Efficient Dissemination of Aggregate Data over the
Wireless Web °

Mohamed A. Sharaf
University of Pittsburgh
msharaf@cs.pitt.edu

Panos K. Chrysanthis
University of Pittsburgh
panos@cs.pitt.edu

ABSTRACT

The proliferation of wireless technologies along with the
large volume of data available online are forcing us to re-
think existing data dissemination techniques for data over
the Web, and in particular for aggregate data. In addition to
scalability and response time, data delivery to mobile clients
with wireless Web connectivity must also consider energy
consumption. In this work, we present a hybrid schedul-
ing algorithm (DV-ES) for broadcast-based data delivery of
aggregate data over the wireless Web. Our algorithm effi-
ciently "packs” aggregate data for broadcast delivery and
utilizes view subsumption at the mobile client, which allow
for faster response times and lower energy consumption.

1. INTRODUCTION

Undoubtedly, the Web has brought massive amounts of
information to everyone’s fingertips, changing forever the
way we learn the news, perform research, do business, etc..
The proliferation of wireless technologies, combined with the
emergence of web services standards, will enable a new class
of applications that empower mobile users to access great
amounts of data in a seamless and efficient manner. We col-
lectively refer to such infrastructure as the “wireless Web”.

There are many motivating applications for the wireless
Web. In this work, we are focusing on applications that
utilize aggregate, summarized data. Mobile decision mak-
ing is one such application, in which executives have access
to time-sensitive, business-critical data from their mobile,
hand-held devices. Scientists on the field would also rely on
similar wireless Web technologies in order to access historic
data for their research or to be able to retrieve summarized
sensor measurements. We expect that the ease of deploy-
ment of wireless Web technologies will also change existing

*This work is supported in part by NSF award ANI-0123705 and in part
by the DoD-Army Research Office under Award No. DAAD19-01-1-0494.
Prepared through collaborative participation in the Communications and
Networks Consortium sponsored by the U. S. Army Research Laboratory
under the Collaborative Technology Alliance Program, Cooperative Agree-
ment DAAD19-01-2-0011. The U. S. Government is authorized to repro-
duce and distribute reprints for Government purposes notwithstanding any
copyright notation thereon.

Copyright is held by the author/owner.
International Workshop on the Web and Databases (WebDB).
June 12-13, 2003, San Diego, California.

Yannis Sismanis
University of Maryland
isis@cs.umd.edu

Alexandros Labrinidis
University of Pittsburgh
labrinid@cs.pitt.edu

Nick Roussopoulos
University of Maryland
nick@cs.umd.edu

applications (currently running on stationary, wired envi-
ronments) to take advantage of the mobility it provides.

The ease of deployment and the high mobility of the wire-
less Web users will provide new opportunities but also bring
forth limitations. On the one hand, using the wireless data
communication medium allows the use of broadcast/multicast
schemes which have better scalability than traditional uni-
cast communication in disseminating data. On the other
hand, being mobile poses energy consumption considera-
tions in addition to the traditional response time improve-
ment goals.

In this paper, we are addressing the issue of time and
energy efficient delivery of aggregate data to mobile clients
over the wireless Web. In wireless and mobile networks,
broadcasting is the primary mode of operation for the phys-
ical layer. This means that if multiple clients request the
same data at approximately the same time, the server may
aggregate these requests, and only broadcast the data once.
In this way, the low bandwidth of wireless link is better uti-
lized, clearly improving user perceived performance. Several
scheduling algorithms have been proposed that attempt to
achieve maximum aggregation of requests [1, 3, 11, 2, 10].

In a decision making environment, sets of facts are ana-
lyzed along multiple dimensions. This led to the develop-
ment of the multidimensional data model that represents a
set of facts in a multidimensional space in a way that facil-
itates the generation of aggregate data. In this model, data
is typically stored using a star schema. The star schema
consists of a single fact table storing the measures of inter-
est (e.g., sales, or revenue) and a table for each dimension
(e.g., supplier, product, customer, time or region).

