
A Goal-Oriented Self-Tuning Caching Algorithmt

Ganesh Santhanakrishnan Ahmed Amer Panos K. Chrysanthis
Department of Computer Scienc e

University of Pittsburgh
Pittsburgh, PA 15260

{ganesh, amer, panos} @cs.pitt. edu

1 Introduction
A popular solution to internet performance prob­

lems is the wide-spread caching of data. Many caching
algorithms have been proposed in the literature, most
attempting to optimize for one criteria or another. Re­
cent efforts have explored the automation and self­
tuning of caching algorithms in response to observed
workloads. We extend these efforts to consider the
goal of optimizing for selectable performance crite­
ria. In this presentation, we describe GD-GhOST (a
Goal-Oriented Self-Timing caching algorithm based on
Greedy Dual-Size caching algorithms(GD)), that at­
tempts to facilitate the specification of desirable per­
formance metrics in addition to eliminating the need
to preset any algorithm parameters.

GD-GhOST differs from prior adaptive algorithms
in the sense that, at any given time, it does not se­

lect a single policy out of several ones, but combines

all of them based on their weights. With our pro­
posed algorithm, we have shown performance match­
ing and exceeding the best performance of the known
greedy dual-size algorithms for either object or byte
hit ratios across different web workloads. GD-GhOST
consistently outperforms the other algorithms tested,
at its worst observed performance GD-GhOST exhib­
ited equivalent miss rates to those of the best appli­
cable GD variant [4}, while achieving miss rates that
were 25% lower than the worst performing variant.

, For byte miss rates, GD-GhOST consistently demon­
strated rates lower than the best applicable GD vari­
ant. At its best, GD-GhOST offered byte miss rates
10% lower than the best variant.

2 Background and Description
Among the most successful policies for web caching,

which can be done at various levels [1,9], the GD al­
gorithms have proven to be very effective [4]. The

tSupported in part by the National Science Foundation
awards ANI-0123929 and ANI-0325353.

0-7803-8396-6/041$20.00 © 2004 IEEE

GD variants are well known for their abilities to max­
imize different performance metrics. Among the dif­
ferent GD variants,the specific ones used in our initial
tests are: GD-Size(l), considered to be well-suited for
maximizing hit ratio, GD-Size(packets), appropriate
when we wish to maximize byte hit ratio and GD­
Size(frequency) , the best performer in terms ofille ac­
cess frequency [5J. Recently, research efforts have pro­
duced caching policies that, in addition to optimizing
a specific performance metric, attempt to automate
policy parameter tuning [8,2]. GD-GhOST offers the
automated optimization of an arbitrary performance
metric for the caching of variable-sized objects.

GD-GhOST is a replacement policy based on a
combination of several GD variants, that attempts to
satisfy a given goal using a fully adaptive combina­
tion of these individual component algorithms. Using
hit ratios and byte hit ratios as two example met­
rics we will now go on to describe how an arbitrary
selection among these three GD algorithms can be
used by GD-GhOST to determine its replacement pol­
icy. GD-GhOST combines individual component algo­
rithms using a master-algorithm approach similar to
that employed in the ACME algorithm [2], but GD­
GhOST can use more meaningful numeric inputs from
the different component algorithms. GD algorithms
calculate an H -value for each element in the cache,
indicating its relative worth for retention.

GD-GhOST combines the H values calculated by
the three GD variants, and based on an on-line evalu­
ation of each variant's performance it produces its own
H value. In effect, we proportionally weight the three
variants' H values based on the performance of each
algorithm. The evaluation of each algorithm's perfor­
mance is derived from a user-specified weighting of the
importance of each metric (in this case it is either byte
or object hit ratios). For cache eviction decisions, the
items with the lowest combined H values (weighted
by each component algorithm's credit values) are the
first choices for eviction.

311

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 13:50:17 UTC from IEEE Xplore. Restrictions apply.

IfOlGOSlz.", IlGOSlz.{P""'''', IIGDSilo(F""'EII1C)'1 DGr>-GhOST I

0 •• 1-----------l:\
D.' +....c:m-------I':

BU-l00f(BU-l0M BU-l00M WC·l00f(we-HIM WC-looM

Figure 1: Average byte miss ratios.

