1-2PC: The One-Two Phase Atomic Commit Protocol

Yousef J. Al-Houmaily
Dept. of Computer and Information Programs
Institute of Public Administration
Riyadh 11141, Saudi Arabia

houmaily@ipa.edu.sa

ABSTRACT

This paper proposes a one-phase, two-phase commit (1-2PC)
protocol that can be used to atomically commit Internet trans-
actions distributed across sites in a wide area network. The
1-2PC protocol is characterized by its ability to dynamically
select between one-phase and two-phase atomic commit pro-
tocols depending on the behavior of transactions and the
system requirements. Thus, it offers the performance ad-
vantages of the one-phase atomic commit protocol whenever
possible, while still providing the wide applicability of the
two-phase commit protocol. This is achieved in spite of the
incompatibilities between one-phase and two-phase commil
protocols that lead to the general practice of having to adopt
a single atomic commit protocol in any distributed database
system.

Categories and Subject Descriptors

H.2.4 [Database Management)]: Systems— Distributed
databases, Transaction processing

General Terms

Algorithms, Design, Experimentation, Performance

Keywords

Internet Transactions, Atomic Commit Protocol

1. INTRODUCTION

Part of the correctness of a distributed transaction is its
atomicity. It ensures that a transaction executes as a single,
indivisible atomic unit of work that either commits and its
effects become permanent on the states of all the database
sites that the transaction has visited, or aborts and its ef-
fects are obliterated from them as if the transaction had
never existed. This “all-or-nothing” property is achieved
by implementing an atomic commit protocol (ACP) in any
distributed database management system.

The two-phase commit (2PC) protocol [6, 8] is one of the
most widely used and optimized ACP. It ensures atomic-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC' 04, March 14-17, 2004, Nicosia, Cyprus.

Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

Panos K. Chrysanthis
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260, USA

panos@cs.pitt.edu

ity and independent recovery but at a substantial cost dur-
ing normal transaction execution which adversely affects the
performance of the system. This is due to the cost associated
with its message complexity (i.e., the number of messages
used for coordinating the actions of the different sites) and
log complexity (i.e., the amount of information that needs
to be stored in the stable logs of the participating sites).
For this reason, there has been a re-newed interest in de-
veloping more efficient ACPs and optimizations [7, 3, 5, 2].
This is especially important in modern electronic services
and electronic commerce environments that are character-
ized by high volume of transactions. Most notable results
are one-phase commit (1PC) protocols [12, 5, 2, 11].

1PC protocols reduce both message and log complexi-
ties at the expense of placing assumptions on transactions
or the database management systems. Whereas some of
these assumptions are realistic (i.e., reflect how the database
management systems are usually implemented), other as-
sumptions can be considered very restrictive in some ap-
plications [1, 5]. 1PC protocols, including implicit yes-vote
(IYV) [5] and coordinator log (CL) [12] assume that each
transaction’s operation is acknowledged after its execution
at the participant’s site. An operation acknowledgment in
these protocols does not only mean that the transaction pre-
serves the isolation and cascadless properties, but it also
means that the transaction is not in violation of any existing
consistency constraints at the participating site. Although
this assumption is not too restrictive since commercial sys-
tems implement rigorous schedulers and database standards
specify operation acknowledgment, it clearly restricts the
implementation of applications that wish to utilize the op-
tion of deferred consistency constraints validation. This op-
tion is part of the SQL standards and allows the evaluation
of integrity constraints during commit time at the end of the
execution of a transaction rather than at the end of each op-
eration. Thus, the evaluation of deferred constraints needs
to be synchronized across all participating database sites.

For the above reason, we propose a new ACP called one-
phase, two-phase commit (1-2PC) protocol which is essen-
tially a combination of 1PC and 2PC and that starts as 1PC
and switches to 2PC only when necessary. Thus, 1-2PC
achieves the performance advantages of 1PC protocols and
the wide applicability of 2PC protocols. In other words, 1-
2PC supports deferred constraints without penalizing those
transactions that do not require them. Furthermore, 1-2PC
achieves this advantage on a participant basis within the
same transaction in spite of the incompatibilities between

the 1PC and 2PC protocols.

In the next section, 1PC and 2PC protocols are briefly
reviewed. The discussion is limited to protocols that sup-
port atomicity and does not include any protocol such as
Optimistic 2PC [9] which ensures weaker notions of atom-
icity, e.g., semantic atomicity. Section 3 first introduces the
basic 1-2PC and then describes an advanced 1-2PC vari-
ant that (1) exploits read-only transactions to enhance its
performance during normal processing and (2) supports for-
ward recovery to enhance its performance after a site failure.
It also provides an informal proof of correctness. Section 4
compares 1-2PC to the best known APCs with respect to
message, log and time complexities and shows its perfor-
mance advantages. Section 5 concludes the paper.

2. BACKGROUND

The 2PC protocol consists of two phases, namely a vol-
ing phase and a decision phase. During the voting phase,
the coordinator requests all participating sites to prepare
to commit whereas, during the decision phase, the coordi-
nator either commits the transaction if all participants are
prepared-to-commit (voted “yes”), or aborts the transac-
tion if any participant has decided to abort (voted “no”]
While in a prepared-to-commit state, a participant can nei-
ther commit nor abort the transaction until it receives the
coordinator’s final decision. When a participant receives
the final decision, it complies with the decision and then
sends back an acknowledgment (ACK). Once the coordina-
tor receives ACKs from all the participants, it knows that
all participants have received the decision and none of them
will inquire about the status of the transaction in the future.
Therefore, the coordinator discards all information pertain-
ing to the transaction from its protocol table that is kept in
main memory, and forgets the transaction.