Decision making queries typically operate on aggregate
data (i.e. summarized, consolidated data), derived from fact
tables. The needed data can be derived using the data cube
operator [4]. The data cube operator is basically the union
of all possible Group-By operators applied on the fact table.
A data cube for a schema with N dimensional attributes,
will have 2% possible views. Given that the data cube is
an expensive operator, often views are pre-computed and
stored at the server as materialized views. Basically, a view
is an aggregation query, where the dimensions for analysis
are the Group-By attributes and the measures of interest
are the aggregation attributes.

In the case of queries to aggregate data, there is an in-
teresting property which may exist between two queries: a

set of aggregate data V' requested by a client may be used
to derive the set of aggregate data V' requested by another
client. This happens when V¢ corresponds to a detailed ver-
sion of V¢, which is more abstract. In such a case, V¢ has
a derivation dependency on V¢, and V¢ subsumes V.

In earlier work [7, 8], we have exploited the above sub-
sumption property by considering aggregate data as views,
to increase sharing among clients and go beyond the exact
matching of requests, thus allowing for further reduction in
access time and power consumption. In this paper, we inves-
tigate another technique which also embodies the subsump-
tion property to reduce the size of the broadcast. Specif-
ically, we utilize the Dwarf technology to compress a view
and all its subordinate views in order to achieve aggregation
of multiple requests. Further, we combine the Dwarf-based
scheme with the View-based aggregation to achieve further
broadcast efficiency and scalability.

The rest of this paper is organized as follows. In the next
section, we introduce a model to support aggregate data
dissemination over the wireless Web. Overviews of the re-
lated work on dwarf and subsumption based scheduling are
presented in Sections 3 and 4, respectively. In Section 5,
we present DV-ES, our hybrid on-demand scheduling algo-
rithm. Our simulation testbed and experiments are pre-
sented in Sections 6.

2. SYSTEM ARCHITECTURE

Our assumed architecture is based on broadcast pull. The
Web server is responsible for maintaining and disseminating
the aggregate data. A client sends a request for aggregate
data on the uplink channel and then listens to the downlink
channel for a response. A client can be in one of two modes,
either in active mode, tuning and listening to the broadcast,
or in doze mode, where the client is idle waiting for the
response, with the receiver switched off [5].

A client request G is characterized by the set of its Group-
By attributes A and measure attributes M. Hence, we rep-
resent a request as G*™ and the corresponding view as
VAM - Without loss of generality, in this paper we are as-
suming only one measure attribute, hence we can drop the
M part from the definition and use V4 to fully describe a
view. Under this definition, a view VA! subsumes view VA2,
if A2 C Al. In this case, V42 is dependent on VA, We de-
note the number of dimensional attributes in the set A as
| A| and the size of view V* in bytes as | V4.

The smallest logical unit of a broadcast is called a packet
or bucket. A broadcast view is segmented into equal sized
packets, where the first one is a descriptor packet. Every
packet has a header, specifying whether it is data or de-
scriptor packet, the offset (time step) to the beginning of the
next descriptor packet, and the offset of the packet from the
beginning of its descriptor packets. The descriptor packet
contains a view descriptor which semantically identifies the
aggregation dimensions, the number of attribute values or
tuples in the view and the number of data packets accom-
modating that view.

We use bit encoding to represent both the semantics of
a client request and the descriptor packet identifier. The
representation is a string of bits; its length is equal to the
number of the complete schema dimensions and each bit
position corresponds to one of the dimensions a1, as,...,an.
If view V* has dimension a, (ae € A), then the bit at
position z is set to 1, otherwise it is a zero.

Sequence of
/ Descriptor data packets
—— e, B ——

100 G(Supp) 111 G(Supp, Prod, Cust) ‘ }

Doze Active Active

Active
I

Figure 1: A Client Access to Broadcast

After a client submits a request for view VF on the uplink
channel, it follows a three-phase access protocol: (1) initial
probe; (2) semantic matching; and (3) view retrieval.

