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ABSTRACT
This paper presents TiNA, a scheme for minimizing energy
consumption in sensor networks by exploiting end-user tol-
erance to temporal coherency. TiNA utilizes temporal co-
herency tolerances to both reduce the amount of informa-
tion transmitted by individual nodes (communication cost
dominates power usage in sensor networks), and to improve
quality of data when not all sensor readings can be propa-
gated up the network within a given time constraint. TiNA
was evaluated against a traditional in-network aggregation
scheme with respect to power savings as well as the quality
of data for aggregate queries. Preliminary results show that
TiNA can reduce power consumption by up to 50% without
any loss in the quality of data.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed
databases, Query processing ; C.2.1 [Computer-
Communication Networks]: Network Architecture and
Design—Wireless communication

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Sensor Network, Power-aware In-network Aggregation

1. INTRODUCTION
Recent advances in hardware development have enabled

the creation of widespread sensor networks. Currently, there
are many ongoing projects that use wireless sensor networks
for environmental monitoring and data acquisition applica-
tions. Examples include wildlife tracking [6], habitat mon-
itoring [10], and building monitoring [7]. Sensor nodes,
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such as the Berkeley MICA Mote [4], are getting smaller,
cheaper, and able to perform more complex operations, in-
cluding having mini operating systems embedded in the sen-
sor. While these advances are improving the capabilities
of sensor nodes, there are still many crucial problems with
deploying sensor networks. Limited storage, low network
bandwidth, poor inter-node communication, limited com-
putational ability, and low power capacity still persist.

In-network aggregation partially addresses the problem
of limited power. With in-network aggregation, the sensor
nodes carry out part of the aggregation rather than just
propagating raw readings. In-network aggregation reduces
power consumption because sensor power usage is domi-
nated by transmission costs. Thus, being able to transmit
less data (the result of the aggregation over having to for-
ward all the packets) results in reduced energy consumption
at the sensor nodes.

In this paper we focus on the problem of saving energy
as well as maintaining quality of data (QoD) in the pres-
ence of limited power in sensor networks. We propose a
new scheme, called TiNA (Temporal coherency-aware in-
Network Aggregation), which uses temporal coherency tol-
erances in addition to in-network aggregation to save energy
in the sensor network while retaining the user-specified QoD
requirement [1]. TiNA is independent of the underlying syn-
chronization protocol used for sending and receiving data
between the sensor nodes.

The basic idea behind temporal coherency tolerance is to
send a reading from the sensor only if the reading differs
from the last recorded reading by more than the stated tol-
erance. These tolerances are based on user preferences or
can be dictated by the network in cases where the network
cannot support the current tolerance level. Temporal co-
herency checks occur at the level of individual readings and
are compared against the last reading available for a node.

Our proposed scheme, TiNA, saves energy for two reasons.
First, at the edge nodes, a new reading is not transmitted if
it falls inside the given tolerance. Secondly, no transmission
from the edge nodes further reduces message sizes transmit-
ted by the internal nodes due to groups being eliminated.
We will show that by not sending and decreasing the size of
messages, the sensor network can gain significant savings in
energy from the reduced transmission power requirements
while maintaining QoD. We also show that TiNA leads to
better QoD when not all sensor readings can be propagated
up the network under a given time constraints.

In the next section we present related work. Section 3
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provides an overview of sensor networks and, in particular,
how TiNA fits into the sensor network. TiNA, our scheme
for in-network aggregation, is introduced in Section 4. Sec-
tion 5 describes our testbed, experiments and results.

2. BACKGROUND
Although there have been many advances in sensor net-

work applications and technology, sensors still suffer from
the major problems of limited bandwidth and limited en-
ergy. Understanding the events, measures, and tasks re-
quired by certain applications has been shown to provide
efficient communication techniques for the sensor network.
In-network processing is one such technique that allows for
data reduction to happen as close as possible to where data
is generated [3]. In sensor networks, data processing is much
cheaper than data communication in terms of time and en-
ergy consumption. This observation is what motivated the
directed diffusion data dissemination paradigm [5].
Directed diffusion is data-centric, where data generated

