hit
rate (which means that only 20% of the pages will need to be
recomputed). If we get a small surge in the update stream, a
big percentage of the cached pages could be invalidated, and
the hit rate will drop significantly. A sudden drop in hit rate

leads to a sudden increase in the average response time and
possibly to server saturation. View materialization can solve
this problem since it decouples the serving of access requests
from the handling of the updates.

Selecting which views to materialize, the view selection
problem, has been studied extensively in the context of data
warehouses [24,10,9,21]. However, unlike data warehouses,
which are offline during updates, most Web servers maintain
their backend databases online and perform updates concur-
rently with user accesses. Therefore, in the context of the Web,
selecting which views to materialize must be decided dynam-
ically and needs to consider both performance and data fresh-
ness.

In this paper, we present OVIS(6), an adaptive algorithm
for the online view selection problem. OVIS(0) acts as a knob
in the system, determining at runtime which views should be
materialized (cached and refreshed immediately on updates)
and which ones should just be cached and reused as necessary.
The parameter 6 corresponds to the level of data freshness that
is considered acceptable for the current application. In addi-
tion to maintaining high performance given the data freshness
demands, OVIS(0) also detects infeasible thresholds, when the
freshness demands would create a backlog at the Web server.

Motivating example: Our motivating example is a
database-driven Web server that provides real-time stock infor-
mation to subscribers. Updates to stock prices and other mar-
ket derivatives are streamed to the backend database and must
be performed online. The Web server provides users with up-
to-date information that includes current stock prices, moving
average graphs, comparison charts between different stocks,
and personalized stock portfolio summaries. In general, we are
interested in data-intensive Web servers that provide mostly
dynamically generated Web pages to users (with data drawn
from a DBMS) and also face a significant online update work-
load.

Structure of paper: In the next section, we present our
metrics for measuring system performance and data freshness.
We also define the online view selection problem. In Sect. 3 we
describe the proposed online view selection algorithm, and in
Sect. 4 we discuss the results of our experiments. Section 5 ex-
amines alternative metrics for data freshness, whereas Sect. 6
extends the proposed online view selection algorithm to han-

A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers 241

relation

[app | async [db updates
Lserverj cache Lsewer

accesses web |
server |

Fig. 1. System architecture

dle multiple users and alternative definitions of data freshness.
Section 7 summarizes related work. We conclude in Sect. 8.

2 Problem definition

We extend the typical three-tier architecture of modern Web
servers, by adding an Asynchronous Cache module, between
the application server and the database server (Fig. 1).

In this architecture, the Web server module is responsible
for serving user requests and the application server is responsi-
ble for Web workflow management. Instead of interfacing the
application server directly to the database server, the Asyn-
chronous Cache module acts as an intermediary. Unlike tradi-
tional caches in which data are simply invalidated on updates,
data in the asynchronous cache can be materialized and im-
mediately refreshed on updates. Recent products from IBM
and Microsoft incorporate such an asynchronous middle-tier
cache [2,15,16].

2.1 Web page derivation graph

There are three types of data objects in the system: relations,
WebViews, and Web pages.

o Relations are stored in the database server and are the pri-
mary “storage” for structured data. They are affected by the
incoming update stream. Relation updates are executed in
order of arrival.

o WebViews, introduced in [18], are HTML or XML frag-
ments. In other words, WebViews are simply parts of a
Web page. WebViews are usually generated by “wrapping”
database query results (i.e., database views) with HTML
formatting commands or XML semantic tags. We allow
WebViews to be formed from any type of database queries.
In fact, the only assumptions that we must make for Web-
Views are that we:

1. Have their current definition and corresponding query
(which means that we must have the values of any pa-
rameters if the WebViews are generated by a parame-
terized query),

2. Are able to determine when they become stale (in the
most conservative case, this corresponds to whenever
the source relations are updated), and

3. Can uniquely address/name them (since we plan to
cache them and must be able to perform lookups).

We prefer the term WebView over the term “HTML frag-
ment”, which was introduced earlier, in order to stress that
these HTML fragments are derived from a database. In fact,
we will use the terms “view” and “WebView” interchange-
ably for the rest of the paper. In the general case, WebViews
may be defined from other WebViews, but in this paper we
focus on HTML WebViews that are directly derived from
querying the database (as we will see later).

o Web pages are composed of one or more WebViews. Web
pages are what the user is served with in response to his/her
access requests.

A WebView W; is derived from relation R; if W} includes

data generated by querying R;. A web page P, is considered

to be derived from WebView W if P, contains ;.

The associations between these data objects are depicted
using a Web page derivation graph, which is a directed acyclic
graph. The nodes of the graph correspond to relations, Web-
Views, or Web pages. An edge from node a to node b exists
only if node b is derived directly from node a. A node can have
multiple “parents”; therefore the in-degree of a node can be
greater than one. Relations are the roots of the graph, with
zero in-degree, and Web pages are the leafs of the graph,
with zero out-degree. Figure 2 has an example of a Web
page derivation graph. We assume a database with three re-
lations (Rq, R2, R3), four WebViews (W1, Wy, W3, W), and
two Web pages (P, P»).

Figure 2 is a very small example of an actual Web page
derivation graph. In practice, we usually have thousands of
Web pages in a Web site, with dozens of HTML/XML frag-
ments on each page [5]. However, we also expect to have a
significant amount of WebView “sharing” among these Web
pages. Imagine, for example, a personalized newspaper site.
Each user selects the type of news to be included (e.g., lo-
cal, national, economy), specifies a city for the weather fore-
cast, and gives a list of stock symbols along with the purchase
price and quantities for calculating his/her portfolio value. Al-
though the combination of the above elements is most prob-
ably unique, there is clearly a finite number of cities/stock
symbols that will be shared among thousands of users (in ad-
dition to the standard navigation/presentation fragments).

2.2 The Asynchronous Cache

All requests that require dynamically generated content are in-
tercepted by the Asynchronous Cache module (ASC for short).
ASC maintains WebViews using one of the following three
policies.

Virtual WebViews are always executed on demand and
never cached. Intercepted queries against virtual WebViews

O— 10 -
G, ®

!

@)

D O

Fig. 2. Web page derivation graph

242 A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers

are forwarded to the database server, whereas database updates
do not affect them.

Nonmaterialized (cached) WebViews are cached in ASC,
in anticipation of future requests. While they are fresh, they
are served very efficiently from the cache. When an update af-
fects a WebView, the cached WebView is invalidated and needs
to be regenerated on a subsequent request. This is similar to
traditional caching with invalidation rather than a Time-to-
Live (TTL) consistency protocol. Assuming that invalidating
“dirty” WebViews in ASC is not a costly operation, nonmate-
rialized WebViews is always a better policy than virtual since,
without any loss in data freshness, one obtains significant im-
provement in response time (for the times when a fresh version
of the WebView is in the ASC). Serving from ASC results in
two orders of magnitude improvement in response time com-
pared to querying the DBMS.

Materialized WebViews are cached and continuously
maintained in the presence of updates. Accesses to them are
always served from the ASC. The response time is similar to
that of a fresh nonmaterialized WebView. We assume that the
response time remains almost constant since a materialized
WebView is served from ASC even when it is not fresh. How-
ever, there is a limit as to how many WebViews should be
materialized. Materializing too many WebViews increases the
overhead of refreshing them all in the background and can
have a negative effect on both server performance and Web-
View freshness.

The big difference between materialized and nonmaterial-
ized WebViews is the decoupling of serving access requests
from updating WebViews. With materialization, updates are
not in the critical path of serving user requests. Without ma-
terialization, updates must be taken care of while serving user
requests (i.e., by refreshing a stale WebView before respond-
ing). This decoupling helps materialized WebViews avoid in-
creases in response times when there is an increase in update
volume (and thus an increase in the percentage of invalidated
cached WebViews). In addition to providing data storage, the
asynchronous cache module is responsible for automatically
selecting which WebViews to materialize.

In this work we consider HTML WebViews only, since we
expect them to have the most impact (being more widely de-
ployed than XML WebViews). Dealing only with HTML Web-
Views means that the cost to generate any WebView from other
WebViews will be negligible (simple concatenation of HTML
fragments) compared to the cost of generating Web Views from
relational data. This would be in contrast, for example, to XML
WebViews, which may have complicated transformations and
derivations from other (parent) XML WebViews. Such an en-
vironment becomes very similar to that of the traditional view
materialization problem, where one must consider the view
derivation dependencies [24,10,9,20,29,21].

Since the cost to generate WebViews from other WebViews
is negligible, in this work we only consider materializing Web-
Views that are generated directly from relational data (stored in
the database server) and do not consider materializing Web-
Views derived from other WebViews. As was suggested in
the literature [18,30], response times for WebViews gener-
ated from relational data can be reduced dramatically if they
are materialized. Thus, they are the only ones that could off-
set the overhead of materialization (keeping them up to date
in the background). Finally, we assume that WebViews are

refreshed by recomputation. This is the general case, which
assumes that there is no method for incrementally refreshing
the materialized WebViews.

