
Middleware Support for Multicast-based Data Dissemination:
A Working Reality�

Panos K. Chrysanthis Vincenzo Liberatore Kirk Pruhs
Dept. of Computer Science EECS Dept. of Computer Science

University of Pittsburgh Case Western Reserve University University of Pittsburgh
Pittsburgh, PA 15260 Cleveland, Ohio 44106 Pittsburgh, PA 15260

panos@cs.pitt.edu vxl11@po.cwru.edu kirk@cs.pitt.edu

Abstract

Multicasting is an effective method to guarantee scalability
of data transfer. Multicast applications range from the re-
lief of Internet hot spots to healthcare alert systems. Much
research has focused on isolated data management issues
that arise in a multicast environment, including our previ-
ous work on caching, scheduling, indexing, hybrid schemes,
and consistency maintenance. This paper discusses the in-
tegration of these research contributions and the transition
to a working software distribution that provides the middle-
ware support of a data management layer to applications.
Our middleware is flexible, can be shared across applica-
tions, and operates on top of existing and upcoming imple-
mentations of multicast protocols. The middleware benefits
distributed applications with a uniform, efficient, scalable,
and state-of-the-art support for critical data management
functionality.

1 Introduction

In a multicast environment, a single source sends data items,
which are then replicated within the network infrastructure
to reach a large client population. Therefore, multicast is an
effective method to guarantee scalability, reliable data dis-
semination, and timely content distribution. We believe that
a fundamental question in middleware technology is how to
support multicast environments. In this paper, we describe a
middleware platform that unifies multicast-push, multicast-
pull with multicast-push data dissemination, report on the
current implementation, discuss our preliminary evaluation
of this technology, and describe associated research issues.

A major objective is to transparently provide applications
with data management services such as caching, schedul-
ing, and consistency maintenance. In turn, those services
are enabled by an underlying multicast transport. The mid-

�This work has been supported in part under NSF grants ANI-0123929
and ANI-0123705.

dleware frees application developers from the details of the
underlying multicast transport and from the need of imple-
ment in each application a common set of data management
algorithms. Furthermore, the middleware unifies and ex-
tends state-of-the-art data management methods and algo-
rithms into one software distribution. Its flexible and ex-
tensible architecture is built from individual components
that can be selected or replaced depending on the under-
lying multicast transport or on the application needs. As
a result, established and novel techniques from data man-
agement will be more generally available to developers of
scalable applications in multicast environments.

Multicasting. Broadcasting and multicasting are the nat-
ural methods to propagate information in media such as
shared Ethernet [43], wireless links, including satellites [43]
and short-range wireless [43], and optical networks, rang-
ing from cable modems to high-throughput database sys-
tems [11]. In all those media, broadcasting is the primary
mode of operation for the physical layer [43]. Broadcasting
is used by several companies, including Hughes Networks
and PanAmSat, to perform content delivery and to support
Web browsing with satellites for home-based dishes or for
access providers.

In wired networks, multicasting is an effective method
to guarantee scalability of bulk data transfer. Multicasting
has applications ranging from the support of Content De-
livery Networks to the relief of Internet hot spots, such as
during the last national elections [47]. Millions of clients at-
tempted to access news sites during the evening of Election
Day, overwhelming these servers, and resulting in untimely
and unreliable data delivery. While the servers were con-
tacted by millions of clients, most clients were interested in
nearly the same data. In this scenario, a single server could
have served all such requests by multicasting the hot data
items to the interested clients. A substantial amount of re-
search has been devoted to the design and implementation
of multicast protocols in wired IP networks, including IP
multicast [18, 27], reliable multicast [26], and end-to-end

1

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:18:20 UTC from IEEE Xplore. Restrictions apply.

Client-side

Consistency

Reliable multicast

Application Layer

Consistency

Scheduling

Multicast
Pull

Indexing

Push
Scheduling

Multicast

Caching

Data Dissemination MiddlewareServer-side

Transport Adaptation Layer

IP Multicast End-to-End Multicast
Transport Layer

Document Selection

Selective
Tuning

Figure 1: Our middleware data dissemination architecture.

multicast [14]. Those approaches will almost surely result
in the diffusion of multicast in the Internet, and, in the case
of application level solutions, they can be efficiently imple-
mented regardless of the willingness and support of service
providers or of the backbone infrastructure.
Middleware for Broadcast Data Dissemination. Multi-
cast communication raises many data management prob-
lems that either do not arise in unicast communication, or
that obviously require different solutions than the standard
methods used in unicast settings. Some of the issues are:

Document selection. What is the appropriate dissemination
method for each document?

Scheduling. How frequently and in which order should
documents be multicast?

Consistency. How should the system support currency and
consistency for updated contents?

Cache Replacement. How to best manage client-side
caches?

Indexing. How to best use indexes to reduce client waiting
and tuning time?