The weighting of the policies uses a fixed number of
credits that are shared among the component policies.
This is similar to the weighting mechanism employed
by ACME [2], as it is also based on the share update
scheme [7J. This on-line update of credits ensures that
at any instant in time, we are most likely to perform at
least as well as the leader among the three algorithms.
When the best performing algorithm degrad�s in per­
formance, the redistribution of credits ensures that it
does not degrade the overall performance. As a matter
of fact, as we can observe in our results, we follow the
best performance of the three component algorithms,
and frequently exceed it.

3 Experimental Results
We conducted simulation-based experiments on

real-world traces to evaluate the GD-GhOST pol­
iey and its ability to exhibit performance similar to
the best policy for the selected performance metric.
Specifically we tested its ability to maximize hit ra­
tios and byte hit ratios. We will only present graphs
for the byte miss rates here due to space constraints.

In F igure 1 we give the average byte miss ratios for
different cache sizes of 100KB, 10MB and 100MB mea­
sured for both Boston University traces [6] and the
World Cup 98 traces [3]. These represent cache sizes
that are restricted, small and reasonable, respectively.
We see that for the byte miss ratios for the World
Cup traces, and a 10MB cache, GD-GhOST performs
almost twice as well as its best component algorithm.
This strongly indicates that the combined algorithm is
not only capable of matching the best performing pol­
iey, but can on occasion perform significantly better
than the best of its parts.

Figure 2 provides some insight as to how GD­
GhOST can self-tune towards a specific selected goal
and match the best component algorithm. The figure
shows the variation in credits over a selected time pe­
riod. This snapshot was chosen to illustrate how the
best algorithm (receiving the most credit) can vary.

Figure 2: Credit Changes.

4 Conclusions

..
.,..

The contribution of this paper is a novel ap­
proach to adaptivity that combines alternatives rather
than selecting one among alternatives. Using only
three, homogenous,. cache replacement algorithms,
GD-GhOST was able to provide a cache replacement
policy that requires no tuning or user-intervention be­
yond the initial selection of the performance criteria
to be optimized. Overall, at its worst observed per­
formance GD-GhOST was within approximately 1%
of the best policy's miss ratio, and at its best, GD­
GhOST reduced byte miss rates by well over 50%.

References
(11 M. Abrams, C. Standridge, G. Abdulla, S. Williams,

"Caching proxies: Limitations and Potentials," in
Pmc. of 4th IntI. WWW Conj., pp. 119-133, Dec 1995.

[2] I. Ari, A. Amer, R. Gramacy, E.L. Miller, S. Brandt,
D.D.E. Long, "Adaptive Caching using Multiple Ex­
perts," in Pmc. of the WDAS, pp. 143-157, Mar 2002.

[3] M. Arlitt and T. Jin, "1998 World Cup-
WebSite Access Logs Available at
http://www.a.cm.org/sigcomm/ita/" Aug 1998.

[4] P. Cao and S. Irani, "Cost aware WWW proxy caching
algorithms," in Pmc. of USENIX symposium on Inter·
net Technologies and Systems, pp. 193-206, Dec 1997.

[5] L. Cherkasova, "Improving WWW proxies perfor­
mance with Greedy-Dual-Size-Frequency caching pol­
icy," HP Technical Report, Palo Alto, CA, Nov 1998.

[6] C. A. Cunha, A. Bestavros, and M. E. Crovella, "Char-
acteristics of WWW Client Traces," Boston Univ.,
Dept. oj Computer Science, TR-95-010, Apr 1995.

[7] M. Herbster and M. K. Wannuth, "Tracking the best
expert," in Pmc. of the 12'th Inti. ConJ. on Machine
Learning, pp. 286--94, 1995.

312

[8] N. Megiddo and D. S. Modha, "ARC: a self-tuning, low
overhead replacement cache," in Pmc. oj FAST 2003,
pp. 115-130, Mar 2003.

[9J B. Williams, "Transparent web caching solutions," in
Pmc. of 3'rd Inti. WWWCaching Workshop, Jun 1998.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 13:50:17 UTC from IEEE Xplore. Restrictions apply.

