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Abstract. The wide spread of mobile computing devices is transforming the newly emerged e-business world into a mobile e-business one,
a world in which hand-held computers are the user’s front-ends to access enterprise data. For good mobile decision making, users need to
count on up-to-date, business-critical data. Such data are typically in the form of summarized information tailored to suit the user’s analysis
interests. In this paper, we are addressing the issue of time and energy efficient delivery of summary tables to mobile users with hand-held
computers equipped with OLAP (On-Line Analytical Processing) front-end tools. Towards this, we propose a new on-demand scheduling
algorithm, called STOBS, that exploits the derivation semantics among OLAP summary tables. It maximizes the aggregated data sharing
between mobile users and reduces the broadcast length for satisfying a set of requests compared to the already existing techniques. The
algorithm effectiveness with respect to access time and energy consumption is evaluated using simulation.
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1. Introduction

With the rapid growth in mobile technologies and the cost ef-
fectiveness in deploying wireless networks, mobile devices
are quickly becoming the standard platform for accessing
time-sensitive data. This, in combination with the increased
popularity of hand-held computers as well as the availabil-
ity of light yet powerful laptop computers, shows that mo-
bile computers will become the preferred front-end devices
for hosting sophisticated business applications.

Time-sensitive data is crucial for facilitating informed de-
cision making. Without an effective decision support system,
decision makers will not be able to exploit opportunities as
they appear anywhere and anytime. Decision makers need
to count on up-to-date, business-critical data being instantly
available to their hand-held and wireless computers. Such
data are maintained in data warehouses or data marts [14] and
may be privately or publicly accessible. For example, a pub-
lic data mart deployed within the stock market galleries or the
campus of a trade fair may be responsible for gathering stock
market and other financial information. This data is typically
in the form of summarized reports tailored to suit the users’
analysis interests.

In this paper, we are addressing the issue of time and en-
ergy efficient delivery of summary tables to mobile clients
(i.e., mobile devices) equipped with simple or sophisti-
cated OLAP (On-Line Analytical Processing) front-end tools.
A simple OLAP tool will allow a client to submit a queries
to a base OLAP server and display the downloaded report.
A sophisticated one is a personal OLAP server such as Power-
Play [6], Express OLAP Access Pack [5], and BI/Analyze [7],
that stores data on the mobile computer and provides OLAP

* This work is supported in part by NSF award ANI-0123705, the National
Center for Disease Control and the Pennsylvania Department of Health
Award ME-01-737. The first author is supported in part by the Andrew
Mellon Predoctoral Fellowship.

functionality locally. Thus, these personal servers allow mo-
bile users to carry out off-line data analysis and refresh their
data when they are connected to base OLAP servers. The data
dissemination technique proposed in this paper will enable
both simple and sophisticated OLAP tools to efficiently sup-
port the on-line analysis using up-to-date information within
a wireless and mobile network.

In wireless and mobile networks, broadcasting is the pri-
mary mode of operation for the physical layer. Thus, broad-
casting is the natural method to propagate information within
wireless links and guarantees scalability for bulk data trans-
fer. Specifically, data can be efficiently disseminated by any
combination of the following two schemes: broadcast push
and broadcast pull. These exploit the asymmetry in wireless
communication and the reduced energy consumption in the
receiving mode. Client devices are assumed to be small and
portable, and most often their operation relies on the finite
energy provided by batteries. Servers have both much larger
bandwidth (downlink) available than client devices and more
power to transmit large amounts of data.

In broadcast push the server repeatedly sends information
to the clients without explicit client requests. Any number of
clients can monitor the broadcast channel and retrieve data as
it arrives on the broadcast channel. If data is properly orga-
nized to cater to the needs of the clients, such a scheme makes
an effective use of the low wireless bandwidth and is ideal to
achieve maximal scalability [1,15,16].

In broadcast pull, the clients make explicit requests for
data. If multiple clients request the same data at approx-
imately the same time, the server may aggregate these re-
quests, and only broadcast the data once. Such a scheme
also makes an effective use of the low wireless bandwidth
and clearly improves user perceived performance. Several
scheduling algorithms have been proposed that attempt to
achieve maximum aggregation [2,10,28,29].



Product

Customer

Custofmer

5

Broadcast

\

Product

Figure 1. Mobile OLAP system.

Assuming the traditional OLAP server basic functional-
ity, the broadcast pull or on-demand environment as shown in
figure 1, is the most suitable for supporting wireless OLAP
query processing. Every client request is for one of the sum-
mary tables. Requests for the same table are aggregated and
the corresponding table is broadcast. This scheme scales
well with the increase in number of clients, especially in the
cases where the access pattern is skewed towards few tables
which are highly popular among users. As an example con-
sider the case of brokers accessing the stock market gallery
data mart. At the open and close times many traders will
be analyzing the performance of different stocks in different
financial dimensions. Some of these stocks are more pop-
ular than others, similarly, some analytical dimensions are
more important than others. In this situation, a data mart
equipped with a broadcast gateway will give higher prior-
ity to answering requests to popular tables. This will pro-
vide better response time and higher scalability. Similar sit-
uations arise in other mobile and wireless applications with
similar data requirements. An example is decision making in
the context of sensor network databases, where data is gath-
ered from a large number of sensors and stored in a multi-
dimensional structure. In the case of scientific exploration,
scientists on the field rely on this data for data mining and
pattern detection. These scientists will be using their wire-
less devices to analyze sensor data disseminated by a satel-
lite or a close wireless station. A scalable data dissemination
method is needed to meet the timely requirements of such
analysis.