We propose a middleware to efficiently address these is-
sues. The outline of our architecture is shown in Figure 1
along with its relationship with the application and trans-
port layers. The transport layer is any one of the proto-
cols that is available independently of the middleware, and
the objective of the transport adaptation layer is to enable
the middleware to interact with different types of multicast
transport.
Related Work. Other systems have addressed some of the
data dissemination issues demonstrated here. In [19], the
authors address the need for adaptive push-pull and the re-
sulting data consistency issues. The DBIS-Toolkit [6] in-
troduces a gateway for data delivery. DBIS differs from our

middleware in four core items. First, our focus is to support
multicast data transfers, whereas DBIS aims at the transla-
tion between different styles of data delivery (e.g., unicast
and multicast) in one overlay network. Second, our mid-
dleware focuses on the core components that are the foun-
dations for more complex system. Thus, the current mid-
dleware bridges the gap between networking research (e.g.,
the multicast transport layer) and broader data management
issues. Third, we emphasize the performance, reliability,
and security of each individual components by means of al-
gorithmic and experimental methods. For example, we can
prove analytically the optimality of several components and
we have demonstrated their effectiveness through extensive
simulations. Finally, we support a wider range of function-
ality, such as indexing and consistency.

Contents. The two motivating example applications of
our middleware are a scalable Web server and a healthcare
alert system. In the next section, we elaborate on them in
an integrated fashion. In Section 3, we discuss the middle-
ware building blocks. In Section 4, we discuss the transport
adaptation layer of our architecture. In Section 5, we outline
multicast push scheduling for layered environments.

2 Motivating Application: Healthcare Alert
System

In this section, we give a complete example of a scalable
application that can exploit the multicast middleware. It is
a healthcare alert system, called RODS1 (Real-time Out-
break and Disease Surveillance) that has been developed by
the Center for Biomedical Informatics at the University of
Pittsburgh [22, 56].

The RODS system is a public health surveillance sys-
tem deployed since 1999 in Western Pennsylvania and since
December 2001 in Utah for the Winter Olympic Games.
The core of RODS is the health-system-resident component
(HSRC) whose function is data merging, data regulariza-
tion, privacy protection, and communication with the re-
gional system. HSRC receives HL-7 ADT (admission, dis-
charge and transfer) messages from over 45 hospitals and
clinics within Utah State and Western Pennsylvania, oper-
ating under a trusted broker arrangement. These large data
volume of raw data (about ten thousands records per day)
are stored in a database and from there are disseminated for
further analysis.

Typically, users or applications request consolidated and
summarized information as in OLAP (On-line analytical
processing) business applications. For example, queries
often involve joins over several large tables to perform a
statistical analysis, e.g., computing daily percentage of pa-
tients with a particular prodrome (symptoms) in a region for

1RODS URL: www.health.pitt.edu/rods.

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:18:20 UTC from IEEE Xplore. Restrictions apply.

one month period. Also, currently RODS displays spatial-
temporal plots of patients presenting with seven key pro-
dromes (sympotms) through web interface.

RODS can use the multicast middleware to support the
collection and monitoring of data needed for the assess-
ment of disease outbreaks as well as the dissemination of
critical information to a large number of health officials and
other authorized personnel when outbreaks of diseases are
detected [39]2. Interestingly, RODS has the functionality
of a Subscription/Publisher server and exhibits all the re-
quirements of a highly scalable Web server as described in
the work of Almeroth et al. [5]. The objective of the Web
server application is to scale to a large user (client) pop-
ulation, and scalability will be accomplished by using the
multicast-based middleware.

In the middleware, the server can disseminate data by
choosing any combination of the following three schemes:
multicast push, multicast pull, and unicast pull. In multicast
push the server repeatedly sends information to the clients
without explicit client requests. (For example, television is
a classic multicast push system). Multicast push is an ideal
fit for asymmetric communication links, such as satellites
and base station methods, where there is little or no band-
width from the client to the server. For the same reason,
multicast push is also ideal to achieve maximal scalabil-
ity of Internet hot spots. Hence, generally multicast push
should be restricted to hot resources.

In multicast pull, the clients make explicit requests for
resources, and the server broadcasts the responses to all
members of the multicast group. If multiple clients re-
quest the same resource at approximately the same time,
the server may aggregate these requests, and only broadcast
the resource once. One would expect that this possibility
of aggregation would improve user perceived performance
for the same reason that proxy caches improve user per-
ceived performance, that is, it is common for different users
to make requests to the same resource. Multicast pull is a
good fit for “warm resources” for which repetitive multi-
cast push cannot be justified, while there is an advantage in
aggregating concurrent client requests [5].

Traditional unicast pull is reserved for cold documents.
The end-user should not perceive that Web resources are
downloaded with a variety of methods, as the browser and
the middleware shield the user from the details of the multi-
tier dissemination protocol.

In the RODS example as well as in a general Web server
application, the document selection unit will periodically
gather statistics on document popularity (in other applica-
tions, the notion of Web document is replaced by the con-
cept of an application data unit (ADU) [26]). Furthermore,
in the RODS system, the document selection will be influ-

2In this paper, we are not elaborating on any security aspects of the
system.

enced by epidemiological data. For example, during a win-
ter period when Influenza outbreaks typically occur, pro-
drome daily data on Viral, Respiratory, Diarrhea, Rash, En-
cephalitis are useful for detection of Influenza outbreaks.
Once statistics have been collected, the server partitions the
resources into hot, warm, and cold documents.