by a sensor node is named by attribute-value pairs. A node
requests data by sending interests for named data. Data
matching the interest is then drawn towards the request-
ing node. Since data now is self-identifying, this enables
activation of application-specific caching, aggregation, and
collaborative signal processing inside the network, which is
collectively called in-network processing. Ad-hoc routing
protocols (e.g., AODV [12]) can be used for request and data
dissemination in sensor networks. These protocols, however,
are end-to-end and will not allow for in-network processing.
On the contrary, in directed diffusion each sensor node is
both a message source and a message sink at the same time.
This enables a sensor to seize a data packet it is forward-
ing on behalf of another node, do in-network processing on
this packet if applicable, and forward the newly generated
packet up the path to the root node.

The work on TinyDB [8, 9] and Cougar [16] mapped
the directed diffusion concepts in database terms. These
projects used an SQL-style query syntax to express a node
request for data. Cougar abstracted the data generated by
the sensor network as an append-only relational table. In
this abstraction, an attribute in this table is either informa-
tion about the sensor node (e.g., id, location, etc.) or data
generated by this node (e.g., temperature, light, etc).

TinyDB and Cougar emphasize the savings provided by
using in-network aggregation, which is one type of in-network
processing. Sensor applications are often interested in sum-
marized and consolidated data rather than detailed data.
Such aggregate data is used as continuous input for data
mining and analysis tools. Using in-network aggregation al-
lows incremental computing of partial aggregates along the
different paths of a routing tree to the root, which is the node
responsible to collect the results. This reduces the number
of packets exchanged between neighboring nodes and hence
decreases the network’s energy consumption and extends the
lifetime of individual sensor nodes.

A requirement for in-network aggregation is the synchro-
nization between nodes on a single path to the root. A
sensor needs to wait before sending its own reading in order
to increase the effectiveness of aggregation. While waiting, a
sensor receives readings from other neighboring nodes. This
coordination allows a routing sensor to compute the aggre-
gate of readings from different sensors in addition to its own
reading and transmit the resulting partial aggregate.

The problem of deciding how long to wait is treated dif-
ferently in the systems mentioned above. Directed Diffusion
does not synchronize between nodes; data is forwarded im-
mediately upon reception. However, this will still enable
duplicate suppression as a special case of in-network aggre-
gation. TinyDB and Cougar use mechanisms that delay
transmitting a sensor reading with the hope of aggregat-
ing readings from other sensors. This delay is constant in
TinyDB, while Cougar adjusts the delay interval based on
the network status. The details of these two mechanisms
will be discussed in the next section.

3. IN-NETWORK AGGREGATION MODEL
Queries in sensor networks are continuous, with new re-

sults generated periodically. Initially a base station receives
a query, which then forwards to the nearest sensor node.
This node will be in charge of disseminating the query down
the network and collect the results. Aggregation queries re-
ceived by the base station are in the following form:

SELECT {attributes, aggregates}
FROM sensors
GROUP BY {attributes}
EPOCH DURATION i
VALUES WITHIN tct

TAG [8] (the aggregation service for TinyDB) introduced
the new clause EPOCH DURATION i. Parameter i is the
epoch interval and it specifies the arrival rate of new results
required by the user. That is, once every epoch, the user
is expecting the network to produce a new answer to the
posed continuous query. We introduce, as part of the TiNA
framework, the clause VALUES WITHIN tct in order to
express temporal coherency tolerance.

The way in-network aggregation is performed depends on
the query attributes and aggregates. Specifically, the list of
attributes in the Group-By query subdivides the query result
into a set of groups. The number of these groups is equal to
the number of combinations of distinct values for the list of
attributes. Two readings from two different sensors are only
aggregated if they belong to the same group. The aggregate
function determines the structure of the partial aggregate
and the partial aggregation process. For example, consider
the case where the aggregate function is SUM. In this case,
the partial aggregate generated by a routing sensor is simply
the sum of all readings that are forwarded through this sen-
sor. However, if the aggregate function is AVERAGE, then
each routing sensor will generate a partial aggregate that
consists of the sum of the readings and their count. Eventu-
ally, the root sensor will use the sum and count to compute
the average value for each group before forwarding it to the
base station for further processing and dissemination.