Since the objective of 2PC is to achieve atomicity of trans-
actions in the presence of possible system and communica-
tion failures, the protocol requires that a coordinator and
each participant to record sufficient information about the
progress of the protocol in their logs. Specifically, the co-
ordinator is required to force write a decision record prior
to sending out the final decision. Similarly, each participant
is required to force write a prepared record before send-
ing its “yes” vote and a decision record before sending an
ACK. Since a forced write of a log record ensures that the
record is written into a stable storage that survives system
failures, the coordinator and the participants can recover a
transaction to a consistent termination state in the case of
a failure. When the coordinator completes the protocol, it
writes a non-forced end log record in its log buffer.

The presumed abort protocol (PrA) is designed to reduce
the cost associated with aborting transactions [10]. Specifi-
cally, in PrA, when a coordinator decides to abort a trans-
action, it does not force write the abort decision in its log
as in 2PC. It just sends abort messages to all participants
that have voted “yes” and discards all information about
the transaction from its protocol table. That is, the coor-
dinator of an aborted transaction does not write any log
records or wait for ACKs. Since the participants do not
acknowledge abort decisions, they also do not force write
such decisions. They only write abort decisions in the log
buffer without forcing it onto the stable log. After a coor-
dinator or a participant failure, if the participant inquires
about a transaction that has been aborted, the coordinator,

not remembering the transaction, will direct the participant
to abort it (by presumption).

As opposed to PrA, the presumed commit protocol (PrC)
is designed to reduce the cost associated with committing
transactions [10]. This is achieved by interpreting missing
information about transactions as commit decisions. How-
ever, in PrC, a coordinator force writes an initiation record
for each transaction before sending prepare to commit mes-
sages to the participants. This record ensures that missing
information about a transaction will not be misinterpreted
as a commit after a coordinator’s failure. Thus, unlike PrA,
the absence of information in PrC means commitment. For
this reason, 2PC, PrA and PrC are incompatible protocols.
The three protocols are incompatible not only because of
the semantics of the messages (i.e., their absence vs. their
presence), but also because of their contradicting presump-
tions about the outcome of terminated transactions in the
absence of information about them [4].

The 2PC variants are usually criticized on the grounds of
their performance drawback especially for short living trans-
actions (i.e., transactions that access few data objects at
each participating database site), which is a common char-
acteristic of Internet transactions. For this reason and given
the high reliability of today’s database servers besides the in-
creasing bandwidth of communication networks, a new class
of ACPs have been recently proposed. The new set of pro-
tocols are one-phase commit (1PC) protocols that consist of
only a single phase which is the decision phase of 2PC. The
(explicit) voting phase is eliminated by overlapping it with
the acknowledgments of the database operations. This prin-
ciple is used in both coordinator log (CL) [12] and implicit
yes-vote (IYV) [5] protocols, but the mechanisms that the
two protocols use for recovery are different. These differ-
ences are due to the assumptions made in the two protocols
about the database sites. 1YV, on which 1-2PC is based,
assumes that each site deploys (1) a strict two-phase locking
(S2PL) for concurrency control and (2) physical page—level
replicated—write—ahead logging (RWAL) with the undo phase
preceding the redo phase for recovery.

In IYV, when the coordinator of a transaction receives
an ACK from a participant pertaining to a transaction’s
operation, the ACK is implicitly interpreted to mean that
the transaction is in a prepared-to-commit state at the par-
ticipant. When the participant receives a new operation
for execution, the transaction becomes active again at the
participant and can be aborted, for example, if it causes a
deadlock or violation to any of the site’s database consis-
tency constraints. If the transaction is aborted, the partici-
pant responds with a negative ACK message (NACK). Only
when all the operations pertaining to the transaction are ex-
ecuted and acknowledged by their perspective participants,
the coordinator commits the transaction. Otherwise, the
coordinator aborts the transaction. In either case, the co-
ordinator propagates its decision to all the participants and
waits for their ACKs, as in 2PC. Thus, in 1YV, the explicit
voting phase of 2PC is eliminated by overlapping it with the
execution of operations while the decision phase remains the
same as in 2PC.

IYV handles participant failures by partially replicating
its log rather than force writing the log before each ACK.
Fach participant includes the redo log records that are gen-
erated during the execution of an operation with their cor-
responding log sequence numbers (LSNs) in the operation’s

ACK. Each participant also includes the read locks acquired
during the execution of an operation in the ACK in order to
support the option of forward recovery [5]. After a system
crash, a participant reconstructs the state of its database,
which includes its log and lock table as it was just prior to
the failure with the help of the coordinators. Hence, a par-
ticipant in 1YV is not only able to ensure the consistency
of its database by applying the effects of committed trans-
actions and rolling-back the effects of aborted transactions,
but it 1s also able to allow transactions that are still active
in the system, using the option of forward recovery, to re-
sume their execution without having to abort them after a
failure. On the other hand, by maintaining a local log and
using WAL, each participant is able to undo the effects of
aborted transactions locally using only its own log.