When a client wishes to request a Web document, it ei-
ther downloads it from a multicast group or it requests the
document explicitly. In the former case, the client needs
to find on which multicast address the server transmits hot
resources. Multicast address determination can be accom-
plished with a variety of schemes including explicit http
request followed by redirection to the appropriate multi-
cast address, hashing the URI to a multicast group [5],
using a well-known multicast address paired to the IP ad-
dress of the origin server in single-source multicast [27], or
application-level discovery in the case of end-to-end mul-
ticast. The server also broadcasts an index of sorted URIs
or URI digests which quickly allows the client to determine
whether the requested resource is in the hot broadcast set
[29, 36, 54, 3]. On the whole, the client determines the
multicast group, downloads the appropriate portions of the
index, and determines whether the resource is upcoming
along the cyclic broadcast.

If the request is not in the hot broadcast set, the client has
the option of leaving the multicast group (although is not
forced to do so), makes an explicit request to the server, and
simultaneously starts to listen to the warm multicast group
if one is available. If the page is cold, the requested re-
source is returned on the same connection. If the page is
warm, the clients waits on the warm multicast group until
the requested resource is transmitted [5]. The multicast pull
scheduling component resolves contention among client re-
quest for the use of the warm multicast channel and estab-
lishes the order in which pages are sent [20, 1, 50].

In multicast push, the server periodically broadcasts hot
resources to the clients. The server chunks hot resources
into nearly equal-size pages that fit into one datagram and
then cyclically sends them on the specified multicast group
along with index pages. The frequency and order in which
pages are broadcast is determined by the multicast push
scheduling component. Pages are then injected at a spec-
ified rate that is statically determined from measurements
of network characteristics [5]. Alternatively, different con-
nectivity can be accommodated with a variety of meth-
ods: the multicast can be replicated across multiple lay-
ers [12, 55], it can be supported by router-assisted conges-
tion control [55], or it can use application-level schemes in
end-to-end multicast [14]. Client applications can recover
from packet loss by listening to consecutive repetitions of
the broadcast [5] or pages can be encoded redundantly with
a variety of schemes that allow the message to be recon-
structed [12]. Upon receipt of the desired pages, the client

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:18:20 UTC from IEEE Xplore. Restrictions apply.

can buffer them to reconstruct the original resource and can
cache resources to satisfy future request [35, 40]. The set of
hot pages is cyclically multicast, and so received pages are
current in that they cannot be more than one cycle out-of-
date. Furthermore, certain types of consistency semantics
can be guaranteed by transmitting additional information
along with the control pages [49, 44].

3 Middleware Building Blocks

3.1 Multicast Pull Scheduling

In multicast pull, clients make explicit requests for re-
sources and the server multicasts its responses. If several
clients ask the same resource at approximately the same
time, the server can aggregate those requests and multi-
cast the corresponding resource only once. Multicast pull
is appropriate for “warm” documents that many, but not
most, clients are interested in. There are many reason-
able objective functions to measure the performance of a
server, but by far the mostly commonly studied measure
is average user perceived latency, or equivalently average
flow/response time, which measures how long the average
request waits to be satisfied. In traditional unicast pull dis-
semination it is well known that the algorithm Shortest Re-
maining Processing Time (SRPT) optimizes average user
perceived latency although current web servers use FIFO
out of fear of starving jobs. This may perhaps change as
it was recently shown in [41, 7] that all jobs, regardless of
length, should prefer SRPT to FIFO if the distribution of
lengths is heavy tailed, as is the case when job length is
proportional to Web resource size [15].

In multicast pull dissemination, it is not too difficult to
see that it is impossible for a server to construct online
a schedule that minimizes average user perceived latency.
The situation is trickier for the server in multicast pull
data dissemination than for unicast pull data dissemination,
since the server needs to balance the conflicting demands
of servicing shorter files, and of serving more popular files.
Even worse, it is shown in [21] that it is not even possible
for a server to construct a schedule with bounded relative er-
ror. However, in the input distributions for which it was to
be impossible to guarantee bounded relative error, the sys-
tem load is near peak capacity. This makes intuitive sense
as a server at near peak capacity has insufficient residual
processing power to recover from even small mistakes in
scheduling. In [31], it was suggested that one should seek
algorithms that are guaranteed to perform well if the load of
the server is not near peak capacity.

To date the only algorithm with a performance guar-
antee for low loads is Broadcast Equipoise [21]. Broad-
cast Equipoise broadcasts each file at a rate proportional
to the number of outstanding requests for the file. Broad-
cast Equipoise guarantees that the average user perceived

latency is at most a constant times optimal if the load on the
server is no more than ���.

Ideally what one would like is an algorithm that guaran-
tees good performance with loads up to ���. One difficulty
of obtaining such an algorithm is that the choice of the doc-
ument to broadcast depends not only on the obvious factors
of the size of the document and the number of requests for
the document, but also on the age of the requests. This in-
sight was made more formal in [32] where is was shown
that also broadcasting the most popular document could
produce arbitrarily bad schedules in the case that all doc-
uments are the same size; further this result holds for even
arbitrarily small loads. One possibility is a generalization
of the Longest Wait First (LWF), proposed in [20], that ex-
perimentally seems to perform well for unit sized files [4].
LWF maintains a counter for each data item that is the sum
over all unsatisfied requests for that page, of the elapsed
time since that request. The algorithm LWF then always
broadcasts the page with highest counter. LWF can be im-
plemented in logarithmic time per broadcast using the data
structure given in [33]. The generalization that we propose
is to divide the counter by the file size.