For routing, we use the general directed diffusion paradigm.
The purpose is to build a routing tree where each sensor is
assigned a gradient [3] or a parent [8]. A parent sensor for a
child sensor c is the sensor through which c will send a mes-
sage that it wants to propagate up the network. To build the
routing tree, each sensor i is assigned a level Li and a parent
Pi. Initially for all the nodes, Li = ∞ and Pi = 0. The root
node that initiates a query sets its level (Lroot) value to 0.
Nodes exchange query messages to build the routing tree.
The header of such a message contains two fields: Ids and
Ls. Ids is an identifier of the source node that is transmit-
ting the message, while Ls is the level value (i.e., Li) of that
source node. When a child receives a query message and its
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level is ∞, it sets its parent to the node it heard from and
sets its level to Ls + 1. The process continues until every
node in the network receives a copy of the query message
and is assigned a level and a parent value.

As we mentioned in Section 2, synchronizing the trans-
mission between nodes on a singe path to the root is crucial
for efficient in-network aggregation. A parent node has to
wait until it hears the readings reported from all its chil-
dren before reporting its own reading. Thus, a parent node
p is able to combine the partial aggregates reported by its
children with its own reading. Node p can then send one
message representing the partial aggregation of values sam-
pled at the subtree rooted at p.

Synchronization in TAG is accomplished by making a par-
ent node wait for a certain interval of time before reporting
its own reading. Specifically, TAG subdivides the epoch into
shorter intervals, with the number of intervals equal to the
maximum depth of the routing tree (d) and the duration of
each interval as (EPOCH DURATION)/d. During one in-
terval, a parent node will be active and receiving messages
from its children. In the next interval, the children nodes
will be idle, while the parent is still active transmitting the
partial aggregate result. The parent sensor will become idle
in the subsequent interval (i.e., when it finished receiving
and transmitting the partial aggregates in its subtree).

Cougar uses a different approach in solving the synchro-
nization problem: a parent node will keep a list of all its
children nodes, which is called the waiting list, and will not
report its reading until it hears from all the nodes on its
waiting list. This will result in different waiting intervals
for different sensors which depends on the communication
density at a particular part in the tree.

Our proposed scheme will work with any synchronization
method. In this paper, we will illustrate TiNA using the
TAG approach for synchronization. The advantages of the
TAG approach is the guaranteed delivery of a query result
every epoch duration and minimizing the energy consumed
by a sensor. The latter is because a sensor is required to
be active for only two intervals during one epoch: 1) when
it is receiving messages from its children, and 2) when it is
transmitting the partial result.

4. TINA
Even in-network aggregation, particularly with massive

number of sensors, requires a lot of energy to periodically
transmit all sensor readings which shortens the lifetime of
the sensor network. Moreover, if the query rate is very high
or the communication is very dense, the network will not be
able to provide exact answers at the specified rate.

In TiNA, we exploit the temporal correlation in a sequence
of sensor readings to suppress values, reducing energy con-
sumption and at times increasing QoD. TiNA can be tuned
to further reduce energy consumption while still providing
high quality approximated answers. Since approximation
in TiNA is guided by temporal correlation, the degrading in
QoD is marginal compared to the cases when approximation
is random. The TiNA approach is particularly attractive for
exploratory applications, where TiNA is tuned to minimize
the energy consumption during preliminary analysis to iden-
tify an interesting trend in the network. Once the trend is
identified and higher accuracy is needed, TiNA is tuned to
increase QoD while consuming minimal energy.

4.1 TiNA Scheme Overview
TiNA is built to be used by any system that is doing

in-network aggregation to increase the savings in energy
throughout the entire sensor network. In-network aggre-
gation schemes perform aggregation at the internal nodes
as information is passed up the routing tree.

The contribution of TiNA comes in how it decides what
data to forward up the routing tree and how to merge or ag-
gregate this forwarded data. TiNA adds a new clause to the
query specification called: VALUES WITHIN tct. Parameter
tct is used by the user to specify the temporal coherency tol-
erance for the query. The value of tct specifies the degree to
which the user is tolerant to changes in the value of sensor
readings. For example. if the user specifies tct = 10%, the
sensor network will only report sensor readings that differ
from the previously reported readings by more than 10%.
Values for tct range from 0, which indicates to report read-
ings if any change occurs, to any positive number.