In the initial probe phase, the client tunes to the downlink
channel and uses the nearest packet header to locate the
next descriptor packet. The semantic matching phase starts
when the client finds the first descriptor packet, say for view
VB, In this phase, the client will “detect” whether view
VP satisfies its request exactly or whether the answer can
instead be “inferred” from view V2.

Depending on the matching result and the scheduling al-
gorithm used (as we will see below), the client will either
switch to the final retrieval phase or it will stay in the
matching phase. In the former, the client stays in active
mode tuning to the next sequence of data packets to read
(download) view VZ. In the latter case, it will switch to
doze mode reducing power consumption. Using the offset in
the packet header, the client wakes up just before the next
opportunity to read the next descriptor packet in the broad-
cast, after which, the semantic matching process is repeated.
The access protocol is shown in Figure 1.

2.1 Performance Metrics

The performance of any scheduler in a wireless environ-
ment can be expressed in terms of:

o Access Time: It is the user perceived latency from
the time a request is posed to the time it gets the
response. Its two components are the wait teme and
tune time.

e Tune Time: It is the time spent by the client listening
to the downlink channel either reading a descriptor
packet or data packets containing the requested view.
During tuning, the client is in active mode.

e Wait Time: The total time a client spends waiting
between descriptor packets until it finds a matching
one. A client is in doze mode during the wait time.

In active mode, a client device consumes energy that is
orders of magnitude higher than in doze mode. For this
reason, tune time has been traditionally used to evaluate
the power consumption of a system in a mobile environment.
However, the energy dissipated in doze mode becomes more
significant when the client has to wait for a long time until
its request is satisfied. Hence, in this paper we will adopt a
weighted energy consumption cost model that includes the
active and doze factors.

3. DWARF TECHNOLOGY

The Dwarf Structure [9] is a highly compressed structure
for computing, storing and querying data cubes. It effi-
ciently addresses both the storage space problem and the
computation cost problem by factoring out prefix and suf-
fix redundancies. FEach redundancy is identified prior to
its computation which results in significant computational

savings during creation. To help clarify the nature of the
redundancies let us consider a cube with three dimensions
a, b and c.

Prefiz redundancy occurs when two Group-Bys share a
common prefix (like Group-Bys abc and ab). For exam-
ple, in the fact table shown in Table 1, store S1 appears
a total of seven times in the corresponding cube and more
specifically in the Group-Bys: (S1,C2, P2), (S1,C3, P1),
(51, 02), {S1,C3), {51, P1}, {S1, P2} and {S1). The same
happens with prefixes of size greater than one. This kind
of prefix redundancy is factored out in the Dwarf Structure
by storing each unique prefix just once. Dense areas of the
cube benefit more by eliminating prefix redundancies, since
there is no need to repeat the same values of the dimensions
over all possible Group-Bys. It has been shown that for very
dense cubes the corresponding dwarf is much less than the
fact table.

Store | Customer | Product | Price
S1 C2 P2 $70
S1 C3 P1 $40
S2 C1 P1 $90
S2 C1 P2 $50

Table 1: Fact Table for cube Sales

Suffiz redundancy occurs similarly when two Group-Bys
share a common suffix (like Group-Bys abc and bc). For
example, for the fact table in Table 1, since customer C'1
shops only from store S2 then, for any value z of dimen-
sion Product, the Group-Bys {52, C'1, 2} and {C1, z} always
have the same aggregate values. This happens because the
{C1, z) Group-By aggregates all the tuples of the fact table
with customer C'1 for any combination of stores. In this
case however there is only one store S2 and the aggrega-
tion degenerates to the aggregation already performed for
the Group-By (52, C1,z). Such redundancies are very of-
ten in sparse datasets and even more apparent in cases of
correlated dimension values — which are very common in real
datasets. Suffix redundancies are factored out in the Dwarf
Structure by coalescing the space of the corresponding suf-
fixes. It has been demonstrated that the space required to
store the Dwarf Structure for sparse datasets is many times
smaller than that required by alternative techniques such as
materialized views.