A tight mathematical analysis of Broadcast Equipoise
and LWF seems quite difficult. We are currently experi-
mentally evaluating these algorithms. At the same time, we
have looked into flexible scheduling schemes that exploit
the semantics of the requested documents to aggregate re-
quests that goes beyond the exact match of requests of the
current scheduling approaches which we accordingly called
strict [50]. The use of document semantics adds a new opti-
mization dimension to the request aggregation process that
allows for further multicast efficiency and scalability.

For example, in the context of RODS as well as a general
wireless OLAP environment, every requested document is a
summary table. An interesting property of summary tables
which we call derivation dependency, is that one summary
table can be derived from one or more summary tables. This
means that a table requested by a client may subsume the
table requested by another client. We proposed two new,
heuristic scheduling algorithms that use this derivation de-
pendency to both maximize the aggregated data sharing be-
tween clients and reduce the broadcast length compared to
the already existing techniques. The first algorithm, called
Summary Tables On-Demand Broadcast Scheduler STOBS
[50], is based on the RxW algorithm [1] and the second
one, called Subsumption-Based Scheduler (SBS) [51], is
based on the Longest Total Stretch First (LTSF) algorithm
[1]. Further, they differ on the used criterion for aggre-
gate requests. Otherwise, both STOBS and SBS are non-
preemptive and consider the varying sizes of the summary
tables. The effectiveness of the algorithms with respect to
access time, power consumption and fairness were evalu-
ated using simulation.

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:18:20 UTC from IEEE Xplore. Restrictions apply.

3.2 Multicast Indexing

In multicast data dissemination, users monitor the multi-
cast/broadcast channel and retrieve documents as they ar-
rive on the channel. This kind of access is sequential, as it is
in tape drives. On the other hand, the middleware combines
one multicast push channel and one multicast pull channel,
and so it must support effective tuning into multiple multi-
cast channels. To achieve effective tuning, the client needs
some form of directory information to be broadcasted along
with data/documents, making the broadcast self-descriptive.
This directory identifies the data items on the broadcast by
some key value, or URL, and gives the time step of the ac-
tual broadcast. Further, such a directory not only facilitates
effective search across multiple channels but it also supports
an energy efficient way to access data. The power consump-
tion is a key issue for both hand-held and mobile devices
given their dependency on small batteries, but also for all
other computer products given the negative effects of heat.
Heat adversely effects the reliability of the digital circuits
and increases costs for cooling especially in servers [53].
In order to access the desired data, a client has to be in active
mode, waiting for the data to appear on the multicast. New
architectures are capable of switching from active mode to
doze mode which requires much less energy.

In multicast push data dissemination, several broadcast
organizations have been proposed to encode a directory
structure. These include incorporating hashing in broad-
casts [30], using signature techniques [38] and broadcast-
ing index information along with data [29, 16, 17, 54]. Of
these, broadcast indexing is the simplest and most effective
in terms of space utilization. The efficiency of accessing
data on a multicast can be characterized by two parameters.

� Tuning Time: The amount of time spent by a user in
active mode (listening to channel) and

� Access Time: The total time that elapses from the mo-
ment a client requests data identified by ordering key,
to the time the client reads that data on channel.

Ideally, we would like to reduce both tuning time3 and
access time. However, it is generally not possible to simul-
taneously optimize both tuning time and access time. Op-
timizing the tuning time requires additional information to
be broadcast. On the other hand, the best access time is
achieved when only data are broadcast and without any in-
dexing. Clearly, this is the worst case for tuning time. In
this project, our goal is to develop indexing schemes which
provide the best balance between tuning and access time.

As part of our preliminary work, we have developed
a new indexing scheme, called Constant-size I-node Dis-
tributed Indexing (CI) [3], that performs much better with

3Reducing tuning time is particularly important in power-sensitive en-
vironments such those with mobile and wireless clients.

respect to tuning time and access time for broadcast sizes
in practical applications. This new scheme minimizes the
amount of coding required for constructing an index in or-
der to correctly locate the required data on broadcast, thus
decreasing the size of the index and consequently access
time as well. Our detailed simulation results indicate that
CI, which is a variant of the previously best performing Dis-
tributed Indexing (DI) [29, 54], outperforms it for broadcast
sizes of 12,000 or fewer data items, reducing access time
up to 25%, tuning time by 15% and saving energy up to
40%. Our experimental results on 1 to 5 channels also re-
veal that there is a tradeoff between the various existing in-
dexing schemes in terms of tuning and access time and that
the performance of different schemes is dependent on the
size of the broadcast [2].

Given that CI and DI are currently the best performing
indexing schemes, we plan to initially implement these two
schemes as part of the middleware. Besides optimizing ex-
isting schemes, one of our research goals would be to de-
velop a mixed-adaptive indexing scheme that would be es-
sentially optimal over all broadcast sizes.

3.3 Data Consistency and Currency

Presently, consistency and currency in both unicast and
multicast data dissemination are similar to local cache con-
sistency which ensures that only the most recent committed
value of an item is stored (disseminated). As multicast-
based data dissemination continues to evolve, more and
more sophisticated client applications will require reading
current and consistent data despite updates at the server. For
this reason, several protocols have been recently proposed,
including some of our own [49, 9, 45, 44, 37], with the goal
of achieving consistency and currency in broadcast environ-
ments beyond local cache consistency.