An interesting property in the wireless OLAP system,
which we call derivation dependency, is that a table requested
by a client may subsume a table requested by another client.
Since request aggregation is commonly used by general con-
tent delivery scheduling algorithms for efficient data dissem-
ination, the derivation dependency property adds a new op-
timization dimension to the request aggregation process that
allows further broadcast efficiency and scalability.

All currently available on-demand scheduling algorithms
are strict in the sense that they restrict sharing among clients
to matching requests. In this paper, we propose a new family
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of flexible scheduling algorithms that aggregate requests by
exploiting their semantics to increase sharing among clients
that goes beyond the exact matching of requests.

Our proposed on-demand scheduling algorithm, called
Summary Tables On-Demand Broadcast Scheduler (STOBS-
«), is non-preemptive and is based on the priority function
R - W/S. The formula R - W/S is a generic scheduling func-
tion which considers popularity (R), cost (S), and age (W) in
prioritizing requests for broadcast. Variants of this function
with different definitions of S appeared in [4,19,23,24,27].
The cost in STOBS-« captures the varying sizes of summary
tables.

The unique characteristic of STOBS-« is its a-optimizer
that exploits the derivation dependency among the summary
tables to increase sharing among clients. Because each table
satisfying a particular request incurs a different processing
cost at the client, STOBS-« considers this cost when select-
ing the set of requests to be aggregated into the specific ta-
ble which is broadcast at a given point. This cost is captured
by the selected value of «. By considering that each differ-
ent value of « yields a different scheduler, STOBS-« can be
thought of as a family of scheduling algorithms as well.

The effectiveness of our new heuristic that is based on
derivation dependency was evaluated experimentally using
simulation by comparing STOBS-« to RxW/S. We use RxW/S
to denote the scheduler that is using the basic R- W/S
scheduling function. Our experimental results have shown
that STOBS-« outperforms RxW/S scheduler, reducing the ac-
cess time by up to 62%. Our experiments also show that
STOBS-«a can result in average access time that is within 36%
of that provided by a hypothetical ideal on-demand data dis-
semination scenario in which each client is connected to the
server through a dedicated channel.

For mobile clients, savings in power consumption is partic-
ularly important since they operate on batteries. Power con-
sumption is also becoming a key issue for all other computer
products given the negative effects of heat. Heat adversely
affects the reliability of the digital circuits and increases costs
for cooling [21]. STOBS-« achieves power reductions up to
12% less than RxW/S, while reducing the average access time
by 48%. There is a trade-off between access time and en-
ergy consumption which the value o of the optimizer also
controls. For example, o can be set so that the reduction
in average access time could be increased to 60% while de-
creasing the average energy consumption to only 2% less than
RxW/S.

The rest of this paper is organized as follows. The next sec-
tion presents an overview of the related work in OLAP tech-
nologies and broadcast-based data dissemination techniques.
In section 3, we discuss our assumed wireless OLAP envi-
ronment and in section 4, we present STOBS, our new on-
demand scheduling algorithm. Our simulation testbed and
experiments are presented in sections 5 and 6, respectively.
In section 7, we experimentally highlight the importance of
broadcasting as a data dissemination technique and we con-
clude in section 8.
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Figure 2. Data cubes lattice.

2. Background and related work

In this section, we will first provide a short introduction to
OLAP concepts and then present several scheduling policies
that have been proposed for broadcast-pull data dissemina-
tion.

2.1. OLAP and summary tables

In a decision support environment, sets of facts are analyzed
along multiple dimensions. This led to the development of
the multidimensional data model that represents a set of facts
in a multidimensional space in a way that facilitates the gen-
eration of summarized data and reports [18]. In this model,
data is typically stored using a star schema. The star schema
consists of a single fact table storing the measures of interest
(e.g., sales, or revenue) and a table for each dimension (e.g.,
supplier, product, customer, time or region).

OLAP queries typically operate on summarized, consoli-
dated data derived from fact tables. The needed consolidated
data by an OLAP query can be derived using the data cube
operator [11]. The data cube operator is basically the union
of all possible Group-By operators applied on the fact table.
A data cube for a schema with N dimensional attributes, will
have 2% possible subcubes. Given that the data cube is an ex-
pensive operator, often subcubes are pre-computed and stored
as summary tables at the server.

Basically, a summary table can be modeled as an aggrega-
tion query, where the dimensions for analysis are the Group-
By attributes and the measures of interest are the aggregation
attributes. A detailed summary table Ty can be used to derive
amore abstract one T3. In such a case, the abstract table T, has
a derivation dependency on Ty. For example, in figure 1, the
OLAP server maintains the three-dimensional table (supplier,
product, customer). By adding the measure values across the
customer dimension, the first client can use the detailed table
(supplier, customer) to extract the abstract table (supplier).

The idea of using summary tables to derive one from an-
other has been widely used in materialized views selection.
The objective is to select the appropriate set of tables for stor-
ing (materialization), so that to speed up future query process-
ing, while meeting the space constraints [12—-14]. To facil-
itate the selection process, the search lattice was introduced
in [14]. The search lattice is a directed graph to represent
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the subcubes space that captures the derivation dependencies
among subcubes. For example, figure 2 shows the lattice
for a simple 3-dimensional schema where the dimensions for
analysis are Supplier (S), Product (P), and Customer (C). In
the figure, the edges from (SC) to (S) and (C) indicate the
dependency of both (S) and (C) on (SC). The symbol ‘~’
is used to represent the summary table with no Group-By at-
tributes (that is, everything).