3. THE 1-2PC PROTOCOL

1PC protocols are more efficient than 2PC and its vari-
ants, but some of the assumptions that they place on trans-
action management make them less appropriate than 2PC to
be adopted in commercial systems. Although some of these
assumptions can be relaxed [1], their biggest limitation is
their inability to support deferred consistency constraints.
As opposed to immediate constraints that are evaluated at
the end of each operation, deferred constraints are evaluated
during commit time when a transaction finishes its execu-
tion and are triggered by the prepare message of the voting
phase. In order to support deferred constraints without pe-
nalizing those transactions that they do not require them,
we developed 1-2PC that operates as a 1PC protocol as long
as the voting phase of 2PC is not necessary.

3.1 Description of the Basic 1-2PC Protocol

As in all the other commit protocols, a coordinator in 1-
2PC records information pertaining to the execution of a
transaction in a protocol table which is kept the coordina-
tor’s main memory. Specifically, a coordinator keeps for each
transaction the identities of the participants and any pend-
ing request at a participant. It also keeps track of the used
protocol with each participant (i.e., whether the protocol is
one-phase or two-phase).

When a coordinator submits the first operation to be ex-
ecuted at a participant’s site for a particular transaction,
the coordinator registers the participant in its protocol ta-
ble and marks the participant as 1PC participant for the
transaction. Thus, in 1-2PC, each transaction starts as a
1PC transaction at each participating site.

Asin IYV, each participant keeps a recovery-coordinators’
list (RCL) that contains the identities of the coordinators
that have active transactions at its site and must be con-
tacted during the recovery of the participant after a failure.
In order to survive failures, an RCL is kept in the stable log.
When a participant receives the first operation of a transac-
tion, if the identity of the coordinator of the transaction is
not already in its RCL, the participant adds the identity of
the coordinator to its RCL, force writes the RCL in its log,
and then executes the operation. In order to avoid searching
the entire RCL in the case that all the coordinators in the
system are active at a participant, an all-active flag (AAF)
is used. A participant sets AAF once it force writes an RCL
containing the identities of all the coordinators and does not
consider the RCL as long as the AAF is set.

Once an operation is executed successfully, the partici-

pant ACK the coordinator with a message that contains the
results of the operation, as shown in Figure 1. On the other
hand, if the operation fails, the participant sends a NACK
message. In either case, the participant does not force its
log into stable storage prior to acknowledging an operation.

For a successful update operation, as long as it does not
cause deferred validation of consistency constraints, the par-
ticipant follows the 1YV protocol. It includes in each ACK
all the redo log records that have been generated during the
execution of the operation and implicitly enters a prepared-
to-commit state with respect to the invoking transaction,
waiting either for the final decision or another operation
from the transaction. If a new operation arrives, the partic-
ipant returns to an active state to execute the operation.

If the update operation causes deferred validation of con-
sistency constraint(s), the participant indicates this to the
coordinator and switches to 2PC by sending an unsolicited
deferred consistency constraint (UDCC) vote. UDCC is a
flag that is set as part of the operation’s ACK. Once a UDCC
is set, no redo records are included in the ACK for this or
any subsequent operation(s) for the transaction. Also, the
participant does not enter a prepared-to-commit state with
respect to the transaction until it receives an explicil prepare
to commit message from the coordinator, as in 2PC proto-
cols. Further, if the transaction is the last active transaction
submitted by its coordinator at the site, the participant re-
sets its AAF if it is set, deletes the transaction’s coordinator
from the RCL, and force writes the updated list in its log.

When a coordinator receives an ACK from a participant
with the UDCC flag set, it updates its protocol table to
reflect the protocol switch for the participant. On the other
hand, if the flag is not set, the coordinator checks its protocol
table to determine if the ACK is from a 1PC participant and
extracts any redo log records from the message. Then it
writes a non-forced log record containing the received redo
records along with the participant’s identity. Hence, for 1PC
participants, the coordinator’s log contains a partial image
of the redo part of each participant’s log which can be used
to reconstruct the redo part of a participant’s log in case it
is corrupted due to a system’s failure.

3.1.1 Terminating a Transaction in 1-2PC

If the coordinator receives either an abort request from
the transaction or a NACK regarding the transaction from
a participant, it aborts the transaction. On an abort de-
cision, the coordinator discards all information pertaining
to the transaction from its protocol table without writing
a decision log record for the transaction. Then, the coordi-
nator sends an abort message to each prepared-to-commit
participant (i.e., each participant that has acknowledged the
processing of all the transaction’s operations successfully).

When the coordinator of a transaction receives a commit
primitive from the transaction, it waits for the ACKs of the
transaction’s pending operations and then checks its proto-
col table to determine whether any participant has switched
to 2PC. If no participant has switched protocol, the coor-
dinator commits the transaction as in 1PC protocols. It
force-writes a commit log record which includes the identi-
ties of all the participants, and then sends commit messages
to the participants.