2.3 Measuring performance

We define the performance of data-intensive Web servers by
observing the incoming access request stream for a time inter-
val T" and measuring the average response times for each user
request.

Definition 1. Performance is measured as the average re-
sponse time for user requests.

Specifically, we measure the time between the arrival of the
request at the Web server and the departure of the response. We
measure response times at the Web server since all our tech-
niques aim at improving the performance of the Web server.

Improving Web server performance might actually not be
visible to the end user. Even a tenfold improvement in response
time at the server (e.g., from 100ms to 10 ms) can stay unde-
tected by end users who will receive their responses after a few
seconds of network delay. However, a tenfold performance im-
provement at the Web server clearly improves scalability: the
same Web server configuration can serve ten times more users
or handle sudden tenfold surges in traffic without the cost of
additional hardware.

2.4 Measuring quality of data

The “goodness” of the results generated by data-intensive Web
servers has been neglected. However, with Web servers be-
ing used for increasingly important applications (e.g., stock
market information), it is crucial to measure and improve the
quality of data served to the users. One common character-
istic across data-intensive Web servers is their online nature:
updates to source data are applied concurrently with user ac-
cesses since Web servers are always available and never of-
fline. Therefore, the freshness of data served is the most im-
portant measure of quality of data.

Definition 2. Quality of data (QoD) for data-intensive Web
servers is the average freshness of the served Web pages.

When an update to a relation is received, the relation and all
data objects derived from it become stale. Database objects
remain stale until an updated version of them is ready to be
served to the user.

We illustrate this with an example. Let us assume the Web
page derivation graph of Fig. 2 and that only WebViews W;
and W, are materialized. If an update on relation R, arrives
at time ¢1, then relation R; will be stale until time ¢5 > ¢1, the
time when the update on R; is completed (Fig. 3). Although
we do not cache relations, relation R; will be considered stale
because of the unapplied update during [t1, t2]. On the other
hand, materialized WebView W; will be stale from time ¢;
until time t3 > t9, when its refresh is completed. If an update
on relation R3 arrives at a later time, t4, then relation R3 will
be stale for the [t4, 5] time interval, until ¢5, when the update
on R3 is completed (Fig. 3). Also, nonmaterialized WebViews
W3 and Wy will be stale for the same interval [t4, ¢5]. On the

A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers 243

Ry R3 update arrival times
Wy : W, : triggered updates
t =
| Ri s "’le | Ré--lb W2_l update completion times
ty! ty ta! ty! ts: tg!
' relation 'R3, W3, W4
'is stale 'are stale
"materialized W2 is stale

WebView is stale

Fig. 3. Staleness example

other hand, materialized WebView W5 will be stale from time
t4 until time tg > t5, when its refresh is completed.

We identify four types of data objects that can be stale: re-
lations, nonmaterialized WebViews, materialized WebViews,
and Web pages.

o Relations are stale when an update for them has arrived but
not yet executed.

o Nonmaterialized WebViews are stale when an update for
a parent relation has arrived but not yet executed.

o Materialized WebViews are stale if the WebViews have
not been refreshed yet (after an update to a parent relation).

o Web pages are stale if a parent WebView is stale.

In order to measure freshness, we observe the access re-
quest stream and the update stream for a certain time interval
T'. We view the access stream during interval 1" as a sequence
of n access requests:

EERE) A:C7 A.’L‘+17 AJL’+27

Access requests A, are encoded as pairs (P;, t,), where t,
is the arrival time of the request for Web page P;. Each Web
page P; consists of multiple HTML fragments (WebViews).

We define the freshness function for a WebView W; at time
ty. as follows:

s Avgn—1, oo

| 1, if W; is fresh at time ¢,
FWi,te) = { 0, if W; is stale at time ¢y,. @)

A WebView W, is stale if W; is materialized and has been
invalidated, or if W; is not materialized and there exists a
pending update for a parent relation of W;. A WebView W; is
fresh otherwise.

In order to quantify the freshness of individual access re-
quests, we recognize that Web pages are based on multiple
WebViews. A simple way to determine freshness is by requir-
ing that all WebViews of a Web page be fresh in order for the
Web page to be fresh. Under this scheme, even if one WebView
is stale, the entire Web page will be marked as stale. On most
occasions, a strict Boolean treatment of Web page freshness
like this will be inappropriate. For example, a personalized
newspaper page with stock and weather information should
not be considered completely stale if all the stock prices are
up to date but the temperature reading is a few minutes stale.

Since a strict Boolean treatment of Web page freshness
is impractical, we adopt a proportional definition. Web page
freshness is a rational number between 0 and 1, with O being

completely stale and 1 being completely fresh. To calculate
f(Ag), the freshness value of Web page P; returned by access
request Ay, = (P}, t,) at time ¢, we take the weighted sum of
the freshness values of the WebViews that compose the Web

page:
FARD) = (Pt =3 aiy x F(Wisth), o)
=1

where n; is the number of WebViews in page P; and a; ; is a
weight factor.

Weight factors a; ; are defined for each (WebView, Web
page) combination and are used to quantify the importance of
different WebViews within the same Web page. Weight fac-

n;

tors for the same Web page must sum up to 1, or Z a;; =1,
i=1

for each Web page P;. When a WebView W; is not part of

Web page P;, then the corresponding weight factor is zero, or

a;; = 0. The user does not have to specify weight factors. By

default, these are set to a; ; = —, where n; is the number of
N

WebViews in page P; (which givés all WebViews equal impor-
tance within the same page). However, weight factors can also
be user-defined to reflect greater importance of a WebView
(fragment) within a page compared to the other WebViews in
the same page. Such definitions are always page-dependent.

The overall quality of data for the stream of n access re-
quests will then be

rx+n—1

1
QoD = - x kz:: F(Ap). 3)

2.5 Online view selection problem

The choice of WebViews to materialize will have a big impact
on performance and data freshness. At the one extreme, ma-
terializing all WebViews will give high performance but can
have low quality of data (i.e., views will be served very fast
but can be stale). On the other hand, keeping all views nonma-
terialized will give high quality of data but low performance
(i.e., views will be as fresh as possible, but the response time
will be high).

We define the online view selection problem as follows:
in the presence of continuous access and update streams, dy-
namically select which WebViews to materialize so that over-
all system performance is maximized, while the freshness of
the served data (QoD) is maintained at an acceptable level. In
addition to the incoming access/update streams, we assume
that we are given a Web page derivation graph (like the one in
Fig. 2) and the costs to access/update each relation/WebView.

Given the definition of QoD from Sect. 2.4, an acceptable
level of freshness will be a threshold 6 € [0, 1]. For example,
a threshold value of 0.9 will mean that roughly 90% of the
accesses must be served with fresh data (or that all Web pages
served are composed of about 90% fresh WebViews).

The view selection problem is characterized online for two
reasons. First, since updates are performed online, concur-
rently with accesses, we must consider the freshness of the
served data (QoD) in addition to performance. Second, since

244 A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers

o &%,
e 0360 ’Qooo o °o 8 °
DIV W 80 08 o®3 e
0.8 o8 P& %9 Soes 7% b
~ 288 eaggge, < oms €8 R
‘ﬁ oo 3 S o °°° ?e °e °
- o o@o S &
3 0? % ° o, oGO
S o06f 5 s"g&g w" 1
20
g °%o%°°°i% oo °
© S 8 0
a PR £
5 °
= 04 R
=
®©
S
]
0.2 r R
0 L L Il L L L

5 10 15 20 25 30 35 40
Average Response Time (ms)

Fig. 4. Performance/QoD of all materialization plans

the accesses and updates are continuously streaming into the
system, any algorithm that provides a solution to the view
selection problem must decide at runtime and have the abil-
ity to adapt under changing workloads. Offline view selection
cannot match the wide variations of Web workloads.

We will use the term materialization plan to refer to any
solution to the online view selection problem. We do not
consider the virtual policy for WebViews since caching will
always give as fresh data as the virtual policy and will reuse
results, giving better performance. In this paper we assume
that the Asynchronous Cache module has infinite size and
thus there is no need for a cache replacement algorithm (which
would distort the comparison).

To visualize the solution space for the online view selec-
tion problem, we enumerate all possible materialization plans
for a small workload and compute the performance and QoD
in Fig. 4. The different materialization plans provide big vari-
ations in performance and QoD. For example, plans in the bot-
tom left corner of Fig. 4 correspond to materializing most Web-
Views (with very low average response time and low QoD),
whereas plans in the top of the plot correspond to not material-
izing most WebViews (with very high QoD and high average
response times).

