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ABSTRACT
A popular solution to internet performance problems is the wide-
spread caching of data. Many caching algorithms have been pro-
posed in the literature, most attempting to optimize for one crite-
ria or another, and recent efforts have explored the automation and
self-tuning of caching algorithms in response to observed work-
loads. We extend these efforts to consider the goal of optimizing
for selectable performance criteria. With our proposed algorithm,
we have shown performance matching and exceeding the best per-
formance of the known greedy dual-size algorithms for either ob-
ject or byte hit ratios across different web workloads. GD-GhOST
consistently outperforms the other algorithms tested, at its worst
observed performance GD-GhOST exhibited equivalent miss rates
to those of the best applicable Greedy-Dual variant, while achiev-
ing miss rates that were 25% lower than the worst performing vari-
ant. For byte miss rates, GD-GhOST consistently demonstrated
rates lower than the best applicable Greedy-Dual variant. At its
best, GD-GhOST offered byte miss rates 10% lower than the best
variant.

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscellaneous—
Caching, Web Caching, Adaptive Caching; D.4.3 [Operating Sys-
tems]: File Systems Management—Distributed File Systems
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1. INTRODUCTION
One of the larger problems with the web is the efficient delivery

of content from a site to a user. This problem continues to increase
and leads to longer delays with the increase of new web sites and
users. Data caching has been shown as one of the most effective
ways to reduce user perceived latency, as well as to reduce network
congestion. Web caching can be done at various levels [1, 16]; in
browsers, in intermediate servers and in the web servers. Cache
location and variations in the request workload all result in differ-
ent caching policies being suitable for different purposes. Several
factors influence and have been used to decide the data that is to
reside in cache memory including cache coherence, admission and
replacement policies [7]. In this paper we focus on replacement
policies. While admission polices are generally based on heuristics
or predictive models in the case of prefetching algorithms, replace-
ment algorithms are based on available statistics. Considerable re-
search has gone into this area leading to the development of numer-
ous policies. Among the most successful policies for web caching,
the Greedy Dual-Size (GD-Size) algorithms have proven to be very
effective [4]. The variants of Greedy Dual-Size algorithms are well
known for their abilities to maximize different performance met-
rics. Example metrics include hit ratios and byte hit ratios.

Recently, research efforts have produced caching policies that,
in addition to optimizing a specific performance metric, attempt to
automate policy parameter tuning. These efforts hope to effectively
eliminate the need for an administrator or programmer to select a
particular parameter, and thus allow the algorithm to adapt to the
observed workload. In this paper, we present one such policy, GD-
GhOST (a Goal-Oriented Self-Tuning caching algorithm based on
GD-Size variants), that is aimed at web caching applications, but
can be used at other levels such as device caching, active networks
[15], routers, Content Distribution Networks (CDN’s) and smart
routers, and that attempts to facilitate the specification of desirable
performance metrics in addition to eliminating the need to preset
any algorithm parameters. GD-GhOST differs from adaptive algo-
rithms in the sense that, at any given time, it does not select a single
policy out of several ones, but combines all of them based on their
weights.

In the next section, we briefly describe the three primary GD-
Size schemes which are considered in our evaluation. Section 3
describes our GD-GhOST replacement policy, and Section 4 pres-
ents our experimental results based on real-world traces from Boston
University and the 1998 World Cup. Finally we describe related
work in Section 5 and conclude in Section 6.
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2. BACKGROUND
The original Greedy-Dual algorithm based its page replacement

on the retrieval cost of each page, which we will refer to as the H
value. The page with the lowest retrieval cost, H value, was the
page removed. To account for varying object sizes, the Greedy
Dual-Size (GD-Size) algorithm [4] calculates the H value for a
page p as

H � cost � p �
size � p �

There are many different variants of Greedy Dual Size, each at-
tempting to maximize a slightly different metric, based on the defi-
nition of the cost function [4]. GD-Size(1) is considered to be well-
suited for maximizing hit ratio or reducing average latency, while
GD-Size(packets) is more appropriate when we wish to maximize
byte hit ratio. When we compare these algorithms based on file ac-
cess frequency, GD-Size(frequency) [5] is often the best performer.
In short, the choice of metric you wish to optimize can decide what
particular caching algorithm is considered the best for the workload
at hand. The specific GD-Size algorithms used in our initial tests
are:

1. GD-Size(1)
2. GD-Size(packets)
3. GD-Size(frequency)

Using hit ratios and byte hit ratios as two example metrics we
will now go on to describe how an arbitrary selection among these
three algorithms can be used by GD-GhOST to determine its re-
placement policy.