All these protocols assume that the server is stateless and
does not therefore maintain any client-specific control in-
formation. To get semantic and temporal related informa-
tion, clients do not contact the server directly, instead con-
currency control information, such as invalidation reports,
is broadcast along with the data. This is in line with the
multicast push paradigm to enhance the server scalability
to millions of clients. When the scheduling algorithm se-
lects a page to be multicast, there can be in general different
versions of that page that can be disseminated. The two
obvious choices are

� Immediate-value broadcast: The value that is placed
on the broadcast channel at time � for an item � is the
most recent value of � (that is the value of � produced
by all transactions committed at the server by �).

� Periodic-update broadcast: Updates at the server are
not reflected on the broadcast content immediately, but
at the beginning of intervals called broadcast currency

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:18:20 UTC from IEEE Xplore. Restrictions apply.

intervals or bc-intervals for short. In particular, the
value of item � that the server places on the broadcast
at time � is the value of � produced by all transactions
committed at the server by the beginning of the current
bc-interval.

In the case of periodic-update broadcast, often the bc-
interval is selected to coincide with the broadcast cycle, so
that the value broadcast for each item during the cycle is the
value of the item at the server at the beginning of the cycle.
In this case, clients reading all their data, for example, com-
ponents of a complex document, within a bc-interval are
ensured to be both consistent and current with respect to the
beginning of the broadcast cycle. However, different com-
ponents that are read from different broadcast cycles might
not be mutually consistent even if current, and hence when
they are combined by the clients, the resulting document
may be one that had never existed in the server. The same
problem exists also in the case of immediate-value broad-
cast – consider immediate-value broadcast as a periodic-
update broadcast with a bc-interval of zero duration.

Our current investigation is directed towards the develop-
ment of a general framework for correctness in broadcast-
based data dissemination environments [46]. As part of our
preliminary results, we have introduced the notion of the
currency interval of an item in the readset of a transaction as
the time interval during which the value of the item is valid.
Based on the currency intervals of the items in the readset,
we developed the notion of temporal spread of the read-
set and two notions of currency (snapshot and oldest-value)
through which we characterize the temporal coherency of
a transaction. Further, in order to better combine currency
and consistency notions, we have developed a taxonomy of
the existing consistency guarantees [10, 24, 57] and show
that there are three versions for each definition of consis-
tency. The first (Ci) is the strongest one and requires seri-
alizability of all read-only client transactions with server
transactions. This means that there is a global serializa-
tion order including all read-only client transactions and (a
subset of) server transactions. The second version (Ci-S)
requires serializability of some subset of client read-only
transactions with the server transactions. This subset may
for example consist of all transactions at a given client site.
The last version (Ci-I) requires serializability of each read-
only client transaction individually with the server transac-
tions.

In the initial version of the middleware, we plan to imple-
ment three currency and consistency criteria: the traditional
local cache consistency using invalidation reports, update
consistency [49] and multiversion update consistency [44].
Our general objective is to investigate efficient ways to dis-
seminate any control information. For example, consistency
information can utilize the broadcast indexing structures. It
is also our plan to expand our theoretical framework to in-

clude the case of a cache being maintained at the clients.
Our goal is to develop a model that will provide the neces-
sary tools for arguing about the temporal and semantic co-
herency provided by the various protocols to client transac-
tions. In addition, it will provide the basis for new protocols
to be advanced.

4 Transport Adaptation Layer

Several underlying multicast transport protocols are possi-
ble, including basic IP multicast [18], single-source multi-
cast [27], reliable multicast [26], and end-to-end multicast
[14]. Different multicast protocols often present different
API’s and different capabilities. It is unlikely that a single
multicast mechanism would be able to satisfy the require-
ment of all applications [26], and so the middleware must be
able to interact with various underlying multicast transport
protocols. The objective of the Transport Adaptation Layer
(TAL) is to enable the middleware to interact with different
types of multicast transport within a uniform interface. As
a result, the TAL allows us to write the middleware with
a unique multicast API while retaining the flexibility as to
the exact multicast transport. The TAL allows applications
to select the most appropriate transport layer and get the
benefits of a common multicast middleware. The Java Re-
liable Multicast (JRM) Protocol [48] is an existing imple-
mentation that contains a TAL-like interface, the Multicast
Transport API (MTAPI). The MTAPI supports multiple un-
derlying multicast protocols and allows for new protocols
to be seamlessly added.

An applications follows the following steps. Before acti-
vating the middleware, the application will call the channel
management API (e.g., in JRM) to:

� Choose the most appropriate multicast transport among
those that are available.

� Interface with transport layer functions that resolve
channel management issues, including the creation,
configuration, destruction, and, possibly, address allo-
cation, of multicast channels upon requests.

� Interface with transport layer functions that support ses-
sion management, including session advertising, dis-
covery, join, and event notification.

The application can then invoke a security API (as in JRM)
to establish data confidentiality and integrity as well as mes-
sage, sender, and receiver authentication. At this stage,
the application has a properly configured multicast channel,
which will be passed to the data management middleware
along with a description of the target data set. Additionally,
if the application also desires a multicast pull channel for
the warm pages, it creates and configures a second multi-
cast channel through analogous invocations of the channel

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:18:20 UTC from IEEE Xplore. Restrictions apply.

management and security API’s and passes it to the middle-
ware. The middleware uses the TAL (e.g., MTAPI) to:

� Send and receive data from multicast groups.

� Obtain aggregate information from clients if the multi-
cast transport layer supports cumulative feedback from
the clients.