A TiNA sensor node must keep additional information in
order to utilize temporal coherency tolerances. The infor-
mation kept depends on the sensor’s position in the routing
tree (i.e., a leaf or an internal node). Leaf nodes keep only
the last reported reading which is defined as the last reading
successfully sent by a sensor to its parent. Internal nodes,
in addition to the last reported reading for that node, keep
the last reported data it received from each child. This data
can either be a simple reading reported by a leaf node or a
partial result reported by an internal node.

At a leaf node, when a new reading of value Vnew is
available, this new value is compared against the last re-
ported reading (say Vold). The new value is reported iff
|Vnew−Vold|

Vold
> tct , otherwise the value Vnew is suppressed.

At an internal (i.e, parent) node, data received from dif-
ferent children is combined to compute the partial result to
forward up the routing tree. If a parent does not receive
complete data from one of its children, it uses some or all of
the last reported data from that child.

The internal node then considers its own reading. If the
reading can be aggregated within a group that already exists
in the partial result, then the reading is aggregated regard-
less of its tct value. This is because the partial aggregation
will only change the partial aggregate value of the group, but
it will not increase the size of the partial result. However,
if the new reading results in creating a new group, then the
reading is only added if it violates the tct value, otherwise
it is suppressed in order to minimize the partial result size
while still maintaining the specified tolerance.

The internal node at this point takes an old partial result
(one computed from all children’s old data and its own old
reading) and compares it against the new partial result it
created. For any tuple where the partial aggregate value has
not changed, that tuple is eliminated from the final partial
result. This elimination is equivalent to applying tct=0 at
the partial aggregate level. Note that this operation can
provide a completely empty partial result or a partial result
that is missing few groups compared to the old partial result.
In both cases, this node relies on the fact that its parent
stored its last reported data and it will use it to supply the
missing groups as mentioned above.

Values of tct higher than 0 can still be applied at the par-
tial aggregate level. This allows for further savings in mes-
sage passing, however, its semantics from a user perspective
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Figure 1: Epoch of query without TiNA

is not as clear as that on the reading level. In Section 5.2
we present an experiment where we used the same tct value
on both the reading and partial aggregate levels.

A special issue that arises in the context of TiNA is how
to handle the case of queries with a WHERE clause. In the
in-network aggregation mechanism, if the sensed data does
not satisfy the WHERE predicate, then the sensor will sup-
press transmission. The problem becomes how would the
parent determine the difference between a value not satisfy-
ing the predicate and a value within the range specified by
the tct. The way to handle this is by having the child node
send a short invalidation message to its parent whenever the
sensed value does not satisfy the WHERE predicate, thus
the parent will not use the stored reading for that child.

A relatively similar issue is how to handle failing sensor
nodes where a parent will not able to distinguish between a
node failure and the suppression due to applying TiNA. To
solve this problem, a child node that is suppressing trans-
mission will periodically send a heartbeat message to its par-
ent even if the sensed value is still within the tct limit. If
the parent node did not receive the heartbeat message for a
certain period of time, then it invalidates the entry for that
specific child until it hears from it again. This technique will
also work for mobile sensors, where a sensor might change
its location in the network, thus switching parents.

4.2 Example Execution of TiNA
Figures 1 and 2 show a comparison between two systems

during one epoch, one with and one without TiNA. We as-
sume the query involves getting the total light for rooms and
grouping by floor, with the tct = 10%:

SELECT {FLOOR, SUM(LIGHT)}
FROM SENSORS
GROUP BY {FLOOR}
EPOCH DURATION 30s
VALUES WITHIN 10%

In the figures, nodes are represented as circles and the
data flow from child to parent is represented with arrows.
Tables along the connection lines represent the data that is
being sent from child to parent. The boxes connected to each
node represent the current state at the node. This current
state consists of its last reported reading, called Old, its
current reading made, called New, and a table representing
the aggregation of its children old reported data. The Cost
number under each of these tables is the cost to send this
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Figure 2: Epoch of query using TiNA

table from child to parent. The cost is simply the size of
the table, since it is used to illustrate relative costs. For
example, a table with cost 4 is twice as big as a table with
cost 2, and thus will need to send twice as much information,
resulting in twice the transmission cost. See Section 5.1 for
the details on how total cost was computed.