In this paper, we also use the property of derivation depen-
dency of the summarized tables and the idea of search lattice
in selecting the appropriate tables to broadcast over wireless
links, such that the user perceived latency is minimized.

2.2. Broadcast-pull

Several scheduling policies have been proposed in the broad-
cast pull literature. These policies can be classified as ei-
ther non-preemptive or preemptive. In a non-preemptive en-
vironment, it has been pointed out that that First Come First
Serve (FCFS) scheduling would provide poor access time
in broadcast pull [10] and Most Requests First (MRF) and
Longest Wait First (LWF) were proposed as efficient alterna-
tives [10,29]. The RxW algorithm [4] combines the benefits
of MRF and FCFS, where the intuition underlying RxW is
that “hot” or popular data items are disseminated as soon as
possible yet it avoids starvation of “cold” or less popular data
items by means of an aging scheme. RxW has been proposed
in the context of homogeneous data, where all data objects
are of the same size. For the general case, where different
data items incur different transmission times, we proposed the
priority function R - W/S that incorporates transmission cost
which is proportional to the table size [23].

Preemptive scheduling policies have been introduced to
minimize the stretch measure in heterogeneous settings, i.e.,
requests for data items of varying sizes [2]. Three preemptive
algorithms have been proposed, namely, Longest Total Stretch
First (LTSF), an off-line algorithm called BASE and its online
approximation MAX.

Preemptive scheduling policies exhibit better performance
than the non-preemptive ones for heterogeneous requests.
However, preemptive schemes cannot in general support se-
lective tuning. Selective tuning is the fundamental property
for preserving energy in wireless data communications where
the main idea is: if sufficient indexing information is provided
to clients, then the mobile device access pattern to the data
stream can alternate between a doze mode waiting for data
and an active mode tuning for reading the required data. In a
doze mode the mobile device is consuming power orders of
magnitude less than that in the active mode. Power conserva-
tion indexing methods for single-attribute and multi-attribute
based queries in broadcast push environments appeared in
[3,15,16].

The idea of merging queries with overlapping answers to
reduce broadcast communication cost has been introduced in
the context of a multicast subscription environment [9]. In
this approach, a post-filtering is needed at the client side to
obtain the answer to the original query. A similar proposal
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appeared in [20] for broadcast push in wireless environments,
where a semantic description is attached to broadcast unit,
called a chunk, which is a cluster of data items. This al-
lows clients to determine if a query can be answered based
solely on the broadcast or they have to request the missing
items in the form of a supplementary query. The server uses
popularity-based scheduling policy to select the data chunks
on a broadcast. This assumes that the server has been in-
formed about the clients’ queries prior to the beginning of
each broadcast cycle.

In our previous work [23,24], we proposed broadcast-
based data dissemination techniques for the special case of
summary tables (aggregation queries). In our work, we use
on-demand data broadcasting that considers the current work-
load at the server and does not require prior knowledge of the
request patterns. In [23], which is a preliminary version of
this paper, we used the tables dimensionalities as the criterion
to aggregate requests for subsuming summary tables, while
n [24], we used the tables sizes as the criterion for aggre-
gation. In [25], we showed how to utilize the Dwarf tech-
nology [26] to compress a view and all its subordinate views
in order to achieve aggregation of multiple requests. Further,
we combined the Dwarf-based scheme with our on-demand
scheduling scheme to achieve further broadcast efficiency and
scalability.

3. Mobile OLAP model

Our assumed architecture is based on broadcast pull scheme
as shown in figure 1. The OLAP server is responsible for
maintaining and disseminating the summary tables. We are
assuming that all the lattice subcubes are pre-computed and
stored at the server, which is a reasonable assumption, spe-
cially for relatively small size data marts. The Essbase system
(according to [14]) is an example of commercial product that
materialize all the possible summary tables.

We are also assuming a typical mobile computing environ-
ment in which mobile devices retain their network connection
through the support of specialized stationary hosts called Base
Stations or Mobility Support Stations equipped with wire-
less communication capabilities. The logical or physical area
served by a Mobile Support Station is called a cell.

In a single cell configuration, the OLAP server broadcasts
the data directly to the mobile clients. In a multi-cell con-
figuration the OLAP server broadcasts the data to the mobile
support stations which, in turn, re-broadcast it to the mobile
clients within the cell of their responsibility. Without loss of
generality, in the rest of the paper we are assuming a single
cell configuration.

A client sends an uplink request for a table on the uplink
channel. It can then be in one of two states: fune state or
wait state. When the client needs to listen to the downlink
channel, it enters the tune state and switches to active mode.
Otherwise, it is in wait state and operates in doze mode.

An uplink request Q is characterized by the set of its
Group-By attributes D. Hence, we represent a request as O
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Figure 3. Client access to broadcast.

and the corresponding table as 7. A summary table 7!
subsumes table TP?, and consequently TP is dependent on
TPl if D2 € D1. We denote the number of dimensional
attributes (table dimensionality) in the set D as |D|.

The smallest logical unit of a broadcast is called a packet
or bucket. A broadcast table is segmented into equal sized
packets, where the first one is a descriptor packet. Every
packet has a header, specifying whether it is data or descrip-
tor packet, the offset (time step) to the beginning of the next
descriptor packet, and the offset of the packet from the begin-
ning of its descriptor packets. The descriptor packet contains
a table descriptor which has an identifier that captures the ta-
ble aggregation dimensions, the number of attribute values or
tuples in the table and the number of data packets accommo-
dating that table. We are assuming that no single data packet
is occupied by tuples from different tables. Each summary
table is broadcast within a broadcast cycle that starts with the
table descriptor packet.