The TAL is a thin layer that does not implement features
that are missing or are inappropriate for the underlying
transport. The purpose of the TAL is to provide a common
interface to existing protocols and not to replace features
that are not implemented in the given protocols. For exam-
ple, the TAL does not provide any security, but it simply
interfaces with existing security modules in the underlying
multicast layer.

While the transport adaptation layer aims at supporting
diverse transport modules, the nature of the middleware and
of the target applications that will run on it impose certain
constraints on the types of transport layers that can be sup-
ported. The most important one is that our middleware tar-
gets applications that need to scale to a very large receiver
group. Consequently, the transport must avoid the prob-
lem of ACK/NACK implosion, through, for example, ACK
aggregation [26] or NACK suppression [23, 25]. Alterna-
tively, a reliable multicast transport can adopt open-loop
reliability solutions such as cyclical broadcast [5] or error-
correcting codes [12]; open-loop solution are an especially
good fit for asymmetric communication environments such
as satellites or heavily loaded servers. On the other hand,
the middleware does not necessarily need a multicast trans-
port that provides Quality-of-Service guarantees, that ac-
commodates multiple interacting senders, that supports in-
termittent data flows, nor that provides secure delivery. Re-
ceivers can join the multicast at different start times, but will
not receive copies of data sent before their start time.

Finally, it should be noted that our goal is not to restrict a
given application to a specific multicast protocol. An addi-
tional functionality of TAL is to integrate various multicast
packages available so that clients supporting different mul-
ticast protocols can communicate with each other through
the middleware. Currently, two packages are being consid-
ered - JRMS that supports the TRAM and LRMP protocols
and Your Own Internet Distribution (YOID).

5 Scheduling for Layered Multicast

While the previous sections have focused on each of the in-
dividual building blocks in isolation, a second type of issues
arises from the interaction of several components. Such in-
teraction should be carefully tuned to achieve optimal per-
formance. In the past, however, multicast data management
components have been mostly designed, analyzed, and em-
pirically evaluated in isolation, with the exception of [40]

that addresses the interaction of caching and scheduling and
of [28] that focuses on wireless environments. We feel that
several additional research issues arise from the interaction
of the middleware components.

In this section, we will focus on one such issue, namely
the interaction between multicast push scheduling and lay-
ered multicast transport [42]. The purpose of layered mul-
ticast is to provide a mechanism for receivers to adapt their
data reception rate to available bandwidth. Therefore, lay-
ered multicast shares common goals with congestion con-
trol, with the significant difference that multicast algorithms
should scale to a large number of receivers. In a layered
multicast scheme, data is multicast simultaneously on � dif-
ferent channels (layers). The transmission rate �� at layer �
is �� � �� � � and �� � ����� for � � � � � (basi-
cally, the rates increase by a factor of 2 from one layer to
the next). A receiver can subscribe to a prefix of layers
�� �� � � � � �, thereby selecting to receive data at a rate which
is at least 1/2 of the bandwidth available from the source to
the receiver. Layered multicast leads to a different version
of the multicast push scheduling problem where the con-
tents are scheduled on multiple channels and the bandwidth
on each channel is given by the rates ��. Unlike previous
multichannel models (e.g., [8]), all contents are multicast
on layer 0 (to guarantee that all receivers can eventually get
all the contents) and receivers do not necessarily listen to all
channels. Because of these added restrictions, it can easily
be shown that the previously known lower-bounds on the
average waiting time hold also for the layered multicast set-
ting. Furthermore, previous algorithms for the multichan-
nel problem can be made to run within one layer, which,
in conjunction with the previous lower bound, proves that
every �-approximation algorithm for the multichannel prob-
lem becomes a ��-approximation algorithm for the layered
multicast problem. In particular, the algorithm of [34] gives
a �� � ��-approximation algorithm that runs in polynomial
time for any fixed � � � [13]. The main open questions in
this area are to find better approximation algorithms and to
empirically verify their performance.

6 Conclusion

The paper describes software components and research is-
sues in the area of middleware support for data dissemina-
tion over multicast channels. We reviewed the overall sys-
tem design, and the current work on multicast pull schedul-
ing, indexing, data consistency, currency, and scheduling
for layered multicast channels. We have developed a num-
ber of new heuristic scheduling algorithms for selecting the
data items to be broadcast at a given point in time and show
using simulation that the new methods outperform existing
ones.

We have also identified new ways to organize data on a

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:18:20 UTC from IEEE Xplore. Restrictions apply.

broadcast and proposed appropriate caching techniques that
ameliorate the negative effects due to any incompatibilities
between a broadcast organization and a client data access
behavior [52]. Due to space limitation, we have not elabo-
rated on these here.

Several components of our proposed middleware have
been implemented (multicast push scheduling, caching, and
transport adaptation). These components are currently used
to facilitate the development of a prototype application
based on the RODS system. Our goal is to evaluate the
effectiveness of our middleware in supporting the dissem-
ination of critical information when outbreaks of diseases
are detected.

The goals of this project stem from our long-term vision
to provide fast and reliable information access to the
masses, taking into account the individual user’s specific
needs. Every attempt is being made to develop theoret-
ical frameworks and then transfer them into pragmatic
environments so that their impact is far-reaching in the
commercial as well as in the public health and homeland
security sectors.

