
An Optimized Multicast-based Data Dissemination Middleware:
A Demonstration

�

W. Li, W. Zhang, V. Liberatore
Electrical Engineering and Computer Science Dept.

Case Western Reserve University
10900 Euclid Ave., Cleveland, Ohio 44106�

wxl33, wxz24, vx111 � @po.cwru.edu

V. Penkrot, J. Beaver, M. A. Sharaf, S. Roychowdhury, P. K. Chrysanthis, K. Pruhs
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260�

vince, beaver, msharaf, src, panos, kirk � @cs.pitt.edu

1 Introduction

A major problem on the Internet is the scalable dissem-
ination of information. This problem is particularly acute
exactly at the time when the scalability of data delivery is
most important, e.g., election results on the night of the
2000 United States presidential election, and news during
9/11/2001. The current unicast pull framework simply does
not scale up to these types of workloads. One proposed so-
lution to this scalability problem is to use multicast commu-
nication. However, allowing multicast communication in-
troduces many non-trivial data management problems, such
as caching, consistency, and scheduling. We have been
building a middleware that unifies and extends state-of-the-
art data management methods and algorithms into one soft-
ware distribution. Its flexible and extensible architecture
is built from individual components that can be selected or
replaced depending on the underlying multicast transport
mechanism or on the application needs. Particular care has
gone into the design of the algorithms to optimize the user-
perceived level of service.

2 Proposed Middleware

Data Dissemination: In the proposed middleware, an ap-
plication server can disseminate data by choosing any com-
bination of the following three schemes: multicast push,

�
This work has been supported in part under NSF grants ANI-0123929

and CCR-0098752.

Client-side

Consistency

Reliable multicast

Application Layer

Consistency

Scheduling

Multicast
Pull

Indexing

Push
Scheduling

Multicast

Caching

Data Dissemination MiddlewareServer-side

Transport Adaptation Layer

IP Multicast End-to-End Multicast
Transport Layer

Document Selection

Selective
Tuning

Figure 1. Proposed middleware data dissem-
ination architecture.

multicast pull, and unicast pull. The outline of a possible
configuration of our middleware and its relationship with
the application and transport layers is shown in Figure 1.

When an application that utilizes all three data dissemi-
nation schemes, invokes the middleware, the following se-
quence of modules is typically invoked. The document
selection unit periodically gathers statistics on application
data units (ADUs) popularity. Once statistics have been
collected, the server partitions ADUs into hot, warm, and

 762

Proceedings of the 19th International Conference on Data Engineering (ICDE’03)
1063-6382/03 $ 17.00 © 2003 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:16:51 UTC from IEEE Xplore. Restrictions apply.

cold documents to be disseminated using multicast-push,
multicast-pull and unicast-pull, respectively.

The server broadcasts an index of sorted URIs or URI di-
gests on the multicast push channel. This quickly allows the
client to determine whether a needed ADU is in the current
hot broadcast set. If the ADU is not in the hot broadcast set,
the client makes an explicit request to the server and simul-
taneously starts to listen to the multicast pull channel. If the
ADU is cold, the requested ADU is returned on the unicast-
pull connection. Otherwise, the client waits on the multicast
pull channel until the requested ADU is transmitted.

The frequency and order in which hot ADUs are broad-
cast is determined by the multicast push scheduling compo-
nent. We have implemented the flat and MAD algorithms
[3] for the multicast push component.

The multicast pull scheduling component resolves con-
tention among clients requests for the use of the warm mul-
ticast channel and establishes the order in which ADUs are
sent over that channel. In the multicast pull scheduling
component we have implemented the Longest Total Stretch
First (LTSF) algorithm, which is the current experimental
champion [1]. We have also implemented our Subsumption-
Based Scheduler (SBS) which is based on LTSF and is tai-
lored for disseminating multidimensional data [10].

Since caching can signifi cantly improve performance by
reducing the perceived latency, the middleware is designed
to provide for client-side caching of ADUs. We have imple-
mented the provably optimal caching algorithm from [7].