The Dwarf Structure is self-sufficient since it does need
to access or reference the fact table in order to answer for
any of the views of the cube and it provides an implicit
index mechanism without needing any additional index for
querying it. In addition any query can be answered with
Jjust one scan/traversal over the dwarf structure.

Sub-Dwarfs The intuition of using the Dwarf as a com-
pressed broadcast unit can be depicted in Figure 2. For
a four-dimensional cube of uniform data and a cardinality
of one hundred for each dimension, we enumerate all possi-
ble views using the binary representation described in Sec-
tion 2. For each view, the size of the materialized view (in
bytes) along with the size of the corresponding sub-dwarf is
depicted. The sub-dwarf corresponds to the dwarf that is
having the corresponding view as fact table (i.e, the original
fact table where all the dimensions, that are represented by
0 in the view binary representation, are projected out). The
materialized view is an unindexed relation that holds all the

250 k

L B View Only
— B Sub-Dwarf
48;3\ 150 k
2
& 100k
(7))
50 k

Figure 2: Sub-Dwarfs vs Materialized Views

tuples of the corresponding view. For this specific case we
assumed that the values of each dimension are mapped to
four-byte integers and that there is one measure represented
by a float (four-byte) value.

It is important to point out that while the materialized
view contains only the tuples of a single Group-By query,
the corresponding sub-dwarf contains all subordinate® views.
For example, for view 0110, the materialized view only holds
the tuples of the view 0110, while the sub-dwarf contains all
subordinate views 0000, 0010, 0100 and 0110. The subsump-
tion operation in the sub-dwarf case degenerates to just a
simple scan over the dwarf without any online aggregation.

The basic idea is that in many cases it is better to broad-
cast a sub-dwarf instead of the view since its size is much
smaller than the size of the sum of the subordinate views.
In addition, for dense views, the sub-dwarf is much smaller
than the corresponding materialized itself making it “eco-
nomic” to transmit even if there are no request for the sub-
ordinate views.

We observe that for views 0011, 0101, 0110, 1001, 1010
and 1100 the size of the sub-dwarf is much smaller than the
size of the corresponding materialized view. The reason is
that these views are quite dense since they contain only two
dimensions and the savings by factoring out prefix redun-
dancies is tremendous. For views 0111, 1011, 1101 and 1110
(i-e., all views with three dimensions) we observe that the
size of the dwarf is slight larger than the corresponding view.
In cases where the request workload accesses a lot of their
subordinate views it could be beneficial to broadcast the
sub-dwarfs instead of the corresponding views. Sub-Dwarfs
of just one dimension (i.e, 0001, 0010, 0100 and 1000) are
bigger than the corresponding materialized views due to var-
ious implementation overheads. The sub-Dwarf that corre-
sponds to 1111 corresponds actually to the full cube since it
contains all possible subordinate views.

4. SUBSUMPTION BASED SCHEDULER

In general, accesses for aggregate data have the following
properties: heterogeneity (views can be of different dimen-
sionality and of various sizes), skewed access (requests from
clients usually form a hot spot within the data cube), and
subsumption (it is often possible to use one detailed view to

!views that can be computed from the fact table.

compute other summarized ones).

In previous work [7], we developed (SBS-a), the first on-
demand broadcast scheduling algorithm that exploits the
subsumption property of summary tables to increase sharing
among clients. The Subsumption-Based Scheduler (SBS-a)
consists of two components: A basic selection component,
which captures the heterogeneity and skewed access prop-
erties and the a-optimizing component that exploits the
subsumption property to reduce access time with minimum
extra overhead in terms of energy.