In Figure 1, we see the epoch of the query in a system
that does not include the TiNA scheme. In this example,
every reading is sent from child to parent1. What we are
concerned with is the total cost for the entire network. The
total cost for this network to send the readings up the tree
is 14, or the sum of the sizes of all the messages is 14.

In Figure 2, we see the benefit of using TiNA. The set
up is the same as above, but now the sensors network has
employed the TiNA scheme. Savings from TiNA (parts of
messages that do not need to be sent) are shown by being
shaded out. For example, when it is time for node 4 to send,
it first checks its new reading against its old reading. Since
the new reading does not differ by more than 10%, nothing
is sent to its parent. During the next time slice, nodes 2 and
3 check their readings against their last readings. Since both
differ by more than 10%, they will both be sending their new
readings and replacing their old ones. Node 1 then gathers
all the readings it was sent. Node 1’s reading does not differ
by more then 10% from its old reading. However, the group
it is a part of is already going to be sent further up the tree,
because of Node 2. In this case, to ensure correctness, Node
1 has to aggregate its new reading into Node 2’s reading,
as explained in Section 4.1. Node 1 then sends all of this
new information up to the base station to be reported to the
user. The total cost for this scheme is therefore 8.

As shown in the example execution of TiNA above, even
in the case of four nodes, significant energy can be saved. In
the example, TiNA eliminated the entire transmission from
Node 4. Due to the nature of sensor networks, being able
to save on data transmission results in large overall savings.
In addition, not having to send group 3 propagates up the
tree. Both nodes 3 and 1 saved from Node 4 not changing
by more than 10%. The size of their messages decreased and
resulted in energy savings.

1Based on the adopted synchronization scheme, nodes at the
same level in the figure send during the same time interval.
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4.3 Discussion
Exploiting temporal correlation has been used before to

suppress the transmission of sensor readings. For exam-
ple, the PREMON paradigm for motion detection uses the
spatio-temporal correlation in sensor readings to reduce trans-
missions [2]. In PREMON, the base station monitors the
readings of sensors and generates a prediction model for each
sensor, and sends these models back to the sensors. On re-
ceiving a prediction model, a sensor will send a new reading
only when it differs from the one in the motion prediction
model. The APTEEN protocol [11], like TiNA, attempts to
reduce the number of transmitted readings. APTEEN uses
filters to drop values (using a hard threshold) and it ex-
ploits temporal correlation to suppress values (using a soft
threshold). The values for the hard and soft thresholds are
expected to be selected by the application using APTEEN.

Our work is the first to utilize the temporal correlation
of sensor readings in the context of in-network aggregation.
It provides the mechanisms required to optimize aggregate
query processing in sensor network while delivering results
of high quality. In addition to the obvious advantages of
reducing the energy consumption, TiNA increases QoD in
the cases of dense network traffic or when a query’s timely
requirement is tight. In these cases, a sensor in a dense
portion of the network will suffer high latency due to con-
gestion and retransmission. If the epoch duration is not long
enough (or if the routing tree is skewed), the resulting syn-
chronization interval will be very short. Thus, some sensors
will not be able to transmit their readings during this short
interval. This will give an inaccurate query result, where
the aggregation is missing tuples from sensors that failed
to communicate their readings. Using TiNA alleviates this
problem by suppressing the transmission of relatively static
readings in favor of the more dynamic ones which contribute
the most to the quality of the final aggregate.

5. EXPERIMENTS

5.1 Simulation Environment
To study the effects of the proposed scheme, we created

a simulation environment using CSIM [14]. The simulated
network consisted of a 15x15 grid of sensor nodes; exper-
iments with other grid sizes produced comparable results
and are omitted due to space limitations. Each node could
transmit data to sensors that were at most one hop away
from it. In a grid this means it could only transmit to at
most 8 other nodes. We simulated a contention-based MAC
protocol (PAMAS) which avoids collision [15]. In this pro-
tocol, a sender node will perform a carrier sensing before
initiating a transmission. If a node fails to get the medium,
it goes to sleep and wakes up when the channel is free.