Transport Adaptation: The middleware utilizes the ser-
vices provided by an underlying transport layer that enables
multicast over the Internet. At this time, multicast proto-
cols are the subject of extensive research and implemen-
tation, especially in the areas of reliable multicast [8] and
end-to-end (overlay) approaches [4]. It is unlikely that a
single multicast mechanism would be able to satisfy the re-
quirement of all applications, and so the middleware must
be able to interact with various underlying multicast trans-
port protocols. However, different multicast protocols often
present different API’s and different capabilities. The ob-
jective of the Transport Adaptation Layer (TAL) is to enable
the middleware to interact with different types of multicast
transport within a uniform interface.

TAL is a thin layer that does not implement features that
are missing or are inappropriate for the underlying trans-
port. The purpose of the TAL is to provide a common in-
terface to existing protocols and not to replace features that
are not implemented in the given protocols. For example,
the TAL does not provide any security, but it simply inter-
faces with existing security modules in the underlying mul-
ticast layer. As a result, the TAL allows us to write the
middleware with a unique multicast API while retaining the
flexibility as to the exact multicast transport. TAL enables

applications to select the most appropriate transport layer
and get the benefi ts of a common multicast middleware.

Further, TAL can support a gateway application to in-
tegrate various multicast protocols. The objective of such
gateway is to convert multicast flows from one protocol to
another so that clients listening to different multicast chan-
nels can communicate with each other.

Currently, two packages have been considered: JRMS
(that supports IP multicast, TRAM, and LRMP) and Your
Own Internet Distribution (YOID) [11]. The integration of
additional protocols is an area of on-going work.

3 Related Work

Other prototype systems have addressed some of the data
dissemination issues demonstrated here. In [6], the authors
address the need for adaptive push-pull and the resulting
data consistency issues. The DBIS-Toolkit [2] introduces
a gateway for data delivery. DBIS differs from our mid-
dleware in four core items. First, our focus is to support
multicast data transfers, whereas DBIS aims at the transla-
tion between different styles of data delivery (e.g., unicast
and multicast) in one overlay network. Second, our mid-
dleware focuses on the core components that are the foun-
dations for more complex system. Thus, the current mid-
dleware bridges the gap between networking research (e.g.,
the multicast transport layer) and broader data management
issues. Third, we emphasize the performance, reliability,
and security of each individual component by means of al-
gorithmic and experimental methods. For example, we can
prove analytically the optimality of several components and
we have demonstrated their effectiveness through extensive
simulations. Finally, we support a wider range of function-
ality, such as indexing and consistency.

Several Internet multicast protocols have been proposed
over the years. Initially, the focus was on extension to the IP
protocol to enable multicast within the core of the Internet
infrastructure [5]. However, few providers have enabled IP
multicast and the focus has shifted toward overlay multicast
schemes (e.g., [4]) that implement this functionality through
application-layer modules that execute at the network
edges. The middleware extends these efforts at the trans-
port layer with advanced data management functionality.

4 Demonstration

Real-Time Outbreak and Disease Surveillance (RODS):
We will demonstrate our middleware within the context of
the RODS application. RODS is a healthcare alert system
developed by the Center for Biomedical Informatics at the
University of Pittsburgh [9]. The RODS system has been
deployed since 1999 in Western Pennsylvania and since De-
cember 2001 in Utah for the Winter Olympic Games.

 763

Proceedings of the 19th International Conference on Data Engineering (ICDE’03)
1063-6382/03 $ 17.00 © 2003 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:16:51 UTC from IEEE Xplore. Restrictions apply.

Figure 2. A snapshot of the emulated RODS
systems.

The core of RODS is the health-system-resident com-
ponent (HSRC) whose function is data merging, data reg-
ularization, privacy protection, and communication with
the regional system. Typically, users or applications re-
quest consolidated and summarized multidimensional data.
For example, queries often involve joins over several
large tables to perform statistical analysis, e.g., comput-
ing daily percentage of patients with a particular prodrome
(symptom) in a region for a one month period. Also, cur-
rently RODS displays spatio-temporal plots of patients pre-
senting with seven key prodromes through a web interface.