If any participant has switched protocol, the coordinator
force-writes a switch log record which includes the identi-
ties of all the participants, indicating the participant(s) that

STATE PARTI Cl PANT; COORDI NATOR PARTI CI PANTJ STATE

Op(1)
\ 77777777777777777777

Write non—forced ~ Active
ACK Op(1) | redo log record(s)

“Write non—forced
leciloi cord(sl Op(2)

Participant | | @0 =}------------ oo

Re uegled Active
ACK 0p(2)

Protocol Switeh

Switch

Op(n)

Active Write non—forced

redo log record(s) ACK Op(n)

Prepared

Transaction
Requested
Commit

Force Write

Switch log record | prepare

Force Write Active
Prepared log
or

éY} Prepared
Force Write

Commit log record
Committing Write non—forced Write non—forced ~ Committing|
Commit log record ACK Commit log record

Committed \ Committed

Write non—forced
End log record

STATE PARTI CI PANT; COORDI NATCR PARTI Cl PANT; j STATE
Write non—forced ~ Active ~ |
ACK Op(1) | redo log record(s)
TTTTTTT T Prepared
“Write non—forced
_redo log record(s)
Participant I S Adive]
Ee ueslled ACK 0p(2)
rotocol op Py]
Switch EW Active
Active” """ Write non—forced
redo log record(s) ACK Op(n)
Prepared T IT———|
Transaction
Requested
Commit
Force Write
Switch log record | prepare
Force Write” ™~~~ Active” |
Prepared log
or
‘Y% ””””””” Prepared |
" (Participant,)~
Abort Voted Fl)\lo k \%
/ n - 2
Aborting ~~ ~Write non—forced Force Write "~~~ Aborting |
,,,,,,,,, Abort log record _ Ack__|Abortiogrecord " |
Aborted / Aborted
“Wirite non—forced
End log record

(a) Commit Case

(b) Abort Case

Figure 1: The 1-2PC coordination messages and log writes.

caused protocol switch (Figure 1). Then, for 2PC partici-
pants, the coordinator sends prepare to commit messages.

When a 2PC participant receives a prepare to commit
message, it validates the transaction and then sends back
its vote. As in all 2PC variants, a participant in 1-2PC
votes “yes” only if all consistency constraints are validated
and the participant can comply with a commit final decision.
Otherwise, it aborts the transaction and sends back a “no”
vote. When a participant votes “yes”, it enters an (ezplicit)
prepared-to-commit state.

When the coordinator receives the votes of 2PC partici-
pants (if any), the coordinator makes its final decision. The
decision is commit if all 1PC participants are in an implicit
prepared-to-commit state and all 2PC participants are in
an explicit prepared-to-commit state. Otherwise, the de-
cision is abort. On a commit decision (Figure 1 (a)), the
coordinator force writes a commit log record, sends its de-
cision to all participants, and waits for the ACKs of 1PC
participants. On an abort decision (Figure 1 (b)), on the
other hand, the coordinator sends the decision to the partic-
ipants that are in their prepared-to-commit states (whether
explicit or implicit) and waits for the acknowledgments of
the prepared-to-commit 2PC participants, without writing
an abort decision record.

When a 1PC participant receives a commit (abort) deci-
sion regarding a transaction, it enforces the decision, writes
a non-forced commit (abort) log record and releases all the
transaction’s resources. A participant acknowledges a com-
mit decision, but not an abort decision, only after the corre-
sponding commit log record is placed into stable storage as
a result of a subsequent force-write or flush of the log onto
stable storage. If the transaction was the last active transac-
tion submitted by its coordinator, the participant resets its
AAF if it is set, deletes the transaction’s coordinator from
the RCL, force writes the updated list in its log and then,
acknowledges the decision if it is a commit decision. Thus,
a participant in 1-2PC behaves as an 1YV participant as

long as it did not switch protocol and regardless of whether
the other participants in the transaction’s execution have
switched protocol or not.

When a 2PC participant receives a commit decision, it
writes a non-forced commit log record and complies with
the decision, without sending an acknowledgment message
back to the coordinator. If the decision is an abort, the
participant force writes an abort log record, complies with
the decision and then, acknowledges the decision. Thus, in
1-2PC, a participant behaves exactly as if it is using PrC
from the moment it has switched protocol.

Finally, when the coordinator receives ACKs for a com-
mit decision from all 1PC participants, it writes a non-forced
end log record and discards all information pertaining to the
transaction from its protocol table, knowing that no 1PC
participant will inquire about the transaction’s status in the
future. Since only a 2PC participant (if any) might inquire
about the outcome of a committed transaction, the coordi-
nator, not remembering the transaction, it will reply with
a commit message using the presumption of PrC protocol
used by the participant. Similarly, when the coordinator
receives ACKs for an abort decision from all 2PC partici-
pants, it writes a non-forced end log record and discards all
information pertaining to the transaction from its protocol
table, knowing that no 2PC participant will inquire about
the transaction’s outcome in the future. Since only a 1PC
participant (if any) might inquire about the outcome of an
aborted transaction, the coordinator, not remembering the
transaction, it will reply with an abort message using the
presumption of IYV protocol used by the participant.

3.2 The Advanced 1-2PC Protocol

The advanced 1-2PC protocol exploits read-only transac-
tions to enhance its performance during normal processing,
and the option of forward recovery [5] to enhance the per-
formance of 1-2PC protocol after a site or communication
failure.

3.2.1 1-2PC and Read-Only Transactions

In the traditional read-only optimization, during the vot-
ing phase, a participant votes read-only if it has executed
only read operations [10]. Using this optimization, a partic-
ipant can release all the locks held by the transaction once
it votes. Furthermore, a read-only participant does not par-
ticipate in the second phase of these protocols and hence it
does not need to know the final outcome of the transaction.
Since a read-only transaction does not update any data item,
there is no logging associated with such transactions.

The cost associated with read-only participants can be
reduced further if the coordinator of a transaction knows,
before the initiation of the commit protocol, which partici-
pants are read-only in the execution of the transaction. In
this way, if all participants are read-only, the coordinator
can avoid writing any log records (in the case of PrC) and
the read-only votes of the participants can be eliminated.
This is the essence of the unsolicited update-vote (UUV) op-
timization [3], the principle of which is used in 1-2PC.