3 The OVIS algorithm

Traditional view selection algorithms work offline and assume
knowledge of the entire access and update stream. Such algo-
rithms will not work in an online environment since the se-
lection algorithm must decide the materialization plan in real
time. Furthermore, updates in an online environment occur
concurrently with accesses, which makes the freshness of the
served data an important issue. Finally, the unpredictable na-
ture of Web workloads mandates that the online view selection
algorithm be adaptive in order to evolve under changing Web
access and update patterns.

In this section we describe OVIS(6), an Online Vlew Se-
lection algorithm, where 6 is a user-specified QoD threshold.
OVIS(0) strives to maintain the overall QoD above the user-
specified threshold 6 and also keep the average response time
as low as possible. OVIS also monitors the access stream in
order to prevent server backlog.

QoD surplus
QoD
1
threshold [~ 7777 T[T AT T T T
QoD deficit
0 , , , , , ,

1 1 t t t

—Nf o ™

decision points

Fig. 5. OVIS(0) algorithm

OVIS(0) is inherently adaptive. The algorithm operates in

two modes: passive and active. While in passive mode, the
algorithm collects statistics on the current access stream and
receives feedback for the observed QoD. Periodically the algo-
rithm goes into active mode, where it will decide if the current
materialization plan must change and how.
Figure 5 illustrates the main idea behind the OVIS(6) algo-
rithm. By constantly monitoring the QoD for the served data
the algorithm distinguishes between two cases when it must
change the materialization plan. When the observed QoD is
higher than the threshold 6, OVIS(0) identifies a QoD surplus,
which chooses to “invest” in order to improve the average re-
sponse time. On the other hand, when the observed QoD is less
than the threshold 6, the algorithm identifies a QoD deficit, for
which it must compensate.

3.1 OVIS(0) statistics

‘We want to be able to estimate the change in average response
time and overall QoD after adapting the materialization plan.
We also want to accurately observe the QoD for the served
data in order to determine whether we have a QoD surplus or
a QoD deficit. For that purpose we maintain statistics for each
WebView and use them to estimate future behavior. Specif-
ically, we estimate:

e The access frequency for each WebView,

e The performance contribution for each WebView in case it
will be materialized and in case it will not be materialized,

e The overall data freshness (QoD) contribution of each Web-
View in case it will be materialized and in case it will not
be materialized, and,

e The amount of change in performance and QoD (differen-

tials) if we change the materialization policy for a WebView.
‘We explain these statistics, along with the estimation methods,
in the following paragraphs.

A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers 245

3.1.1 Estimating the access frequency

The most important statistic in our system is the number of
accesses each WebView gets. We must consider popularity
because the materialization decision for popular WebViews
will have a great impact on both the average response time and
the overall QoD. We maintain the total number of accesses for
a WebView W;, which we write as N ,..(W;). The N 4..(W;)
counter is incremented whenever there is an access request for
a Web page that contains W;.

We use the recursive prediction error method [12] to esti-
mate the number of accesses a WebView will have in the near
future. According to this method, we use the measurement for
the current period, m, and the previous estimate, a, to generate
anew estimate a’ using the following formula:

a =(1—-g)a+gm,)

where g is a gain factor, 0 < g < 1. Gain was set to 0.25 for all
of our experiments (as was suggested by [12]). As illustrated
in Fig. 5, the OVIS(#) algorithm is executed periodically in
order to adapt the materialization plan. Periods can be defined
either by the number of Web page requests received (e.g.,
adapt every 1000 page requests) or by time intervals (e.g.,
adapt every 2min). Before each adaptation we consolidate all
statistics and generate estimates for the future. Using Eq. 4,
we have

N/ :(1_9)Nacc+gNm (5)

acc acc?

where N/ . is the new estimate for the number of accesses,

N 4cc 18 the old estimate for the number of accesses, and N

acc

is the number of accesses measured for the current interval.

3.1.2 Estimating performance

We estimate the overall cost for implementing a materializa-
tion policy and use it to quantitatively compare the changes
in performance. High cost will correspond to high average
response times and thus low performance.

If a WebView W; is not materialized, then the overall cost
will depend on the Asynchronous Cache hit ratio, or how many
times we have a cache miss versus a cache hit. Cache misses
mandate recomputation of W;, whereas cache hits will lower
the overall cost. We use “W; -4 mat” to denote that W; will
not be materialized. If H,. is the estimate of the hit ratio for
WebView WW;, we have:

COSI(Wi 7& mat) = Hr X Nacc X Ahii
N7

cache hits

+ (1 - Hr) X Nacc X Ami557 (6)

cache misses

where N, is the estimate for the number of accesses for
W, Ay is the access cost for a cache hit on W;, and A s
is the access cost for a cache miss on W;. All estimates are
computed using Eq. 4. For readability, we do not use the W;
subscripts whenever they can be easily inferred.

The hit ratio, H,., depends on the materialization policy. If
a WebView is materialized, we expect a high hit ratio, because
WebViews are refreshed immediately after an update. On the
other hand, if a WebView is not materialized, we expect a

lower hitratio (even if eventually the user receives fresh results
after cache misses). For that purpose, we maintain separate
statistics depending on whether the Web View was materialized
or not. When we are trying to estimate the overall cost for a
WebView that will not be materialized, we use the statistics
from when the WebView was not materialized. When we are
trying to estimate the overall cost for a WebView that will be
materialized, we use the statistics from when the WebView
was materialized. The only exception to this is the estimation
for the number of accesses and the number of updates that do
not depend on the materialization policy.

The hit ratio used in Eq. 6 is based on statistics from when
WebView W, was not materialized. If such statistics are not
available (because W; was always materialized in the past),
then we use an optimistic estimate for the hit ratio, H, =
100%.

If a WebView W, is materialized, the overall cost will
depend, not on the Asynchronous Cache hit ratio (since all
accesses are served from the Asynchronous Cache), but on
the update rate. Updates lead to immediate refreshes and thus
impose acomputational “burden” on the system. We use W,; ~»
mat to denote that W; will be materialized. The overall cost in
this case will be

COSt(Wi > mat) = Nacc X Ahil
N———

accesses

+ Rr X Nupd X Umah (7)

refreshes

where R, is an estimate of what percentage of source updates
leads to WebView refreshes for W;, N,,q is the estimate of
the number of source updates that affect W, and U, is
the cost to refresh WebView W,;. The refresh ratio, R,., is
not always 100% because sometimes refreshes are “batched”
together (e.g., when there is an update surge). Finally, all es-
timates are computed using Eq. 4.

Equation 7 assumes that the cost of refreshing the mate-
rialized WebViews in the asynchronous cache will impact the
response time of serving access requests. This is true when all
three software components (Web server, Asynchronous Cache,
DBMS) reside in the same machine, which is a typical config-
uration for data-intensive Web servers today [17].

3.1.3 Estimating the QoD

Similarly to performance, we use statistics to estimate the
overall QoD after adapting the materialization plan. Let us
assume that N p.q,(W; | P;) is the number of fresh accesses
to WebView W; that originated from requests to page P;. The
overall QoD definition from Eq. 3 can be rewritten as follows:

1
QoD = ﬁ X ZZ[CLW' X Nfresh(Wi | Pj)]
1 J

for all WebViews W; and all Web pages P;, where n is the
total number of page access requests and a; ; are the weight
factors defined in Sect. 2.4. Weights a; ; sum up to 1.0 for all
WebViews in the same Web page.

Instead of separate N ., (W | Pj) counters for all (Web-
View, page) combinations, we maintain only one weighted
counter, N fresi-a(W;), for each WebView ;. We increment

246 A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers

N fresn-o(W;) by the weight value a; ; for each fresh access
to W; originating from a request to page P;. We have that
Nfresh-a(Wi) = Z_j [ai,j X Nfresh(Wi | PJ)} for all Web pages
P;. Therefore, the QoD definition can be simplified as

1
QoD = — x Zmeh.a(Wi). (8)

To estimate the contribution of an individual WebView W;

to the overall QoD, we maintain a freshness ratio, F., defined

N froshr-) .
as A{:ii’a“ , where N 4o is the N, counter computed sim-

ilarly to N g for each WebView W;. The difference is
that N .., is incremented by a; ; on every access, not just
the accesses that produced fresh results, which is the case for
N fresh-a - The freshness ratio depends on the materialization
policy; therefore we need to maintain separate statistics for
when the WebView was materialized and for when it was not
materialized, similarly to the hit ratio estimation in the previ-
ous section. Given the freshness ratio, F;., and Eq. 8, the QoD
contribution for each WebView W; will be
Nacc-a

QoD(W;) = F, x ~=,)

where n is the total number of Web page requests.

