Broadcast Data Organizations and Client Side Cache *

Oleg Shigiltchoff

University of Pittsburgh
Pittsburgh, PA 15260
oleg@cs.pitt.edu

Abstract

Broadcasting provides an efficient means for dissemi-
nating information in both wired and wireless setting. In
this paper, we study different client side cache organiza-
tions for various types of multiversion data broadcast, i.e.,
data broadcast in which more than one value is broadcast
per data item. Besides increasing the concurrency of client
transactions, multiversion broadcast provides clients with
the possibility of accessing multiple server states. For ex-
ample, such a functionality is essential to support applica-
tions that require access to data sequences and have limited
local memory to store the previous versions, such as in the
case of sensor networks.

1 Introduction

A major problem on the Internet is the scalable dissem-
ination of information. This problem is particularly acute
with the presences of mobile devices due to their resource
limitations. A solution to this scalability problem is to use
multicast communication for both wireline and wireless de-
vices. In particular, in the context of wireless and mobile
environments, Broadcast push [1] takes both the commu-
nication and energy limitations into account, exploiting the
asymmetry in wireless communication and the reduced en-
ergy consumption in the receiving mode. Servers have both
much larger bandwidth available than client devices and
more power to transmit large amounts of data.

In broadcast push, the server repeatedly sends informa-
tion to a client population without explicit client requests.
Clients monitor the broadcast channel and retrieve the data
items they need as they appear on the broadcast channel.
Any number of clients can monitor the broadcast channel. If

*This work was supported in part by the National Science Foundation
award ANI-0123705 and in part by the European Union through grant IST-
2001-32645.

Panos K. Chrysanthis
Dept. of Computer Science Dept. of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260
panos@cs.pitt.edu

Evaggelia Pitoura
Dept. of Computer Science
University of loannina
GR 45110 loannina, Greece
pitoura@cs.uoi.gr

data is properly organized to cater to the needs of the client,
such a scheme makes an effective use of the low wireless
bandwidth. It is also ideal to achieve maximal scalability in
regular web environments.

To reduce access time, clients may cache data of interest
locally. However, when data are updated at the server, the
problem arises of keeping the data in the client cache con-
sistent with the updated data on the server [4, 7, 2]. The
same problem exists in the context of broadcast push, even
without client caching. Broadcasting is a form of a cache
“on the air.”

In our previous work, we propose maintaining multiple
versions of data items on the broadcast channel as well as
in the client cache [3]. Multiversion broadcast allows more
client transactions to read consistent data values (i.e., data
values that belong to the same server database state) and
complete their operation successfully. The time overhead
induced by the multiple versions is smaller than the over-
all time lost for aborts and subsequent recoveries. Further,
multiversion broadcast provides clients with the possibility
of accessing multiple server states.

A close examination of broadcast applications such as
stock trading and E-Commerce, led us to identify three
kinds of queries: Horizontal (or “historical”) queries in
which a client accesses many versions of the same data
item; Vertical (or “snapshot”) queries in which a client ac-
cesses different data items of the same version; and Ran-
dom (or browse) queries in which a client accesses data and
versions randomly. This prompted us to ask the following
question that motivated this work: What is the impact of
the broadcast organization on performance, determined by
the access time and power consumption at the clients with
different access patterns?

We proposed several broadcast organizations that are
variants of two basic multiversion organizations: Horizon-
tal and Vertical [5]. Also, we proposed a compression
scheme along the lines of Run Length Encoding (RLE) [6],
applicable to both of these organizations.

YF]',F.

prooeedindy BPIRES S HARTB SoHREfEiTEs oSO e ey SR SRS IR 34:15:41 UTC from EEE xplore. Resticton IR TER

0-7695-1921-0/03 $17.00 © 2003 IEEE

Our results showed that the average client performance is
significantly affected by the broadcast organization, that is,
where to place the data and the old versions [5]. Specif-
ically, if the primary interest of clients is in ‘“histori-
cal” queries, the best broadcast organization is Horizontal,
whereas if it is in “snapshot” queries, the best organization
is Vertical. In case of mixed environment it is possible to
support an adaptive broadcast due to the flexibility of the
broadcast format.