In 1-2PC, each transaction starts as a read-only transac-
tion. The coordinator of a transaction marks in its proto-
col table a participant as an update one when it receives
from the participant an ACK with redo log records or with
the UDCC flag set. (Only update operations generate log
records and cause consistency constraint validation.)

To commit a completely read-only transaction, the coordi-
nator sends a read-only message to each participant without
writing any log records for the transaction, and forgets the
transaction. If the transaction is partially read-only, the co-
ordinator sends a read-only message to each read-only par-
ticipant and removes the participant from its protocol table,
without waiting for the final decision to be made. This is
especially important in the presence of 2PC (update) partic-
ipants because it allows for an earlier release of resources at
read-only participants. In any case, when a read-only par-
ticipant receives the message, it release the resources held
by the transaction without writing any log records or ac-
knowledging the message. For update participants, the co-
ordinator follows the basic 1-2PC discussed above.

3.2.2 Forward Recovery in 1-2PC

We define forward recovery as the ability of the system to
allow a partially executed transaction that was interrupted
during its execution by a (site or communication) failure
to resume its execution after the failure has been fixed. In
1-2PC, forward recovery is an option that is not necessary
for the correctness of the protocol and it is applicable to
transactions that are context-free at the participants.

In 1-2PC with forward recovery, a transaction indicates to
its coordinator, when it is initiated, whether or not it wishes
to use the option of forward recovery. For a forward recover-
able transaction, the coordinator notifies each participating
site of this option by setting a forward recovery flag (FRF)
as part of the first operation submitted to a participant.

For a forward recoverable transaction, a 1PC participant
includes in an operation’s acknowledgment message, in ad-
dition to the redo log records (if any), all the read locks
that have been acquired during the execution of the oper-
ation. Unlike the basic 1-2PC, each 2PC participant of a
forward recoverable transaction must also include both the
redo log records and read locks in the ACK of each operation
that it executes. When the coordinator receives an ACK, in
addition to the redo log records, it extracts the read locks

from the message and keeps them in a participants’lock table
(PLT) which is part of its protocol table.

In this way, the coordinator’s log contains a partial image
of the redo part of each participant’s log which can be used
to reconstruct the redo part of a participant’s log in case it
is corrupted due to a system’s failure. At the same time,
the coordinator’s PLT contains a partial image of each par-
ticipant’s lock table which can be used to reconstruct the
participant’s lock table in the case it is corrupted due to a
system’s failure. As a result, after a participant’s site failure,
the participant can recover its state exactly as it was prior
to a failure with the help of the coordinators, reacquiring
both read and write locks, thereby allowing partially exe-
cuted forward recoverable transactions that are still active
in the system to forward recover and resume their execution
after the participant has recovered.

3.3 Recovery in 1-2PC Protocol

In this section, we discuss the recovery aspects of the ad-
vanced 1-2PC. 1-2PC is resilient to both communication and
site failures. As in all ACPs, failures are detected by time-
outs.

3.3.1 Communication Failures

There are four points during the execution of 1-2PC where
a communication failure might occur while a site is waiting
for a message. The first point is when a participant has
no pending acknowledgments. If the transaction is 1PC or
a forward recoverable 2PC transaction, the participant is
blocked until the communication with the coordinator is re-
established. Then, the participant inquires the coordinator
about the transaction’s status. The coordinator replies with
either a final decision or a still active message if the trans-
action is 1PC at the participant’s site. In the former case,
the participant enforces the final decision and then acknowl-
edges it, only if the decision is commit, while in the latter
case, the participant waits for further operations. Similarly,
if the transaction is a forward recoverable 2PC transaction,
the participant is blocked until the communication with the
coordinator is re-established. Then, the participant inquires
the coordinator about the transaction’s status, indicating
that it is a 2PC participant which is implicitlyin a prepared-
to-commit state. The coordinator replies with either an
abort final decision if does not remember the transaction,
or a still active message if the transaction is still active in
the system, or a prepare to commit message if the trans-
action is in the voting phase of 2PC and no decision has
been made yet. In the first case, the participant enforces
the abort decision without acknowledging it, while in the
second case, the participant waits for further operations. In
the third case, the participant validates the transaction and
sends back its vote, as it is the case in 1-2PC during normal
processing.

The second point is when the coordinator of a transaction
is waiting for an operation acknowledgment from a partic-
ipant. In this case, the coordinator aborts the transaction
and submits a final abort decision to the rest of the par-
ticipants. Similarly, a participant aborts a transaction if
it is 1PC or is 2PC but not forward recoverable, and the
communication failure has occurred while the participant
has a pending acknowledgment. Notice that the coordinator
of a transaction may commit the transaction despite com-
munication failures with some participants as long as these

participants are 1PC participants and have no pending ac-
knowledgments.

The third point is when the coordinator is waiting for
the votes of 2PC participants. In this case, the coordinator
treats communication failures as “No” votes and aborts the
transaction. As during normal processing, once the coordi-
nator has aborted the transaction, it submits abort messages
to all accessible participants and waits for the required ac-
knowledgments.