RODS can use our multicast middleware to support
the collection and monitoring of the large volume of data
needed for the assessment of disease outbreaks, as well as
the dissemination of critical information to a large number
of health offi cials when outbreaks of diseases are detected.

Application to RODS: The demonstration system utilizes
the middleware to disseminate summary data found in
RODS and it is a three tier application. The schema for
the database was adapted from RODS. The database, imple-
mented on an Oracle server, was populated with randomly
distributed data that would mimic the type of data that is
collected in the real system. In particular, cases of disease
and prodromes populate the database. For the purpose of
this demonstration, the data was restricted to each of the
sixty-seven counties in Pennsylvania.

The server-side modules were written in Java 2 using the
JDBC to Oracle conduits. The application server queries
the database for the counts of each distinct disease and
prodrome grouped by different attributes, for example by

county, and passes them to the middleware. The middle-
ware then transmits these counts in XML messages on the
appropriate multicast channel.

The client-side modules were written in Java 2 as well.
The client application accepts user input via a graphical
user interface that displays the map of Pennsylvania broken
down by county. When a user clicks on a county, the counts
of disease and prodromes in that county are requested via
the middleware (see Figure 2). If the requested data is not
locally cached, then it is fetched from the server. When
these counts are returned by the middleware, they are dis-
played on a separate window in a new table.

In our demonstration, we will show the performance of
various combinations of the techniques and scheduling al-
gorithms mentioned in Section 2. Specifi cally, with the help
of a dynamic monitoring tool, we will present how different
middleware confi gurations affect the perceived latency by
the clients. Additionally, we will illustrate the middleware
scalability at different requests rates.

Acknowledgments: We would like to thank all the mem-
bers of the RODS Laboratory, especially its directors M.
Wagner, and R. Tsui, for providing us with the needed in-
formation on RODS.

References
[1] S. Acharya and S. Muthukrishnan. Scheduling on-demand

broadcasts: New metrics and algorithms. Proc. of the Fourth
Annual ACM/IEEE Int’l Conference on Mobile Computing
and Networking, pp. 43–54, 1998.

[2] M. Altinel, D. Aksoy, T. Baby, M. J. Franklin, W. Shapiro,
and S. B. Zdonik. Dbis-toolkit: Adaptable middleware for
large scale data delivery. Proc. of the ACM SIGMOD Conf.,
pp. 544–546, 1999.

[3] A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber. Minimizing
service and operation costs of periodic scheduling. Proc. of
the Ninth ACM-SIAM Symposium on Discrete Algorithms, pp.
11–20, 1998.

[4] Y. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. Proc. of ACM SIGMETRICS, pp. 1–12, 2000.

[5] S. Deering. Multicast routing in internetworks and extended
lans. Proc. of the ACM SIGCOMM Conf., pp. 55–64, 1988.

[6] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham,
and P. Shenoy. Dissemination of dynamic data. Proc. of the
ACM SIGMOD, pp. 599, 2001.

[7] S. Khanna and V. Liberatore. On broadcast disk paging. SIAM
Journal on Computing, 29(5):1683–1702, 2000.

[8] M. Luby, V. K. Goyal, S. Skaria, and G. B. Horn. Wave and
equation based rate control using multicast round trip times.
Proc. of the ACM SIGCOMM Conf., pp. 191–204, 2002.

[9] RODS: http://www.health.pitt.edu/rods.
[10] M. A. Sharaf and P. K. Chrysanthis. Semantic-based delivery

of OLAP summary tables in wireless environments. Proc. of
the ACM CIKM Conf., 2002.

[11] P. Francis. Yoid: Extending the Internet Multicast Architec-
ture. ICIR Techical report, 2000.

 764

Proceedings of the 19th International Conference on Data Engineering (ICDE’03)
1063-6382/03 $ 17.00 © 2003 IEEE Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:16:51 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