In this paper, we study the effect of client-side caching
in a multiversion broadcast environment. We propose and
evaluate two variants of the traditional least recently used
(LRU) caching replacement policy that explicitly consider
versions and apply our proposed compression scheme to
maximize the number of hits, effectively increasing the
cache size within specific space constraints. We also
propose a compressed, multiversion autoprefetch caching
scheme and show that it exhibits the best performance with
respect to client’s perceived latency. One of the most inter-
esting results of our evaluation is that the biggest impact
of caching is on ameliorating the negative effects due to
any incompatibilities between a broadcast organization and
a client data access behavior.

In the next section, we present the assumed system
model. We discuss broadcast organization and our compres-
sion scheme in Section 3 and client side caching in Section
4. We present our experimental platform and our experi-
mental results in Sections 5 and 6, respectively.

2 System Model

In a broadcast dissemination environment, a data server
periodically broadcasts data to a large client population.
Each period is called a broadcast cycle or beycle, while the
content of the broadcast is called a bcast. Each client lis-
tens to the broadcast and fetches data as they arrive. In this
way data can be accessed concurrently by any number of
clients without any performance degradation (compared to
“pull” or on-demand scheme). We assume that all updates
are performed at the server and disseminated from there.

Without loss of generality, in this paper we consider a
broadcast that disseminates a fixed number of data items.
The values of the data items may or may not change be-
tween two consecutive beycles. In multiversion broadcast,
a server constantly broadcasts a fixed number of versions
for each data item. At each bcycle, the oldest version of
the data is discarded and a new, the most recent, version is
included in the bcast. The number & of older versions that
are retained can be seen as a property of the server. In this
sense, a k-multiversion server, i.e., a server that broadcasts
the previous k values, is a server that guarantees the consis-
tency of all transactions with span & or smaller. Span of a
client transaction 7' is defined to be the maximum number

2

of different beycles from which 7' reads data.

The client listens to the broadcast and searches for data
elements based on the pair of values (data id and version
number). Clients do not need to listen to the broadcast
continuously. Instead, they tune-in to read specific items.
Such selective tuning is important especially in the case of
portable mobile computers, since they most often rely for
their operation on the finite energy provided by batteries
and listening to the broadcast consumes energy. Indexing
has been used to support selective tuning and reduce power
consumption, often at the cost of access time. In this paper,
we focus only on client-side caching and broadcast organi-
zation without adopting any indexing scheme.

The logical unit of a broadcast is called bucket. Buck-
ets are the analog to blocks for disks. Each bucket has a
header that includes useful information. The exact content
of the bucket header depends on the specific broadcast or-
ganization. Information in the header usually includes the
position of the bucket in the bcast as an offset time step
from the beginning of the broadcast as well as the offset
to the beginning of the next broadcast. The main question
in a multiversion broadcast organization is how to organize
the broadcast, that is, where to place the data and the old
versions. In the next section, we elaborate on this issue.

3 Broadcast Organization

Basic Organization: A set of multiversion data can be rep-
resented as a two dimensional array, where dimensions cor-
respond to version numbers (Vno) and data ids (Did), and
the array elements are the data values (Dval) of the items.
That is, Dval[i, k]=v means that k-version of data item i is
equal to v.

A simple sequential broadcast can be generated by lin-
earizing the two dimensional array in two different ways:
horizontally or vertically. In the Horizontal broadcast, a
server broadcasts all versions (with different Vno) of a data
item with a particular Did, then all versions (with differ-
ent Vno) of the next data item with the next Did and so
on. In the Vertical broadcast, a server broadcasts all data
items (with different Did) having a particular Vno, then
all data items (with different Did) having the next Vno
and so on. Formally, the Horizontal broadcast transmits
[Did[Vno,Dval]*]* sequences whereas the Vertical broad-
cast transmits [Vno[Did, Dval]*]* sequences.

The resulting bcasts have the same size for both organi-
zations, but differ in the order in which they broadcast the
data values [5].