By assuming each client knows the order in which at-
tributes are defined in the database schema, we use bit encod-
ing to represent the semantics of a client request and the table
descriptor identifier. The representation is a string of bits; its
length is equal to the number of the complete schema dimen-
sions and each bit position is equivalent to one of the dimen-
sions dy, ds, . ..,d,. If a table TP has dimension d, € D,
then the bit at position x is set to 1, otherwise it is a zero. For
example, assume the (supplier, product, customer) schema.
The representation of the (supplier, customer) summary ta-
ble will be 101 (see figure 3; descriptor packets are shown
with gray background). This scheme can be easily extended
to include tables with more than one measure and different
aggregation functions. In this paper, we limit the presentation
to only one measure attribute and sum() as the aggregation
function.

When a client submits a request for table 7% on the uplink
channel, it immediately tunes to the downlink channel, and
goes through a three-phase access protocol until its request is
satisfied:

(1) initial probe;

(2) semantic matching; and

(3) table retrieval.

Initial probe. 1In the initial probe phase, the client tunes to

the downlink channel and uses the nearest packet header to
locate the next descriptor packet.

Semantic matching. The semantic matching phase starts
when the client finds a descriptor packet, say for table 75,
then the client can semantically classify 7% as:
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e Exact match: if the aggregation dimensions in 7% are the
same as TX (i.e., R = B).

o Subsuming match: if T® subsumes TX, and T2 is not an
exact match for TR (i.e., R ¢ Band R # B).

e No match: if it is neither an exact match nor a subsuming
match (i.e., R ¢ B).

For example, assume R is (supplier, product), then B} =
(supplier, product, customer) is a subsuming match, while
By = (product) and B3 = (supplier, customer) are examples
of no match.

Table retrieval. Depending on the matching result and the
scheduling algorithm used (as we will see in section 4), the
client will either switch to the final retrieval phase or it will
stay in the semantic matching one. In the former, the client
stays in active mode tuning to the next sequence of data pack-
ets to read (download) table TZ. While in the latter case,
it will wait for the next descriptor packet, switching to doze
mode in order to reduce power consumption. Using the offset
in the packet header, it wakes up just before the next broadcast
cycle (i.e., descriptor packet of the next table on broadcast)
where the semantic matching process is repeated.

Returning to our running example, the access protocol for
accessing the complete cube (supplier, product, customer) is
shown in figure 3. Here, it is assumed that the search starts by
tunning into the descriptor packet for table (100).

3.1. Cost model

The time interval a mobile client spends since issuing a re-
quest until the summary table is made ready for either display-
ing or further processing, can be expressed by the following
three components:

e Wait time. 1t is the total period of time a client spends
waiting for a descriptor packet to appear on the downlink
channel until it finds a matching one. A client network
interface is switched to doze mode during the wait time.

e Tune time. It is the total period of time spent by the client
listening to the downlink channel either reading a descrip-
tor packet or a stream of data packets containing the re-
quested summary table. During tuning, the client network
card is in active mode consuming energy orders of magni-
tude higher than that in doze mode.

e Processing time. It is the total period of time needed to
convert the downloaded data into the form of the requested
summary table. During this phase, the processor is active,
accessing the table in main memory and consuming full
power.

Hence, we define the access time (Ttota1) as the total period
of the wait, tune, and processing times.

Trotal = Twait + TTune + TProcessing-

Accordingly, the total energy consumption (ETota) is for-
mulated as:

ETotal = EDoze + EActive + EProcessing,
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Figure 4. STOBS-«a.

where the energy consumed during a certain period equals to
the product of the power consumption during that period and
the duration of the period.

As mentioned in the introduction and elaborated below, a
trade-off between access time and energy consumption may
arise in some cases. In section 6, we are introducing a metric
to measure the overall gain whenever there is such a trade-off
between access time and energy consumption.

4. Summary Tables On-demand Broadcast Scheduler
(STOBS-«)

The profile for OLAP summary tables access has the follow-
ing key features:

1. Heterogeneity. Summary tables are of different dimen-
sionalities and varying sizes

2. Skewed access. Request from OLAP clients usually form
a hot spot within the data cubes lattice. Most of the time
queries are accessing low dimensionality tables and they
often drill down for detailed ones.

3. Derivation dependency. 1t is often possible to use one de-
tailed table to extract other tables.

The Summary Tables On-demand Broadcast Scheduler
(STOBS-«) that we are presenting in this section, consists
of two components: the normalizing (basic selection) com-
ponent, which captures the first and second features above
and the «-optimizing component that exploits the third fea-
ture above to control the degree of sharing (figure 4).

The normalizing component
Given that we are scheduling requests of different sizes and
consequently different transmission times, we propose using
a prioritizing function R - W/S which considers popularity,
size, and age in making the scheduling decision.

Specifically, the server queues up the clients requests as
they arrive. For each request Q% for a summary table 7% in
the queue, the server maintains the following three values:

e Rx: the number of requests for 7X. This value is incre-
mented with every arrival of a request for 7%,

e Ay: the arrival time of the first request QX for table 7%
currently in the queue. Ay is used to compute the value of
Wy which is the waiting time for the request Q.

e Sy: the size of table TX.

When it is time for the server to make a decision which
table to broadcast next, it computes the Ry - Wx /Sx value for
each request in the queue. The request with the highest value
is selected to be broadcast.
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Figure 5. Flexibility and search lattice.