3.1.4 Estimating the performance/QoD differentials

At each adaptation step, OVIS(6) must decide if changing the
materialization policy for a particular WebView is warranted
or not. In other words, it must determine whether it should stop
materializing a materialized WebView or whether it should
begin materializing a WebView that had not been previously
materialized.

After estimating the performance and QoD for all Web-
Views using the formulas from the previous paragraphs, we
compute the performance and QoD differentials for switching
materialization policies. For example, if a WebView W, is cur-
rently materialized, we compute the difference in performance
and QoD if W; were to stop being materialized.

To estimate A 7, the performance differential for Web-
View W;, we use the cost formulas from Eqs. 6 and 7. If W;
is materialized, then we want to estimate how much the per-
formance will change if W; stops being materialized:

A perr = cost(W; +» mat) — cost(W; ~» mat). (10)

Similarly, if W; is not currently materialized, then we want to
estimate how much the performance will change if W; starts
being materialized:

A perr = cost(W; ~» mat) — cost(W; +> mat). (11)

A positive performance differential means that the average
response time will increase, whereas a negative performance
differential means that the average response time will decrease
(which is an improvement).

To estimate A ¢,p, the QoD differential for WebView W;,
we use the QoD formulas from Eq. 9. If W; is materialized,
then we want to estimate how much the QoD will change if
W; stops being materialized:

A gop = QoD(W; + mat) — QoD(W; ~» mat). (12)

Similarly, if W; is not currently materialized, then we want
to estimate how much the QoD will change if W; starts being
materialized:

AQoD = QOD(WZ' ~ mat) — QOD(Wi ’7@ mat). (13)

A positive QoD differential means that the QoD will increase
(which is an improvement), whereas a negative QoD differen-
tial means that the QoD will decrease.

3.2 OVIS(0) algorithm

The OVIS(#) algorithm constantly monitors the QoD of the
served data and periodically adjusts the materialization plan
(i.e., which WebViews are materialized and which ones are
not materialized). By maintaining the statistics presented in the
previous subsection, OVIS(0) has a very good estimate of how
big an effect on the overall performance and QoD the changes
in the materialization plan will have. As we outlined at the
beginning of this section, OVIS(#) “invests” QoD surplus or
tries to compensate for a QoD deficit (Fig. 5). In the following
paragraphs we present the details of the OVIS(6) algorithm for
the case of QoD surplus and QoD deficit. We also explain why
we need to impose a constraint on the maximum amount of
change to the materialization plan in a single adaptation step,
and we describe how to detect server lag. Finally, we provide
the pseudocode for the OVIS(6) algorithm.

3.2.1 QoD surplus

When the observed QoD @ is higher than the user-specif-
ied threshold 6, the algorithm will “invest” the surplus QoD
(= @ —0) in order to decrease the average response time. This
is achieved by materializing WebViews that were previously
materialized. For the algorithm to take the most profitable de-
cision, we just need to maximize the total performance benefit,
> A perf> for the WebViews that become materialized, while
the estimated QoD “losses”, Y, A g,p, remain less than Q — 6.
A greedy strategy, which picks WebViews based on their A
improvement, provides a good solution, as we explain later.

3.2.2 QoD deficit

When the observed QoD @ is less than the threshold 6, the al-
gorithm will have to compensate for the QoD deficit (= —@Q).
In this case, OVIS() will stop materializing WebViews, thus
increasing QoD, at the expense of increasing the average re-
sponse time. For the algorithm to take the most profitable deci-
sion, we just need to maximize the total QoD benefit, > A QoD>
for the WebViews that stop being materialized, while the esti-
mated overall QoD does not increase above the threshold 6. A
greedy strategy, which picks WebViews based on their A g,p
benefit, provides a good solution, as we explain later.

3.2.3 Maximum change constraint
Allowing any number of WebViews to change materialization

policy during a single adaptation step of the OVIS(6) algo-
rithm can have detrimental effects. Since we do not have prior

A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers 247

knowledge of the future, any estimate of future performance
and QoD after a materialization policy change is just an es-
timate and can be wrong. Therefore it is preferable to take
smaller adaptation “steps”, which should result in a more sta-
ble algorithm. For this reason, we impose a limit on the number
of WebViews that can change materialization policy during a
single adaptation step. We specify this limit as a percentage
over the total number of WebViews in the system and denote
it as MAX_ CHANGE. For example, if MAX CHANGE = 5%,
and we have 1000 WebViews in our system, then at most 50 of
them can change materialization policy at a single adaptation
step of the OVIS(#) algorithm.

3.2.4 Greedy strategy

With the maximum limit in mind, the desired behavior for
OVIS(#) under QoD surplus can be summarized as follows:

e Maximize the improvement in performance, and
e Minimize the decrease in QoD

while

e Changing the materialization policy of
at most MAX_CHANGE WebViews, and
e QoD > 6.

A knapsack-style greedy algorithm (i.e., pick the WebViews
with the highest A, per QoD unit) would be preferable if
there were no limit to the number of WebViews. However, with
the maximum change constraint, a greedy algorithm selecting
the top MAX_.CHANGE WebViews with the highest A s is
the best solution.

Let us see why. In the general case, we assume that, be-
cause of the MAX_CHANGE constraint, we will not be able
to reach our goal of QoD = 6 in a single step. However, we
would like to change the materialization policy so that we get
as close as possible to that goal. For this reason, we want to
maximize the overall improvement in a single step. For exam-
ple, if we have 1000 WebViews, and MAX_ CHANGE is 10,
then we need to identify the ten WebViews that would give
us the highest overall improvement in a single step. Clearly, a
greedy strategy that selects the ten WebViews with the highest
A perr is the best solution.

Similarly, the desired behavior for OVIS(#) under QoD
deficit can be summarized as follows:

e Maximize the improvement in QoD, and
e Minimize the decrease in performance,

while
o Changing the materialization policy of
at most MAX_CHANGE WebViews, and
e QoD < 4.
With the maximum change constraint, a greedy algorithm se-

lecting the top MAX_CHANGE WebViews with the highest
A gop is the best solution.

3.2.5 Server lag detection

From elementary queueing theory [13] we know that system
performance worsens dramatically as we approach 100% uti-
lization. In practice, there can be cases where the incoming ac-
cess and update workload generate more load than the server

'\ X >(X
?“\ \ v\ \;»\ arrival times

\ \ \\\ completion times
’ 2 Az Aig ”

Ai At Ag

Fig. 6. Server lag example

can handle, resulting in backlog, which we refer to as server
lag. Figure 6 has an example of server lag, which is visible in
the response times of the access requests.

It is crucial to detect server lag in an online system. For
users, server lag means near-infinite response times; this holds
for both current (i.e., those still waiting a response) and fu-
ture users of the system. For system administrators, failure to
identify server lag can lead to long, ever-increasing backlogs,
which will eventually crash the server.

We detect server lag by monitoring the average response
time and the QoD of the served results. Specifically, we
compute the rate of change between consecutive calls to the
OVIS(#) algorithm. We conclude that server lag is imminent,
if:

e The rate of increase for the average response time is too
high (for example, a 100-ms increase in average response
time over 1000 accesses), or,

o The rate of decrease for the average QoD is too high (for
example, a 0.1 drop in QoD over 1000 accesses).

A sudden increase in the average response time is a textbook
case for server lag. A sudden decrease in the average QoD
indicates that our system, with the current configuration of
materialization policies, has surpassed its capacity to handle
updates in a timely manner as a result of server lag.

Server lag is used to detect infeasible QoD thresholds. For
example, a QoD threshold very close to 1 will most likely
lead to a server meltdown and should be detected, since no
WebView could be materialized, and thus the system will be
vulnerable to overloads.

3.2.6 Pseudocode

The OVIS(0) algorithm is in passive mode most of the time,
collecting statistics (Fig. 5). Periodically, OVIS() enters ac-
tive mode in order to adapt the materialization plan. Before
deciding on a new materialization plan, the algorithm will
check if there is server lag. If server lag is detected, OVIS(6)
makes all WebViews materialized. This action corresponds to
pressing a “panic” button.

Making all WebViews materialized will have the best per-
formance and thus should help alleviate server backlog before
it is too late. Materialization essentially “protects” accesses
from overload by removing the handling of the updates from
the critical path. Assuming “well-behaved” update processes,
a surge in updates will lead to reduced QoD without impact
on performance.

There are two cases when OVIS(6) skips an opportunity
to adapt the materialization plan:

1. For an initial warmup period we forbid adaptation in order
to collect enough statistics about the workload;

248 A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers

OVIS(0) - QoD Surplus

qod diff = QoD — 6 > 0
ignore all materialized WebViews
ignore all WebViews with A ., > 0
find W; with min A perf
if MAX_.CHANGE not reached and
(qod._diff + A gop(W5)) > 0 then
materialize W;
goddiff + = A Q,;D(Wi)
goto step 3
else

COXINEWDD = O

—

STOP

Fig. 7. Pseudocode for OVIS(6) — QoD surplus

2. After detecting server lag, we impose a short mandatory
cool-down period, during which we do not allow any plan
adaptations, in order to let the system reach a stable state
again.