Compressed Organization: In both cases, Horizontal and
Vertical, the broadcast size and consequently the access
time can be reduced by using some compression scheme. A
good compression scheme should reduce the broadcast as

YF]',F.

prooeedindy BPIRES S HARTB SoHREfEiTEs oSO e ey SR SRS IR 34:15:41 UTC from EEE xplore. Resticton IR TER

0-7695-1921-0/03 $17.00 © 2003 IEEE

much as possible with minimal, if no, impact on the client.
That is, it should not require additional processing at the
client, so it should not trade access time (or power for tun-
ing) for processing time (or power for computing). We pro-
posed a simple compression scheme that exhibits the above
properties [5].

Our compression scheme is based on the observation
that data values do not always change from one version to
another: Dvalli, k]= Dvalli, k+1]= ...= Dvalli, k+N]=v,
where the value of the item having Did=i remains equal to
v for N consequent versions. Clearly, there is no reason to
broadcast all versions of a data items if its Dval does not
change. Instead, the compressed scheme broadcasts Dval
only if it is different from Dval of the previous version. In
order not to lose information it also broadcasts the number
of versions having the same Dval.

The generation of a compressed broadcast proceeds in
two steps. In the first step, any sequence of elements with
repetitive data values is replaced with the first element of
the sequence and the number of additional repetitions (Dval,
Repetition) [5]. For instance a sequence of 1 1 1 1 is trans-
formed in the compressed value (1, 3).

In the second step, the Horizontal and the Vertical broad-
cast are produced by using horizontal and vertical lineariza-
tion as discussed above, respectively. Formally, the Hori-
zontal broadcast produces

[Did[Vno(Dval, Repetition)]*]* sequences,
and the Vertical broadcast produces

[Vno[Did(Dval, Repetition)]*]* sequences.

4 Client side cache

Caching reduces the latency in answering queries and the
need to access the broadcast channel for every data item. In
this section, we describe how caching can be used in con-
junction with multiversion broadcast.

4.1 LRU Variants

The simplest way to integrate caching with multiversion
broadcast is to assume that data elements are the units of
caching and adopt the traditional Least Recently Used re-
placement method (which we will refer to as LRU-standard)
to discard data elements from the cache when the cache runs
out of space. Each cache entry has three basic fields for each
multiversion data element: Did, Vno, and Dval; and a fourth
field: TimeStamp, which is the beycle during which the el-
ement was last read. Following the LRU policy, when the
cache becomes full, the cache element with the oldest (i.e.,
smallest) TimeStamp is selected for replacement.

Given that a data element in a multiversion broadcast
corresponds to a version of a data item, there are two rea-
sonable modifications to the LRU-standard. The first one is

to shift the priority to the element having the oldest version,
choosing for replacement the data item with the oldest Vo
instead of the data item with the oldest TimeStamp. The ra-
tionale for this modification is that the oldest version of a
data item has the least possibility to be used in the future. If
multiple data items are associated with the oldest version,
the LRU-standard is used to select the one to be replaced.
We call this scheme LRU-global and has the same space re-
quirements as LRU-standard’.

LRU-global is expected to behave effectively in the same
way as LRU-standard for skewed data accesses, where the
most frequently accessed data are those with most recent
versions, while it does not prematurely discard more recent
versions in favor of older ones.

The second modification is very similar to the one in
LRU-global except that the element that is selected as vic-
tim has the same Did as the replacing element. We call this
method LRU-local since it tries to exploit the local proper-
ties of the data. If there is no element in the cache with the
same Did to be replaced, the LRU-global is used.

4.2 Compressed LRU Variants

Given the performance gains of our compression scheme
[5], one should expect that a compressed caching scheme
should also have a significant impact on performance. Our
LRU-compressed methods is a variant of LRU-standard
that operates on a cache with “compressed” data elements.
LRU-compressed is compatible with our compressed broad-
cast since we use the same compression scheme for both.
In the case of compressed broadcast, the data elements can
be directly cached. In the case of uncompressed broadcast,
data elements need to be combined with the corresponding
already cached versions of the data.