Acknowledgments: This work is a collaborative research which
was benefited from the contribution of our students: Q. Cai, W. Li
and W. Zhang of CWRU, and J. Beaver, M. Sharaf, V. Penkrot, S.
Roychowdhury and S. Vinchurkar of Pitt.

References
[1] S. Acharya and S. Muthukrishnan. Scheduling on-demand broadcasts: New metrics and algorithms. In Proc. of

Fourth Annual ACM/IEEE International Conference on Mobile Computing and Networking, 1998.

[2] R. Agrawal and P. K. Chrysanthis. Accessing broadcast data on multiple channels in mobile environments more
efficiently. Technical Report TR-01-05, University of Pittsburgh, Feb. 2001.

[3] R. Agrawal and P. K. Chrysanthis. Efficient data dissemination to mobile clients in e-commerce applications.
In Proc. of the Third IEEE Int’l Workshop on Electronic Commerce and Web-based Information Systems, June
2001.

[4] D. Aksoy and M. Franklin. RxW: A scheduling approach for large-scale on-demand data broadcast. In Proc.
of the Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM
1998), 1998.

[5] K. C. Almeroth, M. H. Ammar, and Z. Fei. Scalable delivery of Web pages using cyclic best-effort (UDP)
multicast. In Proc. of the Seventeenth Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM 1998), 1998.

[6] M. Altinel, D. Aksoy, T. Baby, M. J. Franklin, W. Shapiro, and S. B. Zdonik. Dbis-toolkit: Adaptable middle-
ware for large scale data delivery. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, SIGMOD 1999,
Proceedings ACM SIGMOD International Conference on Management of Data, June 1-3, 1999, Philadephia,
Pennsylvania, USA, pages 544–546. ACM Press, 1999.

[7] N. Bansal and M. Harchol-Balter. Analysis of srpt scheduling: Investigating unfairness. In Sigmetrics, 2001.

[8] A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber. Minimizing service and operation costs of periodic scheduling.
In Proc. of the Ninth ACM-SIAM Symposium on Discrete Algorithms, pages 11–20, 1998.

[9] D. Barbará. Certification reports: Supporting transactions in wireless systems. In Proc. of the IEEE International
Conference on Distributed Computing Systems, June 1997.

[10] P. M. Bober and M. J. Carey. Multiversion query locking. In Proc. of the 1992 SIGMOD Conference, pages
497–510, May 1992.

[11] T. G. Bowen, G. Gopal, G. Herman, T. Hickey, K. C. Lee, W. H. Mansfield, J. Raitz, and A. Weinrib. The
Datacycle architecture. Communications of the ACM, 35(12):71–81, Dec. 1992.

[12] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable distribution of
bulk data. In Proc. Sigcomm, 1998.

[13] Q. Cai, W. Li, W. Zhang, and V. Liberatore. Dissemination scheduling in layered multicast environments. (In
preparation).

[14] Y. Chu, S. G. Rao, and H. Zhang. A case for end system multicast. In Proc. ACM SIGMETRICS ’2000, pages
1–12, 2000.

[15] H. Crovella and A. Bestavros. Self-similarity in world wide web traffic: Evidence and possible causes.
IEEE/ACM Transactions on Networking, 5(6):835 – 846, 1997.

[16] A. Datta, A. Celik, J. Kim, D. VanderMeer, and V. Kumar. Adaptive Broadcast Protocols to Support Efficient
and Energy Conserving Retrieval from Databases in Mobile Computing Environments. In Proc. of the IEEE Int’l
Conference on Data Engineering, pages 124–133, Mar. 1997.

[17] A. Datta, D. E. VanderMeer, A. Celik, and V. Kumar. Broadcast protocols to support efficient retrieval from
databases by mobile users. ACM TODS, 24(1), 1999.

[18] S. Deering. Multicast routing in internetworks and extended lans. In Proc. Sigcomm, pages 55–64, 1988.

[19] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy. Dissemination of dynamic data. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, page 599. ACM Press,
2001.

[20] H. Dykeman, M. Ammar, and J. Wong. Scheduling algorithms for videotext under broadcast delivery. In Proc.
of the IEEE International Conference on Communications, 1986.

[21] J. E. and K. Pruhs. Broadcast scheduling: When fairness is fine. In ACM/SIAM SODA, 2002.

[22] M. W. et al. The emerging science of very early detection of disease outbreaks. Journal of Public Health
Management Practice, 7(6):50–58, 2001.

[23] S. Floyd, V. Jacobson, and S. McCanne. A reliable multicast framework for light-weight sessions and application
level framing. In Proc ACM SIGCOMM, pages 342–356, 1995.

[24] H. Garcia-Molina and G. Wiederhold. Read-Only Transactions in a Distributed Database. ACM TODS, 7(2):209–
234, 1982.

[25] M. Handley and J. Crowcroft. Network text editor (nte) a scalable shared text editor for mbone. In Proc ACM
SIGCOMM, pages 197–208, 1997.

[26] M. Handley, S. Floyd, B. Whetten, R. Kermode, L. Vicisano, and M. Luby. The reliable multicast design space
for bulk data transfer. RFC 2887, 2000.

[27] H. W. Holbrook and D. R. Cheriton. IP multicast channels: EXPRESS support for large-scale single-source
applications. In Proc. Sigcomm, 1999.