Figures 7 and 8 present the active mode of the OVIS(6) algo-
rithm under surplus and deficit conditions.

3.2.7 Implementing OVIS on a real system

Although we have not yet implemented OVIS as part of a com-
mercial Web server, we believe that doing so would not be very
difficult. There are two main issues that need to be addressed:
(1) invalidating cached WebViews and (2) collecting statistics
about QoD and response times at the server.

In order to recognize which of the WebViews cached in-
side the Asynchronous Cache have been invalidated, we pro-
pose to rely on the existing replication facilities of modern
database management systems [16]. In order to collect the
required statistics, we propose to instrument the Web server
appropriately. We have done so successfully for our WebView
Materialization study [18] by instrumenting the page request
module of the Apache Web Server to collect response time
information.

4 Experiments

In order to study the online view selection problem, we built
osim, a data-intensive Web server simulator in C++. The
database schema, the costs for updating relations, the costs
for accessing/refreshing views, the incoming access stream,
the incoming update stream, and the level of multitasking are
all inputs to the simulator. The simulator processes the incom-
ing access and update streams and generates the stream of
responses to the access requests, along with timing informa-
tion. Among other statistics, the simulator maintains the QoD
metric for the served data.

osimruns in two modes: static mode and adaptive mode.
In static mode, the materialization plan is prespecified and
fixed for the duration of the simulation. In adaptive mode,
the materialization plan is modified at regular intervals using

OVIS(0) - QoD Deficit

0. qoddiff=60 — QoD >0
1. ignore all WebViews not materialized
2. ignore all WebViews with A g,p < 0
3. find W; with max A g,p
4. if MAX_.CHANGE not reached then
5. stop materializing W;
6. qod_diff — = A gop(W5)
7. if qod_diff > 0
8. goto step 3
9. else
10. STOP
11. else
12. STOP

Fig. 8. Pseudocode for OVIS(6) — QoD deficit

the OVIS(0) algorithm (Figs. 7 and 8). We report the average
response time and the observed QoD for each experiment.

We used synthetic workloads in all experiments. The
database contained 200 relations, 500 WebViews, and 300
Web pages. Each relation was used to create 3—7 WebViews,
whereas each Web page consisted of from 10 to 20 WebViews.
Access requests were distributed over Web pages following
a Zipf-like distribution [3] and the updates were distributed
uniformly among relations. We also generated random Web
page derivation graphs (like the one in Fig. 2). Although up-
dates were distributed uniformly among relations, this did not
correspond to uniform distribution of updates to WebViews
because of the random view derivation hierarchy. Interarrival
rates for the access and the update stream approximated a neg-
ative exponential distribution. The cost to update arelation was
150 ms, the cost to access a WebView from the Asynchronous
Cache was 10ms and the cost to generate/refresh a WebView
was 150 ms in all experiments.

4.1 Providing the full spectrum of QoD

In this set of experiments we vary the QoD threshold 6 in or-
der to produce the full spectrum of choices between the (low
QoD, high performance) case of full materialization and the
(high QoD, low performance) case of no materialization. The
workload had 35,000 accesses and 32,000 updates. The dura-
tion of the experiment was 2400 s, whereas the QoD threshold
0 was set to 0.925.

Figure 9 shows the QoD over time. The top line is the
QoD for the no-materialization case (i.e., only caching), and
the bottom line is the QoD for the fully materialized case. Both
policies correspond to static materialization plans. The middle
line is the QoD over time for the OVIS algorithm (our adap-
tive policy), and the straight line is the QoD threshold, 0.925.
Initially, all WebViews under OVIS start as being material-
ized. However, in this experiment, the QoD for OVIS quickly
“climbs” to the threshold levels and stays around the threshold
for the duration of the experiment.

Figure 10 shows the fluctuation of average response
time. The top line is the average response time for the no-
materialization case, and the bottom line is the average re-
sponse time for the fully materialized case. The middle line

A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers 249

theta=0.925 (QoD)

T

all-mat ——
[

1r none-mat ----x

T L A N R

1)

Quality of Data (best:

0.8
0 500000 1e+06 1.5e+06 2e+06

Simulation Time (ms)

Fig. 9. QoD over time for OVIS(0.925)

2.5e+06

theta=0.9 (QoD)

all-mat ——
OVi§ -
. 1+ none-mat ---x
i KX x ok X : x
‘% *”‘**x e .:*‘_,ef)“*w‘%*ﬂ‘* *‘&,X* % Wv:”&xx*,&x W
[
£ 095
8
©
o
ks 0.9
2
s
=}
S 085
0.8

1.5e+06 2e+06

0 500000 1e+06
Simulation Time (ms)

Fig. 11. QoD for OVIS(0.90)

2.5e+06

is the average response time for the OVIS algorithm, with
0 = 0.925. The high QoD with the no-materialization case is
“penalized” by widely fluctuating response times (up to ten
times worse than OVIS). On the other hand, the near-constant
response times for the fully materialized case correspond to
relatively poor QoDClearly, the OVIS algorithm provides a
good tradeoff between these two extremes.

We changed the QoD threshold to 0.90 and ran the same
experiment. We plot the QoD and the average response times
in Figs. 11 and 12. In this experiment, the QoD produced by
the OVIS(0.90) algorithm is less than that of the OVIS(0.925)
algorithm (from Fig. 9). In other words, OVIS seems to track
the specified QoD threshold.

Finally, we ran the same experiment with a threshold value
of 0.85 for OVIS. Since the QoD for the fully materialized
policy is very close to 0.85, the behavior of OVIS mirrored
that of the fully materialized case. This was true for both the
data freshness and the average response time.

4.2 Detecting infeasible QoD thresholds

In this set of experiments we wanted to see the behavior of
the OVIS algorithm under server lag conditions. The work-
load had 40,000 accesses and 35,000 updates. The duration
of the experiment was 2400s. Under this workload, without
materialization, the server exhibits significant lag, the average
response times increase monotonically, and the server essen-
tially crashes under the heavy load.

theta=0.925 (Performance)

2500 T
- all-mat —-—
i OVIS -
’g 2000 b none-mat e |
Y
£
5 1500 |
@ ?
o H
a i
3
& 1000 t .
& e
g 500} LR SN
< el E N S T
g O n W? R & w»w‘m*y%wM*@M
v ed 0
0 ; ; : ?
0 500000 1e+06 1.5e+06 2e+06 2.5e+06

Simulation Time (ms)

Fig. 10. Performance for OVIS(0.925)

theta=0.9 (Performance)

2500 ‘
P all-mat ——
QVIS -+
€ 2000 | i none-mat - |
Y
£
o 1500 |
2 o
Q
3
& 1000 |
(0]
(=)
]
2 2
< o R Ry
mo 8o B E Gfeg A @ i
NN ey i
0 * : L L
0 500000 1e+06 1.5e+06 2e+06 2.5e+06

Simulation Time (ms)

Fig. 12. Performance for OVIS(0.90)

Figure 13 has the average response time for the three poli-
cies: no materialization (cached), full materialization (mat),
and that produced by the adaptive OVIS algorithm (ovis).
The response times for the fully materialized and OVIS are
very close together, at the bottom of the graph. The average
response time for the no-materialization policy increases con-
stantly because the server has been saturated. At the end of
the experiment, the average response times without materi-
alization are three orders of magnitude worse than the OVIS
or fully materialized policies. Clearly, this is a situation we
want to avoid, regardless of how good the QoD is under the
no-materialization policy.

We plot the QoD for the three different policies in Fig. 14.
The top line represents when we do not materialize any Web-
View, the bottom line when we materialize all WebViews, and
the middle line when we use the OVIS algorithm to decide
the materialization policy for each WebView. The OVIS al-
gorithm tries to “climb” toward the QoD threshold 0.875 but
after a while (¢ = 1563 s) detects the server lag and “resets” to
a fully materialized policy, from which it starts to improve the
overall QoD again. This behavior is clearer if we look at the
average response times of just the fully materialized and the
OVIS algorithm, in Fig. 15. The response time under the OVIS
algorithm increases slowly, then stabilizes (when the QoD is
also stabilized around the QoD threshold), but at some point a
sudden increase in response time leads to server lag detection,
thus reverting to a fully materialized policy.