Our compression scheme requires that each cache entry
has one extra field f, which contains information of how
many adjacent versions of this data element have the same
Dval. The total number of the required fields is five: [Did,
Vno, Dval, TimeStamp, f]. For example, assume some data
elements [a,b], [a,b+1], and [a,b+2] have Dval= x, and the
requested data element to be cached is [a,b+1]. In this case,
the LRU-compressed will add in the cache the element [a,b]
and write 2 into the f field, reflecting the fact that data ele-
ments [a,b+1] and [a,b+2] have the same Dval= x as [a,b].
Similarly, the requested element can be found in the cache
by matching first the Dval value and then, checking if the
requested version is within the interval Vno and Vno + f.
When the cache is full, the cache element with the oldest
TimeStamp is selected as the victim.

Clearly, LRU-compress requires more space to store a
cache line, but by comparing LRU-standard and our pro-

! An alternative is to select the victim randomly. In such a case LRU-
global needs only three fields: [Did, Vno,Dvall].

YF]',F.

prooeedindy BPIRES S HARTB SoHREfEiTEs oSO e ey SR SRS IR 34:15:41 UTC from EEE xplore. Resticton IR TER

0-7695-1921-0/03 $17.00 © 2003 IEEE

posed LRU-compressed, this small overhead can effectively Parametef Par?meter de§cripti0n
increase the cache size and consequently, the number of Compression Basic Sequential broadcast
hi The LR . h h . Compressed broadcast

its. (The U_S.tandard r.equlres three cac e.entnes to Broadcast Number Number of broadcast cycles
store the three versions of Did=a.) Of course, as in the case Beast Type Vertical broadcast (VB)
of a compressed broadcast, the LRU-compressed depends Horizontal broadcast (HB)
on a parameter related to the probability that the adjacent Size Number of data items

. Versions Number of versions

versions of the same data element have the same value. For- & -

Randomness Degree 0-1, (0: all versions have the same value,
mally, we define the Randomness Degree parameter as fol- 1: versions are completely independent)
lows. Let Randomness|k,il=0 if Dvallk, i] = Dval[k, i+1] Length Size of a data element; default= 16
and Randomness[k,i]=1 otherwise. Then average random- (size of an auxiliary symbolis 1)

. Elements Number of the requested data items
ness Randomness[k] of k-data element over all versions — —
. Access Type Random uniform distribution
represents how frequently the data value of this data ele- Random Zipf distribution of data
ment changes. Then it is natural to use this average ran- Random Zipf distribution of versions
domness as a parameter (Randomness Degree) describing Xertﬁcal aclcess (V?})IA)
o1e . . orizontal access
the PI‘Obablllty that Dvalfk, 7] is not equal to Dvallk, l+,]]' StrideN Number of the strides for Vertical/Horizontal
For instance, Randomness Degree=0 means that Dval[k, i]= accesses
Dvallk, i+1] for any i. StrideL Length of the strides for Vertical/Horizontal
accesses
. Cache Size The size of cache
4.3 Autoprefetch Compressed LRU Variants : ‘

Tries Number of the same experiments to reduce

deviations

All the caching schemes presented thus far are passive
ones, in the sense that if a client does not refer to a data
element, the data element is not cached. However, under
certain circumstances when energy is not a major issue as
in the case of stationary wireless devices or docked mobile
ones, LRU-compressed can be made to behave pro-actively
by prefetching newer versions of data that have already be-
ing cached. We call this LRU-compressed autoprefetch.

LRU-compressed autoprefetch is similar to LRU-
compressed (the same search and replacement mecha-
nisms), but it keeps updating the cache elements during a
broadcast even if the client does not access that data ele-
ment. When the client reads the broadcast and it appears
that the newest version of a data element has the same Dval
as the second newest version of the data element, the cache
f field is incremented indicating that there is now a longer
sequence of versions with the same Dval. For example, if
the cache has Dval[a,b,f=3]=x and the broadcast gives that
Dvalla,b-11=x. Then the element in the cache is updated to
Dvalla,b,f=4]=x. It can be seen that the cache entry con-
tains in fact more data items than before and it can even
increase the span of local transactions beyond the one sup-
ported by the server. This fact is also confirmed by our ex-
perimental results.

Other modifications can also be possible. For exam-
ple, LRU-compressed autoprefetch could use Vno instead
of TimeStamp as the selection factor for cache replacement.