3. THE GD-GHOST POLICY
GD-GhOST is a replacement policy based on a combination of

several Greedy Dual-Size variants, that attempts to satisfy a given
goal using a fully adaptive combination of these individual compo-
nent algorithms. To describe it in more detail we will consider how
it combines the component algorithms, and how it evaluates and
adjusts its behavior to a specific goal. GD-GhOST combines in-
dividual component algorithms using a master-algorithm approach
similar to that employed in the ACME algorithm [2].

GD-GhOST combines the H values calculated by the three GD-
Size variants, and based on an on-line evaluation of each variant’s
performance it produces its own H value. We employ the vari-
ant that is most appropriate in the following manner: At any given
point of time, we can calculate three different H values. Since the
H values themselves cannot be compared among the different al-
gorithms, we normalize them. We then proportionally weight the
three variants’ H values based on the performance of each algo-
rithm.

The evaluation of each algorithm’s performance is derived from
a user-specified weighting of the importance of each metric. For
our preliminary results we tested complete bias toward byte or ob-
ject hit ratios. In other words, this weighting was based on the user-
specified weightings for hit ratio and byte hit ratio. The weighting
of the policies uses a fixed number of credits that are shared among
the policies. This component is similar to the weighting mecha-
nism employed by ACME [2]. For cache eviction decisions, the
items with the lowest combined H values (weighted by credit val-
ues) are the highest priority for eviction. Initially we assign equal
credits to each of the policies. Based on the performance of the
algorithms, we distribute the credits for each algorithm in the fol-
lowing manner.

Creditc ��� Per fo � Per fi �	� Creditp

where:

Creditc is the current credits for the algorithm.
Creditp is the previous credits for the algorithm.

Per fo is the overall combination/selection of
hit ratio and byte hit ratio.

Per fi is algorithm i’s performance based
on the combination/selection of hit
ratio and byte hit ratio.

The credits are distributed among the algorithms every time we
evaluate their relative performance. This is not done with every ac-
cess, but at a variable interval. There is no need to manually set this
interval, as it’s automatically adjusted based on variations in rela-
tive algorithm performance. If the workload is such that there is a
consistent combination of algorithms to maximize the desired com-
bination of metrics, then the period is automatically lengthened.
As updates are needed more rapidly, the period is automatically re-
duced. This on-line update of credits ensures that at any instant in
time, we are most likely to follow the leader among the three algo-
rithms, for the metrics that are considered most important. When
the best performing algorithm degrades in performance, the redis-
tribution of credits ensures that it does not degrade the overall per-
formance. As a matter of fact, as we can observe in our results,
we follow the best performance of the three component algorithms,
and frequently exceed it.

4. EXPERIMENTAL RESULTS
We conducted simulation-based experiments on real-world traces

to evaluate the GD-GhOST policy and its ability to exhibit perfor-
mance similar to the best policy for the selected performance met-
ric. Specifically we tested its ability to maximize hit ratios and byte
hit ratios, which we will present in this section through minimizing
miss rates and byte miss rates. At its worst observed performance
GD-GhOST was within approximately 1% of the best policy’s miss
ratio, and at its best, GD-GhOST reduced byte miss rates by well
over 50%. Specifically, for miss rates, GD-GhOST exhibited equiv-
alent miss rates (on average within 0.3%) to those of the best ap-
plicable Greedy-Dual variant, while achieving miss rates that were
25% lower than the worst performing variant. For byte miss rates,
GD-GhOST consistently demonstrated rates lower than the best ap-
plicable Greedy-Dual variant. At its best, GD-GhOST offered byte
miss rates 10% lower than the best variant. This 10% is measured
on an absolute scale, and is equivalent to more than halving the
byte miss rates of the competing Greedy-Dual variants.

4.1 Workload Description
Experiments were conducted using traces run against a cache

simulator implemented in Java. The three Greedy Dual-Size al-
gorithms were implemented, along with the GD-GhOST policy.
For GD-GhOST, the credits for the individual replacement poli-
cies were updated on-line using the proportional weighted averag-
ing described in Section 3. As described above, the trial period for
updating the credits was dynamically adjusted and required no a
priori settings.