The fourth point is when the coordinator of a transaction
is waiting for the ACKs of a final decision. Since the coor-
dinator needs the ACKs in order to discard the information
pertaining to the transaction from its protocol table and its
log, it re-submits the decision to the appropriate partici-
pants once these communication failures are fixed. If the
decision is a commit, the coordinator re-submits a commit
message to each inaccessible 1PC participant. If the decision
is an abort, the coordinator re-submits an abort message to
each inaccessible 2PC participant. When a 1PC participant
receives a commit decision after a failure, it either acknowl-
edges the decision if it has already received and enforced
the decision prior to the failure, or enforces the decision and
then sends back an ACK. Similarly, when a 2PC partici-
pant receives an abort decision, it either acknowledges the
decision if it has already enforced the decision prior to the
failure, or enforces the decision and then acknowledges it.

3.3.2 Site Failures

As mentioned above, we assume that each site employs
physical logging and uses a Undo/Redo crash recovery pro-
tocol in which the undo phase precedes the redo phase. It
should be pointed out that 1-2PC can also be combined with
logical or physiological write-ahead logging schemes.

Coordinator’s Failure

Upon a coordinator’s restart after a failure, the coordi-
nator re-builds its protocol table by scanning its stable log.
The coordinator needs to consider only those transactions
that have switch or decision records without corresponding
end records. For each of these transactions, the coordinator
creates an entry in its protocol table that includes the iden-
tities of the participants as recorded in the transaction’s
switch or decision record. When the coordinator finds a
transaction with a switch record but without a correspond-
ing commit record, the coordinator considers the transaction
as an aborted transaction. The fate of the other transac-
tions depend on the decisions recorded in their correspond-
ing log records. Once the coordinator has identified incom-
plete transactions (with respect to the commit protocol), it
restarts the decision phase for each of these transactions by
re-submitting its decision to all the participants recorded in
the switch or decision record and resumes normal protocol
operation.

As in the case of a communication failure, if a participant
has already received and enforced a final decision prior to
the failure, the participant simply responds with an ACK as
required by 1-2PC. If the participant has not received the
decision, it must have been waiting for the decision and once
it receives the decision, it writes the required decision record
and then sends back an ACK (according to the protocol
specification) when the decision record is in the stable log.

For those transactions without final decision records (i.e.,
those transactions that were active prior to the failure or

their non-forced abort records did not make it to the sta-
ble log before the failure), the coordinator can safely forget
them and consider them as aborted transactions. If a par-
ticipant in the execution of one of these transactions has
a pending acknowledgment, when it times out due to the
coordinator’s site failure, it will abort the transaction, as in
the case of a communication failure that we discussed above.
On the other hand, if the participant is left blocked (i.e., the
participant has acknowledged all a transaction’s operations
and is in the implicit prepared-to-commit state), when the
coordinator recovers, the participant will inquire about the
status of the transaction. If the participant is a 1PC par-
ticipant, the coordinator, not remembering the transaction
after its recovery, will respond with an abort message (us-
ing the implicit presumption of IYV protocol employed by
the participant). If the transaction is forward recoverable
2PC at the participant, the coordinator will respond with
an abort message, utilizing the implicit prepared-to-commit
state information included in the participant’s inquiry mes-
sage instead of using the presumption of 2PC employed by
the participant. For those transactions that are associated
with decision and end records, the coordinator can safely
discard all information about these transactions, knowing
that all required participants have received their decisions
and will not inquire about their outcome in the future.

Participant’s Failure

Since the entire log might not be written into a stable
storage until after the log buffer overflows, the log may not
contain all the redo records of the transactions committed
by their perspective coordinators after a failure of a par-
ticipant. Thus, at the beginning of the analysis phase of
the restart procedure, the participant determines the largest
LSN that is associated with the last record written in its log
that survived the failure and sends a recovering message that
contains the largest LSN to all coordinators in its RCL. This
LSN is used by the coordinators to determine missing redo
log records at the participant which are replicated in their
logs and are needed by the participant to fully recover. If
the RCL is empty, the participant recovers the state of its
database locally using its own log without sending a recov-
ering message to any coordinator, and then resumes normal
processing. On the the other hand, if the RCL is not empty,
the participant waits for reply messages to arrive from the
coordinators.

While waiting for the reply messages to arrive from the
coordinators, the undo phase can be performed, even po-
tentially completed, and the redo phase can be initiated.
That is, the participant recovers those aborted and com-
mitted transactions that have decision records pertaining
to them already stored in its stable log while waiting for
the reply messages to arrive from the coordinators. This
ability of overlapping the undo phase with the resolution
of the status of active transactions and the repairing of the
redo part of the log, partially masks the effects of dual log-
ging and communication delays. Note that because of the
use of write-ahead logging (WAL), all the required undo log
records that are needed to eliminate the propagated effects
of any transaction on the database are always available in
the participant’s stable log and never replicated at the co-
ordinators’ sites.

When a coordinator receives a recovering message from
a participant, it will know that the participant has failed

2PC PrC PrA IYV [1-2PC | 1-2PC 1-2PC
(1PC) | (2PC) | (MIX)
Log force delays 2 3 2 1 1 3 3
Total forced log writes 2n+1 | n4+2 | 2n41 1 1 n+2 2(n-p)+2
Message delays (Commit) 2 2 2 0 0 2 2
Message delays (Locks) 3 3 3 1 1 3 3
Total messages 4n 3n 4n 2n 2n 3n 3(n-p)+2p
Total messages with piggybacking 3n 3n 3n n n 3n 3(n-p)+p

Table 1: The costs of the different protocols to commit a transaction.