S Experimental Testbed

Our simulator consists of a broadcast server which
broadcasts a specified number of versions of a set of data
items, and a client which receives the data. The number of

4

Table 1. Simulation Parameters

data items in the set is determined by the Size parameter
and the number of versions by the Versions parameter. The
communication is based on the client-server mechanism via
sockets. For simplicity the data values are integer numbers
from 0 to 9.

The simulator runs the server in two modes, corre-
sponding to the two broadcast organizations, namely Verti-
cal Broadcast (VB) and Horizontal Broadcast (HB) (deter-
mined by the Bcast Type parameter). The broadcast is either
Compressed or basic Sequential (determined by the Com-
pression parameter). The server generates broadcast data
with different degree of randomness (from O to 1), which is
determined by the parameter Randomness Degree.

The client generates the data elements (various versions
of data items) to access before tuning into the broadcast.
The parameter Elements determines the number of the data
elements to be accessed. The client searches the data by us-
ing five different access types (determined by Access Type
parameter): In Random with uniform distribution, Did’s and
their Vno’s are determined randomly with uniform distri-
bution to simulate the case when all versions of all data
elements are equally important for a client. In Random
with skewed distribution, Did’s are determined randomly
with Zipf distribution, Vno’s are determined randomly with
uniform distribution. In Random with skewed distribution
of versions, Did’s are determined randomly with uniform
distribution, Vno’s are determined randomly with Zipf dis-
tribution. In Vertical access (VA) and Horizontal access
(HA), the requested data elements are grouped into a num-
ber of strides (determined by StrideN), each containing [el-

YF]',F.

prooeedindy BPIRES S HARTB SoHREfEiTEs oSO e ey SR SRS IR 34:15:41 UTC from EEE xplore. Resticton IR TER

0-7695-1921-0/03 $17.00 © 2003 IEEE

20 35
Vertical broadcast

Random skewed data access
Number of elements=3 30

Vertical broadcast
Random skewed data access
Number of elements=3

sed

utoprefelc

—@— LRU standard
—0— LRU global
—0— LRU local

—5- LRU compressed
15 | —0 LRU compr. autoprefetch

Access gain (%)

Broadcast number

Broadcast number

Figure 1. Access
gain with Caching

Figure 2. Hit rate for
cache schemes

ements (determined by StrideL). (Clearly, StrideL*StrideN
= Elements.) For example, if StrideN=2 and StrideL=35, for
VA, the client searches for two versions (determined ran-
domly with uniform distribution) of 5 consecutive data ele-
ments. For HA, the client tries to find 5 versions of 2 data
items (determined randomly with uniform distribution).

The client may tune in at any point in the broadcast, but
it starts its search for data elements at the beginning of the
next broadcast. If a client tunes in the middle of a broadcast,
it sleeps and wakes up at the beginning of the next broad-
cast which is determined by the next broadcast pointer in
the header of each bucket. A client reads a broadcast until
all the desired data elements are found. In this way, it is
guaranteed that the desired data elements are found within
a single broadcast. This scheme is applicable for both static
access, in which the client knows all data it wants to ac-
cess before the broadcast and dynamic access, in which the
client determines the next data to access after it finds the
previous data. Note that for the broadcast with the dynamic
access, the performance is determined by how fast the data
is found in the last bcycle. Thus, by simulating only the
last broadcast, it is possible to estimate the performance for
both cases.

While the client is reading from the broadcast, it counts
the number and type of characters it reads. This can be con-
verted into Access Time — the time elapsed between the time
the client starts its search and until it reads its last requested
data element, given a specific data transmission rate. In
our study, access time is the measure of performance for
both response time and power consumption (recall we do
not consider selective tuning in this paper, hence a client
stays in active mode throughout its search). The smaller the
access time, the higher the performance and the smaller the
consumption of energy. We assume that the auxiliary char-
acters necessary for description of the data repetitiveness
consume one time unit and the data elements may consume
4, 16, 64, etc. time units, depending on complexity of the
data. The Length parameter is used to specify the size of
data element.