In the experiments included in this paper we compared the
performance of our proposed scheme, TiNA, against TAG.
For fairness in comparisons, we simulated the optimized ver-
sion of TAG where a child cache is used [8]. In this caching
scheme, a parent stores the partial aggregates reported by
its children, and uses those aggregates when new ones are
not available. This scheme, as proposed in [8], is partic-
ularly important in the cases where the communication is
unreliable or the epoch duration is too short.

In the following experiments, the Group-By query is of
the form described in Sections 3 and 4, and the sensor net-
work produces a result on every epoch duration. The ob-

Parameter Value Default

Grid Size 15x15 Cells
Aggregate MAX, SUM, AVG SUM
Number of Attributes 0, 1, 2 1
Epoch Durations 280 – 1700 mSec 1500 mSec
tct 0% – 25%
Randomness Degree 0.0 – 1.0 0.5
Random Step Size Limit 10% of domain
Number of Epochs 100 Epochs

Table 1: Simulation Parameters

jective of the query is to aggregate a measure (e.g., tem-
perature) across different regions of the network. The set of
attributes used by the SELECT and the GROUP BY clauses
is any valid combination of the sensors’ X and Y coordinates,
hence, attributes = {}, {X}, {Y}, or {X,Y}. For example, a
query where attributes = X subdivides the sensors readings
into a number of groups equal to the number of possible val-
ues of X (i.e., the width of the grid). In the answer for this
query, readings from all sensors that have the same X co-
ordinate are aggregated together according to an aggregate
function. The SQL aggregate functions that we used in this
work are: SUM, AVERAGE, and MAX. We did not include
the MIN function, which is similar to MAX.
Random Walk Model Values for our experiments are

generated following a random walk model. The domain of
values was between 1 and 100 (to approximate temperature
readings in Fahrenheit). A sensor reading is generated once
at the beginning of each query interval. The value changes
between one interval to the next with a probability known
as the randomness degree (RD). Each time a sample is to
be generated, a coin is tossed. If the coin value is less than
RD, then a new value is generated, otherwise the sample
value will be same as before. For example, if RD = 0.0,
then the value sampled by a sensor will never change, while
if RD = 0.5, then there is a 50% chance that the sensed
value at time t is different from the value at time t+1. We
used the Random Step Size Limit to restrict how much the
new value can deviate from the previous value. This limit is
expressed as a percentage over the domain of values. In our
case, a 10% limit implies that a new reading can differ by at
most 10 (=10% of 100) compared to the previous reading.
Simulation parameters are summarized in Table 1.
Metrics In our experiments we used two measurements:

energy consumption and quality of data. Energy is consumed
in four main activities in sensor networks: transmission, lis-
tening, processing, and sampling. We focused on transmis-
sion power since the amount of time spent listening depends
on the synchronization and tree building methods, of which
our scheme is independent. We did not include energy re-
quired for processing since it is negligible compared to that
needed for communication.

As mentioned before, a sensor node will send its data to
the root through its assigned parent. A parent node is one
hop away from its child, and one hop closer to the root than
its child. So every node sends its data exactly one hop away,
all of which are the same distance from one another. This
allows us to assume a uniform cost of transmitting data.
However, the overall energy consumed to transmit a partial
result is dependent on the partial aggregate size and number
of messages containing this aggregate.

Below, we report the average energy consumed by a sen-
sor node per epoch. The values of the parameters needed
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to calculate the transmission cost were the same as in [4].
Specifically, we simulated sensors operating at 3 Volts and
capable of transmitting data at a rate of 40 Kbps at 0.012
Amp. transmit current draw. Hence, the energy cost of
transmitting one bit in Joules is computed as:
Tcost = 3 Volt * 0.012 Amp * 1/40,000 Sec = 0.9 µJoules.

The other metric in our study is the quality of data (QoD).
QoD is a measure of how close the exact answer and the
approximate answer are. The exact answer is generated if all
sensors deliver their current readings within the epoch time.
An approximate answer is the one where some sensors fail to
send their current reading or decide not to send it. A sensor
fails to report a reading because of network congestion or
short epoch interval. A sensor decides not to send a message
because the change in the sample value is less than the tct.