2PC PrC PrA | IYV | 1-2PC | 1-2PC 1-2PC
(1PC) | (2PC) | (MIX)
Log force delays 2 2 1 0 0 2 2
Total forced log writes 2n+1 | 2n41 n 0 0 2n+1 2(n-p)+1
Message delays (Abort) 2 2 2 0 0 2 2
Message delays (Locks) 3 3 3 1 1 3 3
Total messages 4n 4n 3n n n 4n 4(n-p)+p
Total messages with piggybacking 3n 3n 3n n n 3n 3(n-p)+p

Table 2: The costs of the different protocols to abort a transaction.

and is recovering from the failure. Based on this knowledge,
the coordinator checks its protocol table to determine each
transaction that the participant has executed some of its
operations and the transaction is either still active in the
system (i.e., still executing at other sites and no decision
has been made about its final status, yet) or has termi-
nated but did not finish the protocol (i.e., a final decision
has been made but the participant was not aware of the deci-
sion prior to its failure). For each transaction that is finally
committed, the coordinator responds with a commit status
along with a list of all the transaction’s redo records that are
stored in its log and have LSNs greater than the one that
was included in the recovering message of the participant.

For each active 1PC transaction and forward recoverable
2PC transaction that is still in progress in other sites, the
coordinator has the option to either abort or forward re-
cover the transaction. If the coordinator decides to abort
the transaction, it sends abort messages to all participants
to rollback the transaction. If the coordinator decides to for-
ward recover the transaction, it responds with a still-active
status containing, as in the case of a committed transac-
tion, a list of the redo records associated with LSNs greater
than the one included in the recovering message of the par-
ticipant. The message also contains all the read locks that
were held by the transaction at the participant’s site prior
to its failure.

All these responses and redo log records are packaged with
the read locks acquired by active transactions in a single re-
pair message and sent back to the participant. If a coordi-
nator has no active transactions and all terminated transac-
tions have been acknowledged (according to 1-2PC protocol)
as far as the failed participant is concerned, the coordinator
sends an ACK repair message, indicating to the participant
that there are no transactions to be recovered as far as this
coordinator is concerned.

Once the participant has received reply messages from all
the coordinators in its RCL, the participant repairs its log
and completes the redo phase. The participant also re-builds
its lock table by re-acquiring the update locks during the
redo phase in conjunction with the read locks received from
the coordinators. Once the redo phase is completed, the
participant sends back the required decision ACKs as in the

case of normal processing. Then the participant resumes its
normal processing. Thus, in 1-2PC, a long-executing trans-
action 1s not necessarily aborted as a result of a participant
failure as would be the case in all other ACPs.

The case of an overlapped coordinator and participant
failure is handled using the same procedures as we discussed
above. If the failed coordinator is in the RCL of a recover-
ing participant, the coordinator needs to recover first before
responding to the participant’s pending repair message.

4. ANALYTICAL EVALUATION

Tables 1 and 2 compare the costs of the different protocols
for the commit case and abort case on a per transaction ba-
sis, respectively. The column titled “1-2PC (1PC)” denotes
the 1-2PC protocol when all participants are 1PC, whereas
the column titled “1-2PC (2PC)” denotes the 1-2PC pro-
tocol when all participants are 2PC. The column titled “1-
2PC (MIX)” denotes the 1-2PC protocol in the presence of
a mixture of both 1PC and 2PC participants. In the table, n
denotes the total number of sites participating in a transac-
tion’s execution (excluding the coordinator’s site), whereas
p denotes the number of 1PC participants (in the case of 1-
2PC protocol). The row labeled “Log force delays” contains
the sequence of forced log writes that are required by the
different protocols up to the point that the commit/abort
decision is made. The row labeled “Message delays (Deci-
sion)” contains the number of sequential messages up to the
commit/abort point, and the row labeled “Message delays
(Locks)” contains the number of sequential messages that
are involved in order to release all the locks held by a com-
mitting/aborting transaction at the participants’ sites. For
example, to commit a transaction, the “Log force delays”
for 2PC is “2” because there are two sequential forced log
writes between the beginning of the protocol and the time
a commit decision is made by the transaction’s coordina-
tor. Also, “Message delays (Decision)” and “Message delays
(Locks)” are “2” and “3”, respectively, because the 2PC in-
volves two sequential messages in order for a coordinator to
make its final commit decision regarding a transaction (i.e.,
the first phase), and three sequential messages to release
all the resources (e.g., locks) held by the transaction at the
participants. In the row labeled “Total messages with piggy-

PrC | PrA [IYV | 1-2PC
Log force delays R | O 1 0 0 0
Total forced log writes E | N 1 0 0 0
Message delays (Decision) | A | L 2 2 0 0
Message delays (Locks) D|Y 1 1 1 1
Total messages 2n 2n n n

Table 3: The costs for read-only transactions.

backing”, we apply piggybacking of the acknowledgments of
decision messages to eliminate the final round of messages.

It is clear from Tables 1 and 2 that 1-2PC performs as IYV
when all participants are 1PC participants, outperforming
2PC and its variants in all performance measures including
the number of log force delays to reach a decision as well as
the total number of log force writes. For the commit case,
the two protocols require only one forced log write whereas
for the abort case neither 1-2PC nor IYV force write any log
records. When all participants are 2PC, 1-2PC performs as
PrC in all performance measures (since we adopt the PrC
variant in 1-2PC protocol), for the commit case as well as
the abort case. When there is participants’ mix, the per-
formance of 1-2PC exhibits the behavior of the PrC with
respect to the sequential performance metrics. That is, 1-
2PC has the same number of “log force delays”, “Message
delays (Decision)” and “Message delays (Locks)” as PrC.
The performance of 1-2PC with respect to the total number
of messages and forced log writes depends on the partici-
pants’ mix, which is less than that of PrC.