SBS-a uses Longest Total Stretch First (LTSF) algorithm
[1] as its basic selection component, where the stretch of a
pending request is the ratio of the time the request has been

in the system thus far to its service time. Hence, the stretch
X

of request i for view VX can be represented as: &W’

where WX is the wait time of request i, | V¥ | is the size

of VX, and B is the bandwidth. Since the bandwidth is
X

. w
constant we can re-write the stretch as v

In SBS-a, the server queues up the clients’ requests as
they arrive. When it is time for the server to make a decision
which view to broadcast next, it computes the total stretch
value for each view that has at least one outstanding request.
The view with the highest total stretch value (say V?) is
selected to be broadcast, as in [1].

Ignoring the subsumption semantic of data cubes, a client
that requested V", which is derivable from V?, will wait un-
til V" is broadcast even if V? is available sooner. In the ex-
treme case of utilizing the subsumption property, the client
will use V? to derive V7" regardless of the relative cardinality
of both tables and potentially incurring unnecessary extra
energy. This increase energy is due to the extra time a client
has to spend tuning to a detailed version of the aggregate
rather than a summarized one and the accompanying high
energy consumed in the active mode. For that reason, pa-
rameter « is used to define the degree of flexibility in using
the subsumption property (that captures the degree of shar-
ing) and it works as follows.

At the server side, upon deciding the broadcast of view V?,
the server discards every pending request for a view V" that
can be derived from V? and satisfies the following property
(o rule): The ratio of the difference in size between views
V?and V7 to view V7 is less than the o value. Formally, V"
can be discarded and is not broadcast, iff V' is broadcast,

Vo —|v7|
r Cband —mr— < @, where a € [0,1].

At o = 0 there is no flexibility in using views; the client
access is restricted to exact match and SBS-0 is equivalent
to LTSF. At a = 1, the case of extreme flexibility, a client
can use any subsuming matching view. Picking a reason-
able value for o will balance the trade-off between reducing
the wait time (doze energy consumption) and increasing the

tune time (active energy consumption).

5. PROPOSED HYBRID ALGORITHM

We propose to integrate the two presented technologies

(Dwarf and SBS-a) into a hybrid on-demand broadcast schedul-

ing algorithm that employs view subsumption (similarly to
SBS-a) and uses Dwarf cubes as a compact representation
form for aggregate data. We named our hybrid algorithm
DV-ES(a) to reflect the objects that can be included on the
broadcast by the server (V for Views, or D for Dwarfs), and
the operations that a client can perform (S for subsumption,

or E for extraction from the Dwarf).

Under DV-ES(a), the server can broadcast either entire
dwarf sub-cubes or plain views for a given set of dimensions
(i-e., for a given Group-By query). Accordingly, a client may
receive one of the following:

e the view that exactly matches its query, or

e a detailed view which subsumes the one it originally
requested, or

o a dwarf sub-cube that contains the view.

As an example to illustrate the above cases, consider a
client request for view (A, B). The server can serve this
request by either broadcasting a view or a dwarf. In the
case of sending a view, it can either be the exact view (i.e.,
(A, B)), or an ancestor view (e.g., (4, B, ()). The same
applies in the case of broadcasting a dwarf. That is, it can
be either the dwarf corresponding to (A, B), or a dwarf
corresponding to an ancestor view, say (A, B, (), which
will physically contain view (A, B) as well as all possible
combination of views that can be derived from (A, B, ().

In the case where the server disseminates a dwarf sub-cube
DX, the client will download DX and extract its requested
view. Note that DX will contain VX and all the views that
are descendant from VX, hence, a client can use DX to
either extract VX or any other views that is dependent on
VX . On the other hand, if the server decided to disseminate
VX rather than DX, then a client will still be able derive
any view that is subsumed by VX.

The server decides whether to broadcast a view or dwarf
based on the sizes: if the size of the view is less than the
smallest dwarf that contains this view, then the view is se-
lected, otherwise the corresponding dwarf sub-cube is se-
lected. The intuition is to save bandwidth in the cases where
the size of the dwarf is larger than the corresponding view.