In order to compute the QoD, we first need to measure the
error over the Group-By query. We measured this error as
described in [13]. Assume a query aggregates over a measure
attribute M . Let {g1, ..., gn} be the set of all groups in the
exact answer to the query. Finally, let mi and mi’ be the
exact and approximate aggregate values over M in the group
gi. Then, the error εi in group gi is defined to be the relative

error, i.e., εi =
(|mi−m′

i|)
mi

× 100. The error δ over the Group-

By query is defined as: δ = 1
n

Pn
i=1 εi Finally, the QoD over

time is defined as:

QoD =
1

T

TX

t=1

100 − δt

where δt is the query error at epocht.

5.2 Experiments and Results

5.2.1 Sensitivity to the Aggregation Function
In the first experiment, we test the sensitivity of our scheme

to the different aggregation types. Figure 3 shows the re-
sults of the base case (TAG) versus the case where tct is 0,
which is the case where data is only sent if the current read-
ing is different than the previously transmitted value. Our
proposed scheme saves 46% for AVG and SUM and over
52% for MAX. With the degree of randomness at only 50%,
half of the time the sensor readings do not change, which
explains part of the savings. The additional savings come
from reduced message sizes at the internal nodes.

From Figure 3, for both TiNA and TAG, we see that AVG
has higher energy requirements than MAX and SUM. The
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Figure 4: Energy for aggregate functions vs tct
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Figure 5: QoD for aggregate functions vs tct

reason for this is that for MAX and SUM, only the max/sum
of the readings needs to be sent, while in AVG, the sum of
the readings and the count is reported. For TAG, both MAX
and SUM use the same amount of energy, whereas in TiNA,
MAX has lower energy requirements. This can be explained
by considering a simple scenario where several readings that
belong to the same group change except for one. Assume
that this unchanged value is the maximum value for that
group in the previous epoch. In TiNA, all leaf nodes will
report the changed values to their parent node regardless
of the aggregate function (i.e. all but one). However, if
the aggregate is MAX, the parent node will detect that the
maximum value for the group did not change from the pre-
vious epoch and it will suppress transmission. This results
in energy saving at this parent node and the nodes following
it on the path to the root.

Figure 4 compares the energy consumption for different tct
for AVG, MAX, and SUM: energy steadily decreases as the
tct value increases. The reason for this is that high tct values
mean lower probability of a value change resulting in data
transmission. Figure 5 shows the change in QoD for all the
cases. First of all, for higher tct values, the QoD decreases.
If some values are not being reported, then comparing the
result against the case where every reading is reported would
have discrepancies, hence the lower QoD. Secondly, both
AVG and SUM have the same QoD in all cases, while MAX
exhibits higher QoD. The former is because AVG is just
the sum divided by the count, and the latter, we found to
occur because in MAX, changes have a better chance of not
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Figure 6: Energy vs number of attributes
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Figure 7: QoD and Energy reduction of TiNA(10%)
compared to TAG for different number of attributes

affecting the overall MAX, but in other cases (i.e., AVG and
SUM), any change affects the entire result.

5.2.2 Sensitivity to the Number of Attributes
In the next experiment we test how the number of at-

tributes in the Group-By clause affects the power consump-
tion and QoD. Figure 6 shows the energy usage as the num-
ber of attributes is increased. As the number of attributes
increases, the number of groups that are created by the
Group-By query also increases. As the number of groups
increases, the savings from using TiNA also increase. In ad-
dition to showing the benefit of TiNA for different amounts
of groups, it also shows the scalability of TiNA. The more
groups we have, the larger the savings because of the greater
chance of savings at the leaf level (and thus decreased num-
ber of messages), and at the internal nodes (and thus de-
creased message sizes).