250 A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers

theta=0.875 (Performance)

400000 ; ‘
all-mat ——

— L OVi§ e o]
2 850000 e mat -—-ox X
@ 300000 f i
E oo 1
f, 250000 - o~ i
3 %
& 200000 f xx’“‘x i
3 e x
& 150000 - i
g - :
& 100000 | i
2 50000 *,‘,xe“f *
< 8 f,ef"‘*

0 bt

0 500000 1e+06 1.5e+06 2e+06 2.5e+06
Simulation Time (ms)
Fig. 13. Performance for OVIS(0.875)
theta = 0.875 (Performance)
350 T T T
all-mat —-—
OVIS -+

@ 300 J
E
[0}
£ 250
[
(o]
2
s 200 i H
g ¥ . roi
c i ; i
o 150 ‘#M
g ' i
[
>
<

1.5e+06 2e+06 2.5e+06

500000 1e+06
Simulation Time (ms)

Fig. 15. Performance for OVIS(0.875)

theta=0.85 (QoD)

T

all-mat ——

1L ovis ——
none-mat %7

o om0 T oKk K

1)

@ 0951

=S

k]

© 0.9 r

a M X
5 ‘X
Z 085

E

=

¢}

0.8

0.75
0 500000 1e+06 1.5e+06 2e+06

Simulation Time (ms)

Fig. 16. QoD for OVIS(0.85)

2.5e+06

We ran the same experiment with different QoD thresh-
olds, one higher (0.90) and one lower (0.85). In the experiment
with the lower 6, the QoD stabilizes around the threshold and
we do not detect any server lag (Fig. 16). On the other hand,
in the experiment with the higher 6 (Fig. 17), the OVIS algo-
rithm detects server lag twice (while trying to reach the high
QoD threshold) and resets to a fully materialized policy, at
t =932sand at t = 1834s.

theta=0.875 (QoD)

all-mat ——
1L OVi§ -
none-mat x|
X MX’@&*Mx,*%*xn**ﬂﬂn@.ﬂw“&‘mmm%ﬂ
0.95 1

1)

0.9

0.85

Quality of Data (best

0.8

0.75

0 500000 1e+06 1.5e+06 2e+06
Simulation Time (ms)

Fig. 14. QoD over time for OVIS(0.875)

2.5e+06

theta=0.90 (QoD)

all-mat ——
1 b OVig ------

none-mat x|
K*J‘)ﬂ()ﬁxn;)‘*"*x‘“**;.Kyg‘”‘%Q‘*WMx*’{x*‘*&nﬂk‘mﬁﬂ‘t*ﬁi
0.95 | |

0.9 & X

0.85

1)

Quality of Data (best

0.8

0.75

0 500000 1e+06 1.5e+06 2e+06
Simulation Time (ms)

Fig. 17. QoD for OVIS(0.90)

2.5e+06

4.3 Scaling the number of WebViews

In this set of experiments we evaluated the behavior of the
OVIS algorithm with a higher number of WebViews. The
workload had 800 relations, 2000 WebViews, and 1500 Web
pages. Each Web page consisted of 10 to 20 WebViews,
whereas each relation was used to generate 5 to 15 WebViews.
A total of 40,000 Web page accesses and 25,000 relation up-
dates occurred in a 2400-s interval.

We plot the QoD and average response time in Figs. 18
and 19. In both plots, the top line respresents the case with-
out any materialization (none-mat), the middle curve when
we ran OVIS with a threshold of 0.85 (ovis (0.85)), and
the bottom line the fully materialized case (all-mat). In
Fig. 19, the y-axis (average response time) is in logarithmic
scale in order to distinguish between the OVIS and all-mat
curves. Clearly, even at a higher number of WebViews, OVIS
continues to provide a hybrid solution between the fully ma-
terialized and no-materialization cases. Also, OVIS avoids the
server overload that is exhibited by the materialize-nothing
approach (top curve). In fact, OVIS is able to track the user-
specified QoD threshold of 0.85 very well.

We ran another set of experiments, with the same setup,
but with a heavier update workload: 30,000 relation updates
instead of 25,000. We plot the QoD and average response time
for this set of experiments in Figs. 20 and 21. In both plots, the
top line is the case without any materialization (none-mat),
the middle curve when we ran OVIS with a threshold of 0.85

A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers 251

50 , T
none-mat ----x----
0.95 | OVIS(085) * 4

0.9

0.85

0.8

Quality of Data (best = 1)

0.75

0.7

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
Simulation Time (ms)

Fig. 18. QoD - 25K updates

allpat ——

none-mat ----x----
0.95 OVIS(0.85) -x-

09 r b

0.85

0.8

0.75

Quality of Data (best = 1)

0.7

0.65

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
Simulation Time (ms)

Fig. 20. QoD - 30K updates

(ovis (0.85)), and the bottom line the fully materialized
case (all-mat). The y-axis (average response time) is in
logarithmic scale for Fig. 21 in order to distinguish between
the OVIS and all-mat curves. In this set of experiments, the
user-specified QoD threshold of 0.85 is infeasible: although
OVIS attempts to reach the threshold, the system detects server
lag and reverts to the fully materialized policy, thus avoiding
meltdown. The behavior is evident by the zig-zag on the QoD
(Fig. 20) and the average response time (Fig. 21). Neverthe-
less, OVIS(0.85) still provides a hybrid solution, with higher
QoD than the fully materialized case, and slightly worse av-
erage response time. Without materialization we have server
overload, resulting in average response times that are three
to four orders of magnitude worse than those of the OVIS
algorithm.

5 Alternative QoD metrics

In this section we present an overview of QoD metrics that can
be used to measure the freshness of dynamic Web pages. We
distinguish three dimensions of such metrics: how individual
fragment freshness is computed, how it is aggregated at the
page level, and how it is aggregated over multiple accesses.
We present the different alternatives for each dimension in the
following paragraphs.

1e+06 T T
all-mat ——
> e OVIS(0.85)% =
2 100000 | 1
[0
£ ?
o 10000 | ¢ 1
2] i
= *
o {
Q. H
7] H
& 1000 1
Q
(=)}
8
[)
>
<C

100 pooset® 1

10

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
Simulation Time (ms)

Fig. 19. Performance — 25K updates

1e+06 ‘ ‘ ‘
,Wx*xxxxxxxwxmxx:;@nefﬁne e T
£ 100000 o™ OVIS(0.85) *-x--
S F 5]
© e
E ¥
‘s 10000 | |
2 i
c
8 :
Q px
7]
& 1000 | 1
) .)
. M :
2 100 -d""ﬂ il J
10

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
Simulation Time (ms)

Fig. 21. Performance — 30K updates

5.1 Fragment freshness

Measuring the freshness of an individual WebView (or HTML
fragment) is the most fundamental component of any QoD
metric. We classify such fragment freshness metrics (FFMs)
into two categories:

e Boolean, when a true/false answer to the “is this fragment
stale?” question is used. In Boolean FFMs, the assigned
value is typically O if the fragment is stale and 1 if it is
fresh. Note that there are no intermediate values.

We used a Boolean FFM in the presentation of the OVIS(6)
algorithm, although the algorithm will work (with trivial
modifications) for any type of FFM, since OVIS(6) is based
on QoD differentials and not on the actual values for QoD.

o Numeric, when a numeric value is used to further specify
how fresh a certain fragment is. In numeric FFMs, the as-
signed value can either be bounded (e.g., when the FFM is
in the [0, 1] range) or completely unbounded. We further
explore the different types of numeric FFMs in the follow-
ing paragraphs. We adopt the terminology from [22] in our
presentation.

5.1.1 Time-based

Time-based numeric FFMs use the time elapsed from the pre-
vious update to quantify how stale a certain data item (or frag-
ment in our case) is. Such metrics are especially useful in

252 A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers

QoD somewhat valid no longer valid

1
0 T T
0 ty Time Elapsed trv

Fig. 22. Mapping of time-based FFM to [0,1] space

distributed environments where the exact time of the next up-
date is not known, but instead time-to-live (TTL) information
is used as an approximation [6].

One problem with this approach is that the resulting val-
ues are unbounded and also their interpretation would vary ac-
cording to applications and data domains. For example, a stock
quote that is 30 min old would be practically useless, whereas
temperature information that is 30 min old is still considered
a reasonable approximation of the current temperature.

We propose to alleviate this problem by introducing a map-
ping of the time since last update to a 0-1 range, which can
be defined on a per-application basis. This mapping, which
is defined similarly to the QoS curves from Aurora [4], is as
follows. There is an initial period after the last update, ¢,,, for
which the value is considered valid and the data item is fresh
(and thus the FFM has a value of 1). After this period, the
“freshness” of the data item declines according to a function
(which can be linear or any other monotonically decreasing
function). At time ¢,,,, the freshness of the data item drops to 0.
After that time, the freshness remains 0. Figure 22 illustrates
the concept.

The major advantage of this proposal is that it maps the un-
bounded time-based metric to an intuitive [0,1]-metric, which
can be customized for each specific application domain (by
modifying the values of ¢,, and t,,,,). The only disadvantage is
the small overhead in computing the metric.