DV-ES(«) is similar to SBS-a, consisting of an LTSF com-
ponent for scheduling and the a-optimizing component to
exploit the dependency between views. However, the imple-
mentation of these component is slightly different.

In DV-ES(a), the LTSF scheduling component is modified
to consider the two different representations of broadcast ob-
Jects, namely dwarfs or views, when selecting the object to
be broadcast. Specifically, since the object representation
that yields the smaller size is selected, the stretch of a re-

. . X - W,
quest ¢ for view V< is redefined as TR (DXLIVE] where

| DX is the size of the dwarf corresponding to V.

Also, the « optimizing component is modified to incorpo-
rate the fact that a request for V" can be satisfied either by
sending a view or by sending the equivalent dwarf (whichever
is smaller in size). The « rule is redefined as follows:

if selection = dwarf then

b ; r r
ifw < «a then eliminate G

else if selection = view

b ; r r
zf% < «a then eliminate G

where G" is the request for V".

One way that a client could decide whether or not to use
a particular object on the broadcast is by applying the same
a-rule used at the server. However, this will require a client
to have full information about the sizes of all views and their
corresponding dwarfs.

We adopted an alternative way which assumes that clients
have no prior knowledge about the sizes of views and dwarfs.

Average Energy Consumption (Joules)

N

-

w

V-§

DV-E
DV-ES

<4080
[}
m

Average Energy Consumption (Joules)

w

N

"

V-S V-s

DV-E
DV-ES

q<40e@
o
m

Jq<40e@
o]
m

DV-E
DV-ES

~
[e]

Average Enfrgy Consumption (Joules)
q
o
L3
L]

o

o
o

0 5 10 15 20
Average Access Time (Secs)

(a) 50 clients

o
o

Average Access Time (Secs)

(b) 250 clients

10 15 20 0 5 10 15
Average Access Time (Secs)

(c) 500 clients

Figure 3: Energy vs Time for all scheduling algorithms

Instead, the server explicitly informs the clients which re-
quest can be satisfied by a given view or dwarf on the broad-
cast. This is achieved by augmenting each descriptor packet
with a views encoding bitmap. The length of this bitmap
is equal to the number of possible views. If a view can be
inferred from the broadcast object and it satisfies the a-rule,
the bit corresponding to this view is set to 1, otherwise it is
set to 0. This approach has a negligible overhead in terms
of bits added to the descriptor packet and it only requires
a client’s knowledge of the multidimensional schema at the
server which is already part of the meta-data information
periodically broadcast by the server.

6. EVALUATION

We implemented a simulator to evaluate the performance

of our proposed DV-ES(a).

6.1 Experimental Setup

Algorithms In addition to the SBS-a, in our evaluation we
included two “base-case” algorithms in order to better un-
derstand the behavior of DV-ES(«a). In the first algorithm,
the server always broadcasts packed dwarf cubes, whereas
in the second algorithm we emulate the hybrid scheduling
algorithm, but remove the client’s subsumption ability.

For clarity in presentation, we name these algorithms with
the X-Y scheme that we used to name our proposed DV-
ES(«) algorithm, where X stands for the data objects that
can be included in the broadcast (V for Views, or D for
Dwarfs) and Y is the operations that clients can perform (S
for subsumption, or E for extraction from the Dwarf). Un-
der this scheme, the SBS-ar algorithm is named V-S(a), the
first base case algorithm is named D-E(«), and the second
base case algorithm is named DV-E(«). Parameter o con-
trols the degree of flexibility in deriving views or extracting
them from a higher dimensional ancestor.

Workload We present experiments results using synthetic
datasets. The base fact table has uniformly distributed data,
where the default number of tuples is 100,000 and the default
number of dimensions is 6 (we used a cardinality of one
hundred for each dimension).