The a-optimization component

The «-optimization component is responsible for aggregat-
ing pending requests with the table selected by the normaliz-
ing component. The parameter « defines the degree of flexi-
bility in broadcasting a summary table and eliminating from
the broadcast some of its dependent tables. For example, for
o = 2, if the server selects a table TX to broadcast, then the
server discards every request in the queue for a table 77 that
can be derived from 7 and is up to two levels lower in the
data cubes lattice.

More precisely, a request for T can be discarded and 7"
is not broadcast if ¥ C X and |X| — |Y| < 2. Consequently,
a client will use a table 7 that subsumes the table 7Y which
the client originally requested and which is up to two levels
higher in the data cubes lattice. That is, a client requested 7Y
willuse T7X if Y ¢ X and | X| — |Y| < 2.

In general, the formal criterion at the server to discard a
request QY for table 77 and aggregate it into a request for
table TX is:

0Y is discarded iff
T% is broadcastand Y C X and | X| — |Y| < a.

The same criterion is used at the client side to determine
if it has to use table 7% that subsumes its original request for
table 77 which has been discarded at the server and would
not be broadcast. The value of « is made known to the clients
by including it as part of each table descriptor information
along with the dimensionality of the broadcast table.

The value of o ranges from O to the maximum data cube
dimensionality MAX. At o = O there is no flexibility in us-
ing summary tables and the client access is restricted to exact
match. At « = MAX, a client will use the first subsuming
matching table. STOBS-0 is basically RxW/S and is a strict
algorithm, while the family of STOBS-«, where « > 0, are
flexible algorithms.

As an example, consider the search lattice shown in fig-
ure 5, in which nodes are summary tables. The nodes shown
in the figure represent tables for which there exist at least
one request. Also, let us assume that Q% is a request to
the 4-dimensional table TX: (d|, da, d3, ds) that is selected
to be broadcast next. All the shaded tables in the figure can
be derived from TX. These are (dv), (d2), (d3), (dy), (d1, d2),
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Table 1
Example settings.

0 [0)) 03 04

R; 2 1 1 2
w; 5 4 10 14
S; 20 25 50 60

(d1,ds), (dy, do, d3), and (dy, dy, d4). However, if we assume
that « = 2 then clients’ requests for tables (d1, d2), (d1, d3),
(d1, d3, d3), and (dy, d>, d4) will be satisfied by TX and hence
the requests for these tables will be discarded; whereas the re-
quests for tables (d1), (d2), (d3), and (d4) will remain in the
queue for future consideration.

4.1. Discussion

The intuition for STOBS-« is to capture all the specific fea-
tures of summary tables access in an on-demand broadcast en-
vironment. As shown above, the scheduling function R- W /S
encapsulates all the basic factors affecting a response access
time. The o parameter controls the degree of flexibility. The
advantage of the flexibility is to find another aspect of com-
mon interest other than the exact strict one. This has the effect
of increasing the frequency by which requests for a certain
data item are satisfied over a period of time. Further, for a
given set of requests it decreases the broadcast length by re-
moving some of the redundancy.

Extra time and energy is needed for tuning in and process-
ing a detailed table rather than a summarized one. Picking a
reasonable value for o will balance the trade-off between re-
ducing the wait time and increasing the tune and processing
times. As in [14], we are assuming a linear cost model for
aggregate query processing, where a table scan is required to
compute the result. During processing, the processor accesses
the downloaded summary table from memory and the mem-
ory transfer rate determines the time taken for processing.

As an example for the flexibility trade-off, consider the
case where « is set to 2. In case of request for table Thigh,
where | X| — |high| < 2. If the R - W/S value for the request
for table T"¢" is still not high enough, then disseminating 7%
will reduce the wait time by a client requested 7"¢". On the
contrary, a client requested table T where |X|— |low| > 2,
if TX is disseminated, the client requested T'" would rather
wait for the next broadcast cycles to avoid the costly tune time
needed for downloading T% and for further processing it lo-
cally.

To recap, let us now consider a simple numeric example
that highlights the differences in scheduling decisions and av-
erage access time between the strict scheme and our proposed
flexible approach. Table 1 shows the example settings, where
there are four pending requests Q1, Q2, O3, and Q4 for four
different tables 71, T», T3, and T4. The R;, W;, and S; values
for request Q; are as described above. Additionally, we are
assuming that table 75 is derivable from 74 and 7, is within
two levels lower than T4 in the subcubes lattice. Each sched-
uler has to make a decision what is the sequence of tables to
broadcast given the queue status at each broadcast cycle. In
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Table 2
Example results.
Algorithm BSeq AAT BSize
STOBS-0 T\, T4, Tp, T3 85.3 155
STOBS-2 Ty, Ty, T3 77.0 130

this snapshot, the four requests constitute the whole workload,
i.e., no more requests will arrive at the server.

Table 2 shows the broadcast sequence (BSeq) generated by
each algorithm (left most table is the first to be broadcast), the
corresponding average access time (AAT), and the broadcast
size (BSize). Assume that the transmission time of a table is
equal to its size, hence, the transmission time for table 74 is
60 units and its access time using STOBS-0 is equal to W4 +
S1 + S4, where W4 + S is the wait time and S4 is the tune
time.

As it is possible to derive T, from Ty, STOBS-2 selects Ty
for transmission and discards 73, converting the wait time for
T, into a tune time to 74 and in addition eliminating part of
the wait time for 73. This broadcast sequence gave an average
access time that is 10% less than that achieved by STOBS-O0.

5. Performance evaluation testbed

We simulated an environment that consists of a single OLAP
server and a set of clients. The server receives clients re-
quests for summary tables and disseminates the answers back
to clients. We simulated two data dissemination models:

1. Broadcast model. In this model, there is a single down-
link broadcast channel and a single uplink channel. These
channels are shared between all clients. Clients use the up-
link channel to send requests to the server and the server
broadcasts tables on the downlink channel.