5.1.2 Lag-based

Lag-based numeric FFMs use the number of unapplied up-
dates to quantify how stale a certain fragment is. Such met-
rics are especially useful when we have exact information on
the upcoming updates (i.e., when invalidations are propagated
from the origin servers). Like the time-based case, the cur-
rently used lag-based FFMs are unbounded and as such are
not very intuitive.

In the past, we proposed measuring the “freshness” of
an item as a decreasing function of the number z of updates
missed, and specifically:

Sfreshness(z) = f(z) =a® z=0,1,.... (14)

We define a as the freshness decay rate, which has a value
between 1 and 0. The value a = 1 corresponds to the “do
not care” case: the user considers the object perfectly fresh,
no matter how many updates it is lagging. The value a = 0
corresponds to an extremely demanding user who considers as

1 a=1

0.9 4
0.8
0.7 4
0.6
0.5 4
0.4 4

Data freshness

0.3 4
0.2 4
0.1 4

0 1 2 3 4 5 6 7 8 9 10
Number of pending updates

Fig. 23. Freshness decay under various a

useless everything unless it is perfectly up-to-date (we assume
that 0° = 1). Notice that each object 7 has its own freshness
decay rate a; (for example, one object is a stock price that has
to be very fresh, while another is a computer manual, which
is still useful even if it is slightly outdated).

Figure 23 illustrates the freshness value under various a
values. It is up to the user to set the appropriate value for a
and thus determine the behavior of the freshness decay.

The proposed FFM definition has three important proper-
ties:

e Being a [0,1] metric, it is much more intuitive to use rather
than the unbounded divergence/lag metrics that simply
count the number of pending updates [31,22].

e ¢ is a knob that can “record” the varying characteristics
of the data items with regards to freshness. It can also be
used to record user preferences.

e This model subsumes the typically used binary model (0
if something is stale, 1 if something is fresh), which has
been used in many approaches in the past (e.g., [19]). The
binary model can be seen as a special case (with a = 0).

5.1.3 Divergence-based

Divergence-based numeric FFMs compare the current version
with the most up-to-date version and quantify the difference
in values (i.e., the divergence). Such metrics are especially
useful when data items are simple values (e.g., a stock price)
but do not work as well on entire HTML fragments because it
is difficult to accurately quantify the difference between two
arbitrary HTML/XML fragments.

In the case of simple values, one can either use the absolute
value difference as the divergence metric [27] or normalize
the difference (by dividing with the current value) to com-
pute a relative percentage. Obviously, the relative percentage
approach cannot be used in cases where the value domain in-
cludes 0. Finally, it should be noted that in both the absolute
and relative cases the resulting FFM will be unbounded, as
even the relative percentage can be more than 100% for large
differences.

A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers 253

5.2 Aggregating at the page level

Given a fragment freshness metric, FFM, the question arises
of how to combine it for fragments that are part of the same
Web page. There are two main approaches:

e The minimum value of the FFM of the component frag-
ments is used when a “guarantee” is needed on the fresh-
ness of all fragments on the page. This is especially use-
ful when used in combination with numeric FFMs. For
Boolean metrics, it will lead to an all-or-nothing behavior,
which is usually undesirable.

e The average value of the FFM of the component fragments
is used when a strict guarantee is not needed but instead
we want to get an indication of the freshness of the entire
page. This can be used in combination with Boolean FFMs
to indicate what percentage of fragments should be fresh.
This is the approach taken by the OVIS(0) algorithm.

In the general case, the average can be weighted to indi-
cate the different levels of importance of the fragments
composing the Web page.

In a system where nesting of fragments is supported, not
all fragments should be considered when computing the fresh-
ness at the page level. Assume that we have an arbitrary hi-
erarchy of fragments, expressed as a directed acyclic graph.
The nodes with zero out-degree are the Web pages. Clearly, in
such a case only the freshness of the leaf fragments should be
considered when computing the freshness at the page level. If
we have a leaf fragment A, then all other fragments that are
derived from it will “inherit” the freshness value of A. This
is also true in the case of a fragment composed of multiple
lower-level fragments. Therefore, when nesting of fragments
is supported, only the innermost fragments must be considered
when computing the freshness at the page level.

5.3 Aggregating over multiple access requests

Given an FFM and a way to aggregate it at the page level, the
question arises as to how to combine it for multiple Web page
accesses. There are two main approaches:

e Using the minimum value of page freshness will provide
a guarantee on the freshness of the data returned back to
the user. This is especially useful when combined with the
minimum approach of aggregating FFM at the page level.

e Using the average value of page freshness will provide,
not a guarantee, but instead what is the freshness for the
general case and thus allow fluctuations. This is the ap-
proach taken by the OVIS(0) algorithm.

Both approaches can be combined with either approach for ag-
gregating freshness at the page level, with different semantics
for each combination.

6 Extensions to the OVIS algorithm

In this section we outline how the OVIS(#) algorithm can be
extended to handle alternate QoD metrics and QoD require-
ments from multiple users.

6.1 Supporting alternate QoD metrics

For the presentation of the OVIS(f) algorithm, we used a
Boolean fragment freshness metric, FFM, with aggregation
using averages both at the page level and among multiple
access requests. Since the basic idea behind our algorithm
is based on performance/QoD differentials, as such, the al-
gorithm is not tied to any particular FFM. Any Boolean or
numeric FFM could be used, as long as the differentials of
Egs. 12 and 13 can be easily computed.

The current implementation of OVIS() assumes that
FFMs are aggregated using averages. If we defined QoD to
provide strict guarantees, i.e., using minimum instead of av-
erage for aggregating at the page level and among multiple
access requests, then the OVIS(#) algorithm must change as
follows. Assume that the required QoD threshold is 6. At ev-
ery adaptation point we must go through all WebViews and
compare each one’s QoD against #;. For those below 61, we
must act in the same way as in the QoD deficit case of Fig. 8.
For those that are above 61, we must act in the same way as in
the QoD surplus case of Fig. 7. In other words, we can only
“invest” our QoD surplus for those WebViews that are strictly
above the threshold, and we must also compensate for any
WebViews that are below the threshold. The MAX_ CHANGE
constraint will still be applicable, so we must first deal with
the QoD deficit cases.

6.2 Handling multiple user requirements

In the current version of the OVIS(6) algorithm, only a single
QoD threshold 6 was used. We propose to extend OVIS to han-
dle multiple users as follows. Assume that we have n users,
with different QoD threshold requirements 61,605, ...,0,.
Only two changes are needed to the OVIS algorithm to support
multiple users:

o Pick the stringiest of these QoD requirements and use that
as the systemwide QoD threshold, i.e., § = max ;. This
approach is similar to that used for a hierarchy of caches
in [25].

o If server lag is detected, then this means that the stringiest
QoD threshold is infeasible. In this case, after reverting to
the all-materialized state, we must reset the systemwide
QoD threshold to be the second stringiest QoD threshold
among all users. If another server lag is detected, we repeat
the process, further reducing the QoD threshold until a
feasible threshold is reached.

7 Related work

Our work stands between (1) view selection and runtime
buffer management for data warehouses and (2) dynamic Web
caching.

View selection has been studied extensively in the context
of data warehouses [24,10,9,20,29,21]. However, in all of the
current literature, the selection process is offline, requiring
complete knowledge of the access and update workloads in
advance. This is an unrealistic assumption for Web servers,
which are always online.

254 A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers

Research in runtime buffer management for data ware-
houses is closer to our work because the proposed algorithms
are online (i.e., they do not require knowledge of the entire
access and update stream).

Sellis [26] deals with caching the results of frequent
or expensive queries in secondary storage. A cost model is
presented and ranking-based replacement policy introduced.
Cached results are updated on demand, i.e., the next time they
are requested in a query.

WATCHMAN, a data warehouse cache manager, is pre-
sented in [28]. Cache admission and cache replacement are
integrated using a “profit metric” that considers the access
rate, size, and execution cost of the cached results. This work,
however, does not deal with warehouse updates.

DynaMat, a data warehouse cache manager that unifies
the view selection and view maintenance problems under a
single framework, is presented in [14]. Materialized views are
stored in a view pool and are refreshed during predetermined
update windows. Replacement decisions are made either when
the pool becomes full (space-bound case) or because there
might not be enough time within the update window to refresh
some of the materialized results (time-bound case). Updates
in DynaMat are offline, since queries are not answered during
the update window.

Finally, a scheduling framework that takes into account
freshness when it decides to replicate OLAP data or route
transactions in a database cluster is presented in [23].

Performing updates concurrently with user queries is the
main difference between existing work on materialized view
selection and our work. The current state of the art in mate-
rialized view selection aims to improve overall performance
(QoS). However, in the Web server environment, updates are
online and thus we need to consider both QoS and quality of
data (QoD).