Piggybacking can be used to eliminate the final round of
messages for the commit case in 2PC, PrA, IYV and 1-2PC
(1PC). That is not the case for PrC, and 1-2PC (2PC) be-
cause commit decisions are never acknowledged in these pro-
tocols. Similarly, this optimization can be used for the abort
case in 2PC, PrC and 1-2PC (2PC) but not in PrA, IYV or
1-2PC (1PC). This is because participants in the latter set of
protocols never acknowledge abort decisions. 1-2PC (MIX)
benefits from this optimization in both the commit case as
well as the abort case. This is because, in a commit case, a
1PC participant acknowledges the commit decision, whereas
in an abort case, a 2PC participant acknowledges the abort
decision, which can be both piggybacked.

Table 3 shows the costs of the different ACPs for read-only
transactions. The costs in the table are evaluated assuming
the use of the standard read-only optimization with PrC and
PrA. Furthermore, it is assumed that read-only transactions
are finally aborted since it is cheaper to abort read-only
transactions than to commit them in both PrC and PrA.
In the table, all the protocols have the same costs as far as
the number of sequential messages to release the resources
held by read-only transactions at the participants after the
decision point is reached (i.e., only a single message). How-
ever, 1-2PC and IYV, which have exactly the same costs
for read-only transactions, dominate PrC and PrA with re-
spect to the number of sequential message delays to reach
the decision point. This is because they eliminate the (ex-
plicit) voting phase of 2PC which pulls the read-only votes
of the participants in both PrC and PrA. As far as the “log
force delays” and “Total forced log writes” are concerned,
only PrC suffers from these delays and log writes due to the
forced initiation log record at the coordinator’s site. Finally,
both 1-2PC and IYV require n total messages instead of 2n,
which is the case in PrC and PrA.

5. CONCLUSIONS

To achieve the performance of 1PC protocols and the wide
applicability of 2PC protocols, we proposed 1-2PC protocol.
1-2PC starts as 1PC and switches to 2PC only when nec-
essary. Furthermore, 1-2PC supports the option of forward
recovery. Thus, our new protocol alleviates the applicability
shortcomings of 1PC protocols in the presence of (1) deferred
consistency constraints, or (2) limited network bandwidth.
At the same time, it keeps the overall protocol overhead
below that of 2PC and its well known variants. This was
highlighted by comparing the performance of the different
protocols analytically with respect to log, message and time
complexities. The performance and applicability of 1-2PC
make it a especially important protocol in the context of en-
vironments that are characterized by high volume of short
transactions such as the Internet.

6. REFERENCES
[1] Abdallah, M., R. Guerraoui and P. Pucheral.

One-Phase Commit: Does it make sense? Proc. of the
Int’l Conf. on Parallel and Distributed Systems, 1998.

[2] Abdallah, M., R. Guerraoui and P. Pucheral.
Dictatorial Transaction Processing: Atomic
Commitment without Veto Right. Distributed and
Parallel Databases, 11(3):239-268, 2002.

[3] Al-Houmaily, Y., P. Chrysanthis and S. Levitan. An
Argument in Favor of the Presumed Commit
Protocol. Proc. of the 13" ICDE, pp. 255-265, 1997.

[4] Al-Houmaily, Y. J. and P. K. Chrysanthis. Atomicity
with Incompatible Presumptions. Proc. of the 18"
ACM PODS, pp. 306-315, 1999.

[5] Al-Houmaily, Y. J. and P. K. Chrysanthis. An
Atomic Commit Protocol for Gigabit-Networked
Distributed Database Systems, Journal of Systems
Architecture — The EUROMICRO Journal,
46(9):809-833, 2000.

[6] Gray, J. Notes on Data Base Operating Systems. In
Bayer R., R.M. Graham, and G. Seegmuller (Eds.),
Operating Systems: An Advanced Course, LNCS Vol.
60, pp. 393-481, 1978.

[7] Gupta, R., J. Haritsa and K. Ramamritham.
Revisiting Commit Processing in Distributed
Database Systems. Proc. of the 1997 ACM SIGMOD,
pp. 486-497, 1997.

[8] Lampson, B. Atomic Transactions. Distributed
Systems: Architecture and Implementation - An
Advanced Course, LNCS Vol. 105, pp. 246-265, 1981.

[9] Levy, E., H. F. Korth, and A. Silberschatz. An
optimistic commit protocol for distributed
transaction management. Proc. of the ACM
SIGMOD Conf., pp. 88-97, 1991.

[10] Mohan, C., B. Lindsay and R. Obermarck.
Transaction Management in the R* Distributed Data
Base Management System. ACM TODS,
11(4):378-396, 1986.

[11] Samaras, G., G. Kyrou, P. K. Chrysanthis.
Two-Phase Commit Processing with Restructured
Commit Tree. Proc. of the Panhellenic Conference
on Informatics, LNCS Vol. 2563, pp. 82-99, 2003.

[12] Stamos, J. and F. Cristian. Coordinator Log
Transaction Execution Protocol. Distributed and

Parallel Databases, 1(4):383-408, 1993.