[28] Q. Hu, W. Lee, and D. L. Lee. Performance evaluation of a wireless hierarchical data dissemination system. In
Proc. MobiCom, 1999.

[29] T. Imielinski, S. Viswanathan, and B. Badrinath. Energy efficient indexing on air. In Proc. of the SIGMOD
Conference, pages 25–36, 1994.

[30] T. Imielinski, S. Viswanathan, and B. Badrinath. Power efficient filtering of data on air. In Proc. of the Int’l
Conference on Extending Database Technology, 1994.

[31] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the ACM, 47(4):617–643,
2000.

[32] B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai. Scheduling broadcasts in wireless networks. In European
Symposium on Algorithms (ESA), 2000.

[33] H. Kaplan, R. Tarjan, and K. Tsiotsiouliklis. Faster kinetic heaps and their use in broadcast scheduling. In Proc.
of the ACM/SIAM Symposium on Discrete Algorithms, 2001.

[34] C. Kenyon, N. Schabanel, and N. Young. Polynomial-time approximation scheme for data broadcast. In Proc.
of the Thirtisecond ACM Symposium on the Theory of Computing, 2000.

[35] S. Khanna and V. Liberatore. On broadcast disk paging. SIAM Journal on Computing, 29(5):1683–1702, 2000.

[36] S. Khanna and S. Zhou. On indexed data broadcast. In Proc. of the Thirtieth ACM Symposium on the Theory of
Computing, pages 463–472, 1998.

[37] V. C. S. Lee, S. H. Son, , and K. Lam. On the performance of transaction processing in broadcast environments.
In Proc. of the Int’l Conference on Mobile Data Access (MDA’99), Jan. 1999.

[38] W. Lee and D. L. Lee. Signature caching techniques for information filtering in mobile en vironments. Wireless
Networks, pages 57–67, 1999.

[39] W. Li, V. Penkrot, S. Roychowdhury, W. Zhang, P. K. Chrysanthis, V. Liberatore, and K. Pruhs. An optimized
multicast-based data dissemination middleware: A demonstration. In Proceeding of the 19th International Con-
ference on Data Engineering (ICDE 2003), 2003.

[40] V. Liberatore. Caching and scheduling for broadcast disk systems. In Proc. of the 2nd Workshop on Algorithm
Engineering and Experiments (ALENEX 00), pages 15–28, 2000.

[41] H.-B. M., N. Bansal, B. Schroeder, and M. Agrawa. Implementation of srpt scheduling in web servers. Technical
report, CMU, 2001. Submitted to Sigcom 2001.

[42] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven layered multicast. In Proc. ACM SIGCOMM, pages
117–130, 1996.

[43] L. L. Peterson and B. S. Davie. Computer Networks. Morgan Kaufmann, 2000.

[44] E. Pitoura and P. K. Chrysanthis. Exploiting versions for handling updates in broadcast disks. In Proc. of the
25th Int’l Conference on Very Large Data Bases, pages 114–125, Sept. 1999.

[45] E. Pitoura and P. K. Chrysanthis. Scalable processing of read-only transactions in broadcast push. In Proc. of
the 19th IEEE Int’l Conference on Distributed Computing Systems, pages 432–441, June 1999.

[46] E. Pitoura, P. K. Chrysanthis, and K. Ramamritham. Characterizing the temporal and semantic coherency of
broadcast-based data dissemination. In Proc. of the Int’l Conference on Database Theory, Jan. 2003.

[47] A. P. Release. CNN.com uses Akamai’s services on election day, serves record-breaking traffic, 2000.

[48] P. Rosenzweig, M. Kadansky, and S. Hanna. The Java reliable multicast service: A reliable multicast library.
Technical Report SMLI TR-98-68, Sun Microsystems, 1998.

[49] J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran, and K. Ramamritham. Efficient concurrency control
for broadcast environments. In ACM SIGMOD International Conference on Management of Data, 1999.

[50] M. A. Sharaf and P. K. Chrysanthis. Facilitating mobile decision making. In Proc. of the 2nd ACM Mobicom
International Workshop on Mobile Commerce, Sept. 2002.

[51] M. A. Sharaf and P. K. Chrysanthis. Semantic-based Delivery of OLAP Summary Tables in Wireless Environ-
ments. Nov. 2002.

[52] O. Shigiltchoff, P. K. Chrysanthis, and E. Pitoura. Multiversion data broadcast organizations. In Proc. of the 6th
East-European Conference on Advances in Databases and Information Systems, pages 135–148, Sept. 2002.

[53] M. T. Power: A first class design constraint. Computer, 34(4):52–57, Apr. 2001.

[54] S. V. T. Imielinski and B. Badrinath. Data on air: Organization and access. IEEE Transactions on Knowledge
and Data Engineering, 9(3):353–372, 1997.

[55] L. Vicisano, L. Rizzo, and J. Crowcroft. TCP-like congestion control for layered multicast data transfer. In Proc.
of the Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM
1998), 1998.

[56] M. Wagner, J. Espino, F.-C. Tsui, T. Wilson, T. Tsai, L. Harrison, and W. Pasculle. The Role of Clinical Event
Monitors in Public Health Survillance. Journal of the American Medical Informatics Association, 2002.

[57] W. E. Weihl. Distributed Version Management for Read-Only Actions. ACM Transactions on Software Engi-
neering, 13(1):56–64, 1987.

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:18:20 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