Dynamic Web caching was introduced in [11]. Until re-
cently, research has focused on providing an infrastructure to
support caching of dynamically generated Web pages [5,30].
The decision about which pages to cache, when to cache them,
and when to invalidate or refresh them is left to the applica-
tion program or the Web site designer. There is recent work
on cache management for dynamic Web content. A Dynamic
Dynamic Content Accelerator prototype that can cache frag-
ments of dynamically generated Web pages is presented in
[7,8]. DBCache, which is an IBM DB2 database capable of
caching entire database tables transparently to the application
server is presented in [17,1].

The biggest problem of employing caching techniques for
dynamic Web content is having the handling of updates in the
critical path of serving access requests, which can have detri-
mental effects on server performance. In contrast, OVIS(6)
will effectively mix caching with view materialization to strike
the best balance between performance and data freshness,
while avoiding server backlogs.

8 Conclusions

Traditional caching techniques, if used in isolation to acceler-
ate dynamic Web content, face the possibility of server back-
logs because the handing of updates is in the critical path
of serving access requests. In this paper, we have introduced

the online view selection problem: dynamically select which
views to materialize in order to maximize performance while
keeping data freshness at acceptable levels. We presented
OVIS(f), an adaptive algorithm which combines view ma-
terialization with caching and effectively allows for the de-
coupling of serving of access requests and handling of up-
dates. Parameter 6 in OVIS is the level of data freshness that
is considered acceptable for the current application. Through
extensive experiments we showed that OVIS() can (1) pro-
vide the full spectrum of quality of data and (2) detect and
prevent server backlogs. We envision OVIS(6) being used to-
gether with current dynamic content accelerators in order to
build Web-aware database servers that are self-manageable,
robust, and scalable.

Acknowledgements. The authors would like to thank the anonymous
reviewers whose insightful comments helped improve the paper and
Christos Faloutsos for his invaluable help. This material is based upon
work supported by the U.S. Army Research Laboratory and the U.S.
Army Research Office under contract/grant number DAAD19-01-1-
0494, by NASA under award No NCC8235, and by a startup grant
from the School of Arts and Sciences at the University of Pittsburgh.

Disclaimer. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing
the official policies, either express or implied, of the Army Research
Laboratory or the U.S. Government.

References

1. Altinel M, Bornhovd C, Krishnamurthy S, Mohan C, Pirahesh
H, Reinwald B (2003) Cache tables: paving the way for an adap-
tive database cache. In: Proceedings of the 29th conference on
very large data bases (VLDB), Berlin, Germany, pp 718-729

2. Bornovd C, Altinel M, Krishnamurthy S, Mohan C, Pirahesh
H, Reinwald B (2003) DBCache: Middle-tier database caching
for highly scalable e-business architectures. In: Proceedings of
ACM SIGMOD, San Diego, p 662

3. Breslau L, Cao P, Fan L, Phillips G, Shenker S (1999) Web
caching and Zipf-like distributions: evidence and implications.
In: Proceedings of INFOCOM 1999, New York, pp 126-134

4. Carney D, Cetintemel U, Cherniack M, Convey C, Lee S, Seid-
man G, Stonebraker M, Tatbul N, Zdonik S (2002) Monitoring
streams: a new class of data management applications. In: Pro-
ceedings of the 28th international conference on very large data
bases (VLDB), Hong Kong, pp 215-226

5. Challenger J, Iyengar A, Witting K, Ferstat C, Reed P (2000) A
publishing system for efficiently creating dynamic Web content.
In: Proceedings of INFOCOM 2000, Tel Aviv, Israel, pp 844—
853

6. Cho J, Garcia-Molina H (2003) Effective page refresh policies
for Web crawlers. ACM Trans Database Sys 28(4):390-426

7. Datta A, Dutta K, Thomas HM, VanderMeer DE, Ramamritham
K, Fishman D (2001) A comparative study of alternative middle
tier caching solutions to support dynamic Web content acceler-
ation. In: Proceedings of the 27th international conference on
very large data bases (VLDB), Rome, pp 667-670

8. Datta A, Dutta K, Thomas HM, VanderMeer DE, Suresha, Ra-
mamritham K (2002) Proxy-based acceleration of dynamically
generated content on the World Wide Web: an approach and
implementation. In: Proceedings of ACM SIGMOD, Madison,
WI, pp 97-108

A. Labrinidis, N. Roussopoulos: Exploring the tradeoff between performance and data freshness in database-driven Web servers

9.
10.

11.

12.

16.

18.

19.

20.

21.

Gupta A, Mumick IS (1999) Materialized views: techniques,
implementations, and applications, MIT Press, Cambridge, MA
Gupta H (1997) Selection of views to materialize in a data ware-
house. In: Proceedings of ICDT, Delphi, Greece, pp 98112
Iyengar A, Challenger J (1997) Improving Web server per-
formance by caching dynamic data. In: Proceedings of the
USENIX symposium on Internet technologies and systems,
Monterey, CA

Jacobson V (1988) Congestion avoidance and control. In: Pro-
ceedings of ACM SIGCOMM, Stanford, CA, pp 314-329

. Jain R (1991) The art of computer systems performance analy-

sis. Wiley, New York

. Kotidis Y, Roussopoulos N (1999) DynaMat: A dynamic view

management system for data warehouses. In: Proceedings of
ACM SIGMOD, Philadelphia, pp 371-382

. Larson P, Goldstein J, Zhou J (2003) Transparent mid-tier

database caching in SQL Server. In: Proceedings of ACM SIG-
MOD, San Diego, p 661

Larson P, Goldstein J, Zhou J (2004) Transparent mid-tier
database caching in SQL Server. In: Proceedings of the 20th
international conference on data engineering, Boston, pp 177—
189

. Luo Q, Krishnamurthy S, Mohan C, Pirahesh H, Woo H, Lind-

say BG, Naughton JF (2002) Middle-tier database caching for
e-business. In: Proceedings of ACM SIGMOD, Madison, WI,
p 662

Labrinidis A, Roussopoulos N (2000) WebView materialization.
In: Proceedings of ACM SIGMOD, Dallas, TX, pp 367-378
Labrinidis A, Roussopoulos N (2001) Update propagation
strategies for improving the quality of data on the Web. In: Pro-
ceedings of the 27th international conference on very large data
bases (VLDB), Rome, pp 391400

Ligoudistianos S, Sellis TK, Theodoratos D, Vassiliou Y (1999)
Heuristic algorithms for designing a data warehouse with SPJ
views. In: Proceedings of the 1st international conference on
data warehousing and knowledge discovery (DaWaK), Flo-
rence, Italy, pp 96-105

Mistry H, Roy P, Sudarshan S, Ramamritham K (2001) Mate-
rialized view selection and maintenance using multi-query op-
timization. In: Proceedings of ACM SIGMOD, Santa Barbara,
CA, pp 307-318

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

255

Olston C, Widom J (2002) Best-effort cache synchronization
with source cooperation. In: Proceedings of ACM SIGMOD,
Madison, WI, pp 73-84

Rohm U, Bohm K, Schek H-J, Schuldt H (2002) FAS — A
freshness-sensitive coordination middleware for a cluster of
OLAP components. In: Proceedings of the 28th international
conference on very large data bases (VLDB), Hong Kong
Roussopoulos N (1982) View indexing in relational databases.
ACM Trans Database Sys 7(2):258-290

Shah S, Dharmarajan S, Ramamritham K (2003) An efficient
and resilient approach to filtering and disseminating streaming
data. In: Proceedings of the 29th international conference on
very large data bases (VLDB), Berlin, Germany, pp 57-68
Sellis T (1988) Intelligent caching and indexing techniques for
relational database systems, Inf Sys 13(2):175-185

Shah S, Ramamritham K, Shenoy PJ (2002) Maintaining co-
herency of dynamic data in cooperating repositories. In: Pro-
ceedings of the 28th international conference on very large data
bases (VLDB), Hong Kong, pp 526-537

Scheuermann P, Shim J, Vingralek R (1996) WATCHMAN: A
data warehouse intelligent cache manager. In: Proceedings of
the international conference on very large data bases, Bombay,
India, pp 51-62

Theodoratos D, Ligoudistianos S, Sellis TK (2001) View selec-
tion for designing the global data warehouse. Data Knowl Eng
39(3):219-240

Yagoub K, Florescu D, Issarny V, Valduriez P (2000) Caching
strategies for data-intensive Web sites. In: Proceedings of the
26th international conference on very large data bases (VLDB),
Cairo, Egypt, pp 188-199

Yu H, Vahdat A (2000) Design and evaluation of a continuous
consistency model for replicated services. In: Proceedings of
the 4th symposium on operating systems design and implemen-
tation, pp 305-318