2. Point-to-point model. In this model, each client is con-
nected to the server through a dedicated bidirectional
channel. On this channel, a client sends its requests to
the server and receives the corresponding table.

We used the broadcast model to evaluate the potential
gains of using the STOBS-« algorithm by comparing it to the
strict RxW/S (STOBS-0). We used the point-to-point model
to highlight the efficiency of data broadcasting in general and
STOBS-« in particular (see section 7).

We generated a synthesized lattice for an n-dimensional
data cube. The values of n is in the range between 4 and 12,
with n = 6 being the default. Setting n to 6 results in 64 (2°)
possible queries and a maximum value for « equals to 6. Due
to similarity in performance between close values of & and for
the sake of readability, we are only presenting results where
aissetto0,1,2,3,and 6.

The sizes of lattice subcubes is computed as in [17], where
a subcube is given a binary code C. The binary code is sim-
ilar to the bit encoding we use for identifying cubes on the
broadcast. The subcube size (number of tuples) is set to Cc2.
The final cube size is the product of generated number of tu-
ples and the number of attributes (dimensional and measure
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Table 3
Simulation parameters.
Parameter Value Default

Base cube dimensionality 4-12 dimensions 6
Possible requests 164096 requests 64
Zipf parameter (6) 0.0-0.9 0.5
Simulation length 100 requests/client
Number of clients 10-250 clients
a-optimization 0-dimensionality 0,1,2,3,6

attributes), hence, the unit for size is the number of attribute
values in a table.

The way we generated the lattice ensures diversity in sub-
cubes sizes and significant size difference between a cube and
all its dependent cubes. In the generated lattice, cubes at the
bottom left area have small sizes while those at top right have
larger sizes.

Derived summary tables are of different sizes, i.e., they
have different degrees and cardinalities. In the simulation, we
are assuming that attribute values have the same sizes of 10
bytes and a data packet capacity is 10 attribute values.

To test the system under a typical workload, requests are
generated by the clients according to Zipf distribution with
the Zipf parameter (6) with default value being equal to 0.5.
Queries are sorted according to their sizes, so that queries to
small size tables occur with higher probability than queries
to detailed ones. These settings will create a hot spot at the
bottom of the data cubes lattice.

We control the simulation by establishing a fixed number
of requests, that is, each client was required to complete a
certain number of requests before the experiment would ter-
minate. A client will pose a new request as soon as it gets an
answer to its previous one.

Table 3 summarizes our simulation parameters and settings
reported in this paper. The combination of these parameters
allows us to examine the scalability of the system as well as
the impact of a changing workload on the algorithms perfor-
mance. In the next section, we use the broadcast model to
compare the STOBS-« algorithm to RxW/S, which is equiva-
lent to the strict STOBS-0. Recall that setting « to zero limits
requests aggregation to exact matching only, while values of
a > 0 provide more flexibility in aggregating requests by
allowing subsuming matching. We compare the algorithms
with respect to access time, energy consumption, overall re-
duction, impact of database size on performance, and skew-
ness of access.

6. Results

For our evaluation, we took extensive performance measure-
ments. The time reported throughout is in seconds and the en-
ergy consumption is in Joules. We considered a wireless LAN
where the broadcast channel has a bandwidth of 1 Mbps. We
assumed clients are using the IBM ThinkPad laptop [8] that is
equipped with Pentium 4 mobile processor with a 100 MHz
RAM and 64 bits bus. The processing of a summary table is
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basically a scanning process, and hence we used the memory
transfer time to bound the processing time.

6.1. Access time

Figure 6 shows the average access time for the STOBS fam-
ily of algorithms. All algorithms exhibit a similar behavior,
that is, the average access time increases but ultimately lev-
els as the number of clients is increased. This behavior is
normal for broadcast data delivery to clients with shared in-
terests. The figure shows how the access time is decreas-
ing with increasing « for the same number of clients. Fur-
thermore, this reduction in access time is more significant
as the load increases and more flexibility is needed to han-
dle the high request rate. For instance, consider the cases of
10 and 250 clients where @ = 2 (STOBS-2). In the case of
10 clients, the average access time decreased by 38% com-
pared to STOBS-0 (the basic RxW/S), while in the case of 250
clients STOBS-2 achieved 60% reduction in the access time
compared to the strict STOBS-0. In the case of STOBS-6, and
population of 250 clients, the average access time is 62% less
than STOBS-O0.

Figures 7 and 8 depicts separately the tune, processing and
wait times demonstrated in figure 6. The strict algorithm
STOBS-0 exhibits the minimal tune and processing times.
Increasing the value of o leads to the increase in tune and
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processing times. However, this increase was successfully
compensated by a larger decrease in wait time as shown in
figure 8. It is worth mentioning here, that as the requests ar-
rival rate increases with the increase in the number of clients,
the wait time becomes the dominant factor in the access time
computation. This observation supports our idea of tackling
the access time reduction by decreasing the wait time even
if it yields to a moderate increase in the tune and processing
times.

6.2. Energy consumption

In this section, we are using the same experimental settings
described earlier. We assume that the processor accesses the
downloaded summary table from memory and the memory
transfer rate determines the energy needed for processing.

The assumed Pentium 4 mobile processor consumes 2
Watts on average, with a 100 MHz RAM and 64 bits bus.
Hence, processing a packet (100 bytes) will take 0.125 us and
the processor energy consumed during this duration equals
0.125 pus -2 W = 0.25 uJ.