We tested with different cache sizes and using both client and
proxy web traces. Specifically, we used traces from Boston Uni-
versity [6] and the 1998 World Cup [3]. The Boston University
traces contain records of the HTTP requests and user behavior of
a set of Mosaic clients running in the Boston University Computer
Science Department, spanning from 21 November 1994 through
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Figure 1: Minimizing miss ratios.

8 May 1995. During the data collection period a total of 9,633
Mosaic sessions were traced, representing a population of 762 dif-
ferent users, and resulting in 1,143,839 requests for data transfer.
There were 5-32 workstations. The World Cup 98 data set consists
of all the requests made to the 1998 World Cup Web site between
April 30, 1998 and July 26, 1998. During this period of time the
site received 1,352,804,107 requests. We performed the simulation
using varying cache sizes from 100K to 100MB.

4.2 Optimizing Hit Ratios
The first set of results were conducted with performance biased

completely in favor of maximizing hit ratios (minimizing miss ra-
tios). This is equivalent to setting our goal to be 100% weighted
for hit ratios (and ignoring byte hit ratios). At its worst observed
performance for miss ratios, GD-GhOST remains within approxi-
mately 1% of the best algorithm. For example, Figure 1 tracks the
miss ratios for four algorithms with the Boston University traces
during the period of April, 1995 with a cache size of 10MB.

In Figure 1(b), we show the variation of the credits with the ac-
cesses. In the figure, C1 stands for the region representing the vari-
ation of the credits of GD-Size(1), C2 stands for the region rep-
resenting the variation of the credits of GD-Size(packets) and C3
stands for the region representing the variation of the credits of
GD-Size(frequency). We show the results for a region of 20,000
accesses. The reason for this is that the experiments represented by
Figure 1 clearly showed the shifting of credits towards GD-Size(1)
after which they remained fairly constant for the rest of the ac-
cesses. In Figure 1(a), we show the variation of the Miss Ratios of
the three algorithms and GD-GhOST. The fact that the Miss Ratio
curve for GD-GhOST closely follows the curve for the best per-
forming policy reiterates our claim that our policy always performs
within some ∆ of the best performing policy.

4.3 Optimizing Byte Hit Ratios
Figure 2 is for user specified weight of 100% for Byte Hit Ratio.

In Figure 2(b), we show the variation of the credits with the ac-
cesses. Again, C1, C2, and C3 represent the relative credits of GD-
Size(1), GD-Size(packets) and GD-Size(Frequency) respectively.

We also show the results for a region of approximately 20,000 ac-
cesses. Again we see an eventual dominance of one of the algo-
rithms, GD-Size(packets), but it’s interesting to note that there was
an initial favouring of GD-Size(1), which for a short while was the
best algorithm, to be replaced eventually by GD-Size(packets).

In Figure 2(a), we see the variation of the byte miss ratios of the
three policies with that of GD-GhOST. The curves for the best per-
forming policy, GD-Size(packets), and that of GD-GhOST are al-
most inseparable. At the same time we can also see that the overall
Byte Hit Ratio is frequently better than that of the best performing
policy.

4.4 Summary Results
Figures 1 and 2 demonstrated the ability of GD-GhOST to self-

tune towards a specific selected goal and match the best component
algorithm. We now look at the summary results for varying cache
sizes, and see how in at least one instance, byte miss rates are re-
duced by as much as 50%.

In Figure 3(a) we give the average miss ratios for different cache
sizes of 100KB, 10MB and 100MB measured for both Boston Uni-
versity traces and the World Cup 98 traces. These represent cache
sizes that are restricted, small and reasonable, respectively. In Fig-
ure 3(b) we give the average byte miss ratios for the same cache
sizes and traces. For both figures we see GD-GhOST as compara-
ble in performance to the best component algorithm. But the most
notable result is for the byte miss ratios for the World Cup traces
and a 10MB cache. In this particular case, GD-GhOST performs
almost twice as well as its best component algorithm. This strongly
indicates that the combined algorithm is not only capable of match-
ing the best performing policy, but can on occasion perform signif-
icantly better than the best of its parts.

5. RELATED WORK
While ghost (or shadow) caches are a known technique of track-

ing more entries than the cache capacity, GD-GhOST is actually
an adaptive caching algorithm based on a dynamic combination of
GD-Size variants [4] as component algorithms. The Greedy-Dual *
(GD-*) Web caching algorithm [9] is known to be superior to many
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Figure 2: Minimizing byte miss ratios.

other Web cache replacement policies, but our approach differs in
that we attempt to optimize a user-specified combination, or selec-
tion, of performance goals.