To evaluate the effect of the client side cache the client

—e— LRU standard Vertical broadcast
—o— LRU compr. autoprefetch Vertical access
25 Long client (N=15) 25

—e— LRU standard Vertical br t
5 LR Sompr awtopreecn Y rical broadoast

Long client (N=15)

Access gain (%)
Access gain (%)

UMMWMM%

0 10 20 30 40
Broadcast number

Broadcast number

Figure 3. Access
gain for VB-VA

Figure 4. Access
gain for VB-HA

reads up to 40 different beycles (parameter Broadcast Num-
ber). The cache size was determined by Cache Size pa-
rameter. In order to estimate confidence intervals we per-
formed the measurements 80 times (parameter Tries). Then
we calculate the average access time and the correspond-
ing standard deviation which are shown in our graphs. The
discussed parameters are summarized in Table 1.

6 Performance Results

We have evaluated all the cache replacement strategies
proposed above: LRU-standard, LRU-global, LRU-local,
LRU-compressed, LRU-compressed-autoprefetch. In all
the experiments reported below, the parameters settings are:
Size=25, Versions=25, Randomness Degree=0.5, Broad-
cast number = 40 and Length=16 which may correspond
to 16 bytes.

To find which of these replacement strategies performs
the best, we compared them with respect to both average
access time reduction gain and hit rate. The results are pre-
sented in Figure 1 and Figure 2 (both Elements=3, Vertical
Broadcast, Random skewed access, Cache Size=30). The
highest access gain and hit rate were shown by LRU com-
pressed and LRU compressed autoprefetch (the latter one
has slightly better performance): about 10% of access gain
and about 20% of hit rate. The other replacement strategies
have shown smaller access gains (about 2-5%) and hit rates
(about 4-6%). The leadership of the two compressed re-
placement strategies can be explained by the fact that the
effective number of data elements stored in these caches
cache is 3—4 times greater than those stored in the cache
with the other replacement strategies. This causes the cor-
responding 3—4 times performance improvement. Hence,
addition of only one extra field (repetition number) to exist-
ing fields of the cache (in other words, reduce the number of
cache slots by 20% by using 5 fields for LRU-compressed
instead of 4 for LRU-standard) improves the performance
about 200% (see Figure 1).

LRU-standard, LRU-global, and LRU-local showed sim-
ilar performance, which indicates that replacement strate-

YF]',F.

prooeedindy BPIRES S HARTB SoHREfEiTEs oSO e ey SR SRS IR 34:15:41 UTC from EEE xplore. Resticton IR TER

0-7695-1921-0/03 $17.00 © 2003 IEEE

14 {—®— LRU standard
—o— LRU compr. autoprefetch

—e— LRU standard Horizontal broadcast

Horizontal broadcast 1
Vertical access
Long client (N=15)

—o— LRU compr. autoprefetchHorizontal access
Long client (N=15)

Access gain (%)
Access gain (%)

0 10 20 30 40

Broadcast number Broadcast number

Figure 5. Access
gain for HB-VA

Figure 6. Access
gain for HB-HA

gies based on the oldest versions choose for replacement
effectively the same data elements as the standard strategy
based on the least recently used data element.

In all of our experiments we have considered all five
replacement strategies but for clarity for the next 4 fig-
ures we will present data only for LRU standard and LRU-
compressed autoprefetch. The behavior of the other three
schemes is similar.

The next experiments were performed with Elements=15
to see the cache behavior in the case of different combi-
nations (vertical-vertical (VB-VA), vertical-horizontal (VB-
HA)) of the broadcast organization and client access. Fig-
ure 3 and Figure 4 show that the cache performs better if
access strategy is different from the broadcast organization.
In such a way the cache reduces the gap between vertical
broadcast- vertical access and vertical broadcast-horizontal
access performances. For vertical broadcast-vertical ac-
cess the LRU compressed autoprefetch cache almost has
no impact on the performance, and for vertical broadcast-
horizontal access it reduces the access time about 6% for
LRU standard and 11% for LRU compressed autoprefetch).

Similar effect can be seen for HB and VA/HA. In Fig-
ures 5 and 6, we again see that if broadcast organization
and access method are different, HB and VA in this case,
the access gain is greater than if they are the same.

The last results, shown in Figures 7 and 8, indicate that
increasing the cache size over a particular limit does not im-
prove performance. For randomly uniformly accesses and
15 data elements, we evaluated access gains and hit rates for
different cache sizes by using LRU compressed cache. In
the beginning, when cache