Let clients be equipped with the ORINOCO World PC
Card [22]. The card operates on a 5 V power supply, using
9 mA at doze mode and 185 mA at receiver mode. Hence,
dozing for one packet time will consume 0.8 ms-9 mA-5V =
36 wJ, while being active tuning to one packet will take
0.8ms- 185 mA -5V =740 ul.

Figure 9 shows the average total energy consumption for
the different algorithms. As expected, the extreme case of
flexibility (« = 6) leads to an increase in the overall energy
consumptions. However, reduction in energy consumption is
achieved by setting « to the values of 1 or 2. This reduction
is more noticeable at higher loads where wait time is longer.
In such high loads, doze energy is playing an important role.
For instance, consider again the cases of 10 and 250 clients
and o = 2. In the case of 10 clients, energy consumption in
STOBS-2 increased by 17% compared to STOBS-0, while it
decreased by 2% in the case of 250 clients. The minimum
energy consumption is provided by STOBS-1, which reached
12% less than STOBS-0 in the case of 250 clients.

This gain is better illustrated in figure 10 in which the
total energy consumption is depicted by its active, process-
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ing, and doze components. At the population of 250 clients,
STOBS-1 provided a 50% reduction in doze energy compared
to STOBS-0, but, the active and processing energy increased
by 30%, leading to the previously observed 12% overall re-
duction in energy consumption. Additionally, watching the
STOBS-0 performance, we can see that doze energy consump-
tion is growing with the increase in number of clients until it
becomes equally important as the active one. This explains
the gains obtained at high loads, where flexibility trades a
limited increase in active energy for a substantial decrease in
doze energy.

6.3. Overall reduction

Now, let us introduce a metric to measure the overall reduc-
tion in average access time and energy consumption, called
overall reduction (OR):

OR, — Ta/TO+Ea/EO’ 0

2

where T, and E, are the average access time and the aver-
age energy consumption for a value of & > 0, respectively;
and Ty and Eg are the average access time and average en-
ergy consumption in the case of « = 0. The case of OR, =1
means that overall performance provided by a flexible ver-
sion of STOBS-« is similar to STOBS-0. However, a value
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of OR, > 1 reflects a degrading in the overall performance,
and a value of OR, < 1 shows a reduction in the net per-
formance. Using this metric allows us to compare the relative
performance for two settings of «, where the smaller the value
of ORy, the larger the net gain.

Figure 11 shows that the value OR,, decreases by increas-
ing the number of clients. That is, more reduction in the
overall performance. In the case of 5 clients, the reduction
is insignificant. Moreover, in the case of 5 clients (i.e., ex-
tremely light loaded system), the overall performance pro-
vided by STOBS-3 and STOBS-6 is worse than that of the
strict STOBS-0. This is because of the increase in active en-
ergy consumption has not been sufficiently compensated by a
corresponding decrease in either doze energy or access time.
However, by increasing the number of clients all versions of
flexible STOBS provide significant reduction in overall per-
formance. For example, in the case of 10 clients, OR; equals
0.88 and OR; equals 0.9, while in the case of 250 clients, OR;
equals 0.7 and OR; equals 0.68.

6.4. Impact of database size

In this experiment, we are testing the influence of changing
the database size on performance, specifically the number of
dimensions of the OLAP data cube, which has two effects:
(1) it changes the ratio between the sizes of a summary ta-
ble and its subsuming ones; and (2) it changes the number
of generated subcubes. We experimented with number of di-
mensions varying from 4 to 12, while the number of clients is
set to 50.

In figure 12, for clarity of presentation, we are normalizing
the flexible versions of STOBS to the strict one (STOBS-0).
As the parameter « can take different values depending on
the data cube dimensionality, we picked the values 1, HALF,
and MAX, where HALF corresponds to an « that is half the
cube dimensionality, while in the case of MAX, « is equal
to the cube dimensionality. For example, in the case of 10
dimensions, HALF = 5, while MAX = 10.

It is interesting to observe that all settings of « exhibit the
same behavior, where the relative reduction in access time
keeps increasing to a certain point where the normalized value
is minimal and then it starts decreasing again. The explana-
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tion for this is that with a constant number of clients and few
dimensions the chances of exact matching between queries
are high and the impact of any level of flexibility is small. As
the number of dimensions starts growing, the clients interests
are spread in a larger lattice of subcubes. In this case, the
subsuming matchings offered by flexibility adds significantly
to the exact matching ones, yielding to a high degree of shar-
ing. However, as the number of dimensions keeps growing,
the frequency of subsuming matches itself is decreasing. This
is the case in which attempts to aggregate requests is not ben-
eficial and the system should switch to serving each clients’
request independently.

For instance, consider the performance of STOBS-HALF in
the cases of 4 and 8 dimensions. In the 4 dimensions case, the
average access time is 32% less than STOBS-0, while in the
8 dimensions it provided a 70% reduction where more flexi-
bility is used to cater the diverging clients interests. However,
beyond this minimum point (8 dimensions in our experiment),
the chances of the subsuming matching itself start to diminish
and the performance of the flexible STOBS algorithms is get-
ting close to that of STOBS-0. Eventually at 12 dimensions,
we can see the flexible STOBS algorithms performing similar
to STOBS-O0.