To test the system under a realistic workload, requests
are generated by the clients according to Zipf distribution
with the Zipf parameter §=0.5. Queries are sorted according
to their size, so that queries to small size views occur with

higher probability than queries to detailed ones.

Time is reported in Seconds and the energy consump-
tion is in Joules. We considered a wireless LAN where the
broadcast channel has a bandwidth of 10 Mbps. Clients are
equipped with the ORINOCO World PC Card [6]. The card
operates on a 5V power supply, using 9mA at doze mode
and 185 mA at receiver, active mode.

6.2 Experiments

Figure 3 Figure 3 depicts the average access time and
energy consumption for the different algorithms for values
of a between 0.0 and 1.0 with 0.1 steps. For all algorithms,
the access time decreases by increasing the value of a. So,
for a certain algorithm, traversing the points from right to
left corresponds to increasing the value of a.

Figure 3 shows the poor performance of the D-E algo-
rithm, where only dwarfs are disseminated. DV-ES will al-
ways outperform D-E since in the cases where the dwarf
size is bigger than the corresponding view, it broadcasts the
view. Compared to the other algorithms, D-E will perform
better only when the access is skewed toward aggregates
whose dwarf representation is smaller than the correspond-
ing view. This clearly is not the case in the given workload
as shown in Figure 3.

We also noticed that the performance of DV-E for values
of a from 0.0 to 0.9 is similar to that of DV-ES(0) (coincid-
ing points in the graph). This shows that DV-E is almost
insensitive to the parameter . The explanation is that un-
der the DV-E algorithm: 1) a dwarf is selected if its size is
smaller than the corresponding view, and 2) a client extracts
a view from this dwarf if the view minimum size representa-
tion is within an « distance from the selected dwarf. Given
our workload, the first condition leads to selecting dwarfs to
satisfy medium dimensionality queries, while selecting views
to satisfy low and high dimensionality queries. However,
most of the time these medium dimensionality dwarfs are
orders of magnitude larger in size than the view version of
their descendants. Hence, it requires a high value of « in
order for extraction to take place (i.e., a=1), which is the
single point presented in Figure 3.

Finally, it is the clear that the DV-ES algorithm outper-
forms V-S in both time and energy reductions. DV-ES uti-
lizes the cases where the dwarf is smaller than the corre-
sponding view and it allows for both extraction and sub-
sumption. This improvement over V-S is more significant
as the request rate increases (i.e., increasing the number of

clients from 50 to 500 as in cases (a), (b), and (c) in Fig-
ure 3), which demonstrates the scalability of DV-ES.

—e— V-5(0.0)
— O DV-ES(0.0)
3 —v— DV-E(1.0)
n, — - V-S(1.0)
g —8— DV-ES(L.0)
- o Qe
e ———

@ =¥
Q
(5]
Q
<
[N =T
g —o—
o _,7/ A — — & — —
S —
I T

. . . |

200 300 400 500

Number of Clients

Figure 4: Access Time

Figure 4 We plot the response time of V-S, DV-E, and
DV-ES in Figure 4 where the number of clients ranges from
50 to 500 and for values of @ = 0 and 1. All algorithms
exhibit similar behavior: the average access time increases,
but ultimately levels as the number of clients is increased.
This behavior is normal for broadcast data delivery to clients
with shared interests.

Figure 4 shows how the access time decreases with in-
creasing « from 0 to 1: @ = 1 is the case where flexibility
in using ancestors is experienced the most, and a = 0 is the
case where we do not allow using ancestors. It also shows
that a significant reduction in access time is achieved by
DV-ES compared to V-S, which is even more significant as
the load increases. For instance, consider the cases of 50 and
500 clients where a = 1. In the case of 50 clients, the access
time decreased by 22% compared to V-S(1), while in the
case of 500 clients, the reduction achieved by DV-ES(1) was
37% compared to V-S(1) and it is 3 times less than V-5(0).