Figure 7 shows the trade-off between energy savings and
QoD for the different number of attributes. We present the
QoD and the energy savings of TiNA compared to TAG

for tct=10% computed as |ETAG−ETiNA|
ET AG

. In this case, the

QoD has only decreased by at most 2% for any of the dimen-
sions, while the energy savings increase constantly. Even in
the case where every node represents a distinct group (at-
tributes=0), QoD has only decreased by 2% while at every
leaf the value has to change by more than 10% to be used.
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Figure 8: Energy consumption vs Randomness

5.2.3 Sensitivity to the Data Change Rate
The next experiment focuses on the rate at which data

changes. Figure 8 shows the power savings based on the
rate of data change. In the case of RD=0, TiNA uses almost
no power. In fact, each node only sends once throughout
its life. At a 50% change rate, our power savings are over
45%. For the case where data is completely random (rate of
change equals 1), we show savings between 10% and 40%.
Since most readings will have some redundancy, the case
where the rate of change is one is the worst case for our
scheme. The explanation for power savings is that the less
often data changes, the higher the chance that readings will
be the same as before and the greater the chance to save on
transmission costs.

tct 0% 5% 10% 15% 20% 25%

QoD 100% 99.5% 98.8% 98.3% 97.4% 97.1%

Table 2: QoD vs. tct (RD=0.5)

Table 2 shows the quality of data for each of the different
tolerances. This table shows the case where the randomness
of data is set at 0.5, the average case for our experiments.
Even as the tct increases, the QoD decreases at a slower rate.
For the case where tct is set at 25%, we are only showing a
3% decrease in QoD. This again shows that the tct causes a
small decrease in QoD when compared to the energy savings
(80% in the case of tct=25%).

5.2.4 Temporal Coherency on Partial Aggregates
We ran another experiment using different tct values at

the partial aggregates level in addition to the readings level
as described in Section 4.1. Table 3 shows the results of that
experiment using tct=10%. Compared to only applying tct
on the readings level, applying tct at the partial aggregates
level helps reduce the energy by about 12% with only a
2.5% decrease in quality of data However, we obtained the
same results by applying tct=30% only on the readings level.
Therefore, the behavior of applying the tct on the partial
aggregate level can be also obtained by applying a higher-
value tct on the readings level.

tct applied on: QoD Energy Reduction
Sensor Readings 98.8% 72%
Partial Aggregates 96.3% 84%

Table 3: tct on readings vs. on partial aggregates
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5.2.5 Sensitivity to the Epoch Duration
The final experiment we ran tested the effect of congestion

on the proposed scheme. Congestion can occur because the
epoch is not large enough to begin with or because network
congestion is causing the epoch to no longer be sufficient.
This experiment intends to find out how helpful TiNA can be
in these special cases. Up to now the default epoch duration
has always been large enough to handle all nodes.
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Figure 9: Energy usage vs epoch duration

Figure 9 shows that by increasing the epoch duration,
the energy consumption increases until it levels off. This is
because by increasing the epoch duration, more nodes are
able to access the channel during the assigned synchroniza-
tion interval and transmit their readings. However, TiNA
is using the available time and energy “wisely”. This can
be further illustrated by Figure 10. Consider the case where
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Figure 10: QoD vs epoch duration

the epoch duration is 280 mSec. TAG required 1.4 times the
energy used by TiNA(0%) and TiNA delivered results with
QoD 2% higher than TAG. The TiNA sensors send only the
readings that changed from the previous epoch. This se-
lectivity in transmission alleviated the network congestion
and allowed more valuable data (the readings with changed
values) to make its way up the network. On the other hand,
the TAG sensors send the reading all the time, which re-
sulted in communication congestion, which in turn yielded
poor QoD. Moreover, energy is still required to transmit
those unchanged readings that managed to cross the con-
gested portions of the network through the non-congested
parts. This explains the energy savings provided by TiNA.

6. CONCLUSIONS AND FUTURE WORK
We have developed a new scheme for doing temporal in-

network aggregation called TiNA. TiNA extends current
in-network aggregation methods by utilizing temporal co-
herency tolerance to minimize the size and number of trans-
mitted messages. Since data transmission is the biggest en-
ergy consuming activity in sensor nodes, using TiNA results
in significant energy savings. Our experiments have shown
large savings in energy over typical in-network aggregation
methods without significant loss in quality of data. In con-
clusion, TiNA provides a good trade-off between decreasing
energy versus decreasing quality of data in sensor networks.
Currently, we are expanding TiNA to consider spatial and
topological redundancy.
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