Greedy-Dual algorithms differ from simpler caching schemes
such as LRU and LFU in that they use a cost function to form a
priority list of items in the cache. Other algorithms have also used
such techniques to rank in-cache data. The Least-Normalized-Cost
replacement (LNC) [13] policy inserts the documents into a prior-
ity queue with a priority key. The problem with this policy is that
it has tunable parameters which are workload dependent. Another
policy known as Low Interference Recency Set (LIRS) [8] main-
tains a variable size LRU stack whose LRU page is the L(lirs)-th
page that has been seen at least twice recently, where L(lirs) is a
parameter. As suggested in the paper, the setting of L(lirs) to 1%
of the cache size will be good for Independent Reference Model
(IRM) workloads. It does not perform as well for LRU Stack Depth
Distribution (SDD) workloads.

The Frequency based replacement (FBR) [14] policy combines
both the frequency of access and recency of access. It divides the
LRU list into three sections, and maintains a counter for every doc-
ument in the cache. The algorithm has several tunable parame-
ters. In order to prevent cache pollution from stale pages with high
reference counters, all the reference counters must be periodically
rescaled. A class of policies known as Least Recently/Frequently
Used (LRFU) [10] were shown to subsume the Least Recently Used
(LRU) and Least Frequently Used (LFU) policies. These policies
have an update rule which is a form of exponential smoothing that
is widely used in statistics. It effectively balances both the LRU
policy and LFU policies. There is an adaptive version of the policy
known as Adaptive Least Recently/Frequently Used (ALRFU) [11]
policy. This policy basically has a mechanism to dynamically ad-
just the parameter used in the basic LRFU policy. Again, both these
LRFU schemes require tunable parameters.

A recent policy known as the Adaptive Replacement Cache (ARC)
policy [12] was proposed. It maintains two variable sized LRU
lists. It captures both recency and frequency of access well, and
provides an elegant, efficient and effective mechanism for combin-
ing them. It is intended as a page replacement policy, and so it does

not consider the different delays in fetching a document, and vari-
able object sizes, which are important factors in the web caching
context.

Our approach is most similar to Adaptive Caching using Multi-
ple Experts (ACME) [2]. ACME uses a mixture of arbitrary poli-
cies which are treated as experts. Machine learning algorithms are
applied to combine the recommendations of the different policies
based on their ordering. We differ from ACME in two ways: by
providing a more direct evaluation of each element’s relative im-
portance, and allowing the evaluation of an arbitrary selection of
performance criteria. By using GD-Size variants as component al-
gorithms we are able to proportionally scale the credits based on
the normalized cost functions. ACME restricts policy information
to orderings in exchange for a greater generality in terms of appli-
cable policies. This means that GD-GhOST produces a new eval-
uation function instead of a switching among policies or a rigid
mixed-weighting policy. As with GD-* we also differ from ACME
in our ability to incorporate arbitrary combinations or selections of
performance criteria. Finally, a motivating factor for these dynamic
schemes, as for multi-queue algorithms [18], is to adapt policies
automatically for cases where multiple caches can have adverse in-
teractions. A recent work that addresses harmful cache interactions
is that of Wong and Wilkes [17], where demotions were used as a
mechanism to ensure cache exclusivity.

6. CONCLUSIONS AND FUTURE WORK
In summary, we can see that when considering the byte or object

hit rates, the GD-GhOST policy adapts on-line and performs on par
with the best-performing policy for whichever goal is selected. In
some instances, such as with byte miss ratios and the World Cup
traces, it is possible for the combined policy to exceed the per-
formance of the best component algorithm. The only true preset
parameter for GD-GhOST is the selection of the relative weighting
of different performance criteria. The evaluation and self-tuning of
the algorithms is fully automated, including the selection of update
intervals.

Our initial results, reported in this paper, indicate the potential
gains that GD-GhOST can offer. In order to fully evaluate its poten-
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Figure 3: Average results for varied cache sizes.

tial we are currently experimenting with more performance metrics
beyond byte and object hit/miss ratios. This includes the evalua-
tion of fractional combinations of metrics, as opposed to an abso-
lute bias toward specific goals. We are also currently evaluating the
effects of multi-stage caching on the GD-GhOST policy. We are
also considering approaches to reduce the cost of implementing a
GD-GhOST policy.
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