=3
a~
o

o

>

S
L

=1

w

a
L

o
w
o
L
o

Average Energy Consumption (Joules)

0.20 - v
v
0 ® vs

| o DE

0.15 v v DVE
v DV-ES

0.10 ! ! ! |

0.4 0.6 0.8 1.0 12 14

Average Access Time (Secs)

Figure 5: 4-dimension workload

Figure 5 In the previous comparisons we used a fact table
of 6 dimensions, whereas in Figure 5 we are experiment-
ing with a fact table that has denser views (by decreasing
the number of dimensions to 4, while keeping the cardinal-
ity of one hundred for each dimension and the number of

tuples as the default 100K). This has the effect of generat-
ing fewer aggregate views than the 6-dimensions case, but
they are denser. As shown in Figure 5, for a load of 500
clients, all the dwarf-based algorithms (D-E, DV-E, DV-ES)
are performing better than V-S, where only views are dis-
seminated. Comparing the performance of DV-ES(1) and
V-S(1), we can see that DV-ES(1) outperforms V-S(1) in
both access time and energy consumption. For access time,
DV-ES(1) achieved a reduction equal to 50% compared to
V-S(1), whereas this reduction was only 37% in the case of
6-dimensional fact table shown in Figure 3(c). For energy
consumption, the reduction is 40%, as opposed to only 22%
in the case of 6-dimensional fact table.

7. CONCLUSIONS

In this paper we proposed and evaluated DV-FES, a new
on-demand broadcast scheduling algorithm for disseminat-
ing aggregated data over the wireless Web. DV-ES inte-
grates the view-derivation properties of SBS-a that goes be-
yond the exact match of requests and the Dwarf technology
that provides a compact represenation for aggregate data.
DV-ES achieves reduction both in access time and power
consumption by selecting at any given scheduling point to
broadcast either a View to be used by the clients to derive
their requested data or an entire sub-cube from which clients
extract their requested data.

Disclaimer: The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army Research

Laboratory or the U. S. Government.

8. REFERENCES

[1] S. Acharya and S. Muthukrishnan. Scheduling
on-demand broadcasts: New metrics and algorithms.
Proc. of 4th ACM/IEEE MobiCom Conf., Oct. 1998.

[2] D. Aksoy and M. Franklin. RxW: A scheduling
approach for large-scale on-demand data broadcast.
IEEE/ACM Tran. on Networking, 7(6):846-860, 1999.

[3] H. D. Dykeman, M. Ammar, and J. W. Wong.
Scheduling algorithms for videotex systems under
broadcast delivery. Proc. of the 1986 Int’l Conf. on
Communications, pp. 1847-1851, June 1986.

[4] J. Gray, et. al. Data Cube: A Relational Aggregation
Operator Generalizing Group-by, Cross-Tab, and Sub
Totals. Proc. of the ICDE Conf., Feb. 1996.

[5] T. Imielinski, S. Viswanathan, and B. R. Badrinath.
Energy efficient indexing on air. Proc. of the ACM
SIGMOD Conf., pp. 25-36, May 1994.

[6] ORINOCO World PC Card. www.orinocowireless.com

[7] M. A. Sharaf and P. K. Chrysanthis. Semantic-based
delivery of OLAP summary tables in wireless
environments. Proc. of the CIKM Conf., Nov. 2002.

[8] M. A. Sharaf and P. K. Chrysanthis. Facilitating
Mobile Decision Making. Proc. of the 2nd ACM Int’l
Workshop on Mobile Commerce, Sep. 2002.

[9] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, Y.
Kotidis Dwarf: shrinking the PetaCube. Proc. of ACM
SIGMOD Conf., June 2002.

[10] K. Stathatos, N. Roussopoulos, and J.S. Baras.
Adaptive data broadcast in hybrid networks. The
VLDB Journal, pp. 326-335, 1997.

[11] J. W. Wong. Broadcast delivery. Proc. of the IEEE,
76:1566—1577, 1988.