Figure 13 shows that in the case of low dimensionality
there is enough exact matching that savings in wait time are
not high enough to allow the flexibility to provide any gain

SHARAF AND CHRYSANTHIS

—e— STOBS-0
O+ STOBS-1
—w— STOBS-2
—-- STOBS-3
—a&— STOBS-6

Average Access Time (Secs)
[
|
4 ©
/

0 T T T
0.0 0.2 0.4 0.6 0.8

Zipf Parameter (0)
Figure 14. Access time vs. Zipf.

in energy savings. But, as the dimensionality increases, using
flexibility starts to significantly reduce the total energy by re-
ducing the doze component. This behavior is sustained until
a minimum point, beyond which the savings are decreasing.
The explanation is that at high dimensionality, the extra active
power consumption due to the flexibility is high compared to
the scarce saving in doze energy.

6.5. Impact of skewness

In all the previous comparisons, we used the default 6 value
of 0.5. In this section, we examine the performance for dif-
ferent values of 9, i.e., the degree of skewness of access. Fig-
ure 14 shows the average access time for a setting, where the
number of clients equals to 100, each posing 100 requests.
The Zipf parameter ranges from 0 to 0.9 where for 8 = 0, the
distribution corresponds to the uniform one.

Since the number of clients (request rate) is kept constant,
the increased overlap in client interests allows more efficient
use of the broadcast bandwidth. Therefore, as the skew in-
creases all algorithms provide improved reduction in access
time. However, the STOBS-« schedulers, where o > 0, are
also taking advantage of the derivation dependency property
between requested tables. Using STOBS-2 reduces the access
time by 60% less than the STOBS-0 for all 6 values.

The energy consumption results presented in figure 15
came as expected. That is, the moderate use of flexibility by
STOBS-1 and STOBS-2 showed a reduction in energy con-
sumption. The achieved reduction is due to tackling the doze
component. The figure shows that using STOBS-1 reduces the
energy consumption by 10% less than STOBS-0.

7. Broadcasting versus point-to-point

For the sake of completeness, we studied two alternative mod-
els for data dissemination. These two models are based on
point-to-point data communication, hence, no scheduling is
required at the server side. Below, we are comparing these
two models to our previously described broadcast data dis-
semination model. For the broadcast model, we are using
STOBS-0 and STOBS-2 for on-demand scheduling.
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The first alternative model is a basic point-to-point model
where each client is connected to the server through a ded-
icated channel. The server bandwidth is evenly divided be-
tween the different channels. In this model, adding more
clients to the system results in a reduction of the bandwidth
available for each and every client. The second one is a hypo-
thetical ideal point-to-point model. As in the basic point-to-
point model, each client is connected to the server through a
dedicated channel. However, in the ideal point-to-point model
the bandwidth of each of these channels is equal to our as-
sumed server total bandwidth (i.e., 1 Mbps per channel). Ad-
ditionally, the number of these channels is unlimited and new
channels can be added as new clients join the system.

It is worth repeating that in these two point-to-point mod-
els no scheduling is required and hence a client will not ex-
perience any wait time. The server receives a client request
and instantly sends the exact matching table on the dedicated
channel. The access time in these models is just the time
needed to tune to the disseminated table and processing it.

We are using the ideal system model as a yardstick to as-
sess the gains provided by the STOBS algorithm with values
of « > 0 compared to the base case where « = (. Fig-
ure 16 shows that the on-demand broadcast data dissemina-
tion (STOBS-0 and STOBS-2) outperforms the point-to-point
one. This is because data broadcast takes advantage of the
commonality between requests. The figure also shows that
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in the case of 250 clients the average access time provided
by the ideal setting is 96% less than that provided by the
STOBS-0. Comparing this reduction to the one provided by
STOBS-2 shows that STOBS-2 is only 36% away from the
optimal performance given by that hypothetical ideal model.
Figure 17 shows the superiority of on-demand data broadcast-
ing over the point-to-point one in terms of energy consump-
tion. Though point-to-point communication eliminates the
doze energy component, however, the increase in tune time
leads to an uncompensated corresponding increase in active
energy dissipation.

8. Conclusions

In this paper, we focused on time and energy efficient deliv-
ery of summary tables to mobile devices equipped with OLAP
front-end tools, consequently, enabling decision making any-
time and anywhere.

In summary, our major contributions are:

e A new optimization that exploits the derivation semantics
among OLAP summary tables and a family of algorithms
called STOBS-« that use this optimization to achieve better
aggregation of OLAP requests that goes beyond the exact
match. The superiority of the STOBS-« with respect to re-
duction in access time and savings in energy was demon-
strated experimentally using simulation.

e We introduced a new metric called overall reduction, to
capture the trade-off between energy consumption and ac-
cess time. We used this metric to evaluate the performance
of our proposed STOBS-« algorithm.

e We re-emphasized the role of broadcast based data dis-
semination in supporting efficient and scalable access to
enterprise data by mobile users. Specifically, we experi-
mentally demonstrated the advantages of using broadcast-
based data dissemination over the point-to-point one when
delivering OLAP summary tables in wireless and mobile
environments.

Although the emphasis of our paper was on wireless and
mobile computing environments, our result are applicable
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in any networking environment which supports broadcast-
ing/multicasting including wired networks. In fact, in a multi-
cell environment, our scheme can be used by the OLAP server
to multicast the summary tables to mobility support stations
which in turn broadcast them to the mobile devices within
their cells.

Currently, we are working on enhancing the o optimizer to
take into consideration the energy levels available at the mo-
bile clients. Specifically, as part of every request, each mobile
client will specify its own « value that describes the client’s
maximum tolerance to increase in energy required for down-
loading and processing a subsuming table. The server will ag-
gregate requests in a way that minimizes response time while
not exceeding the tolerance given by the requesting clients.
We are also working on techniques that strongly integrates
the flexibility with the selection decision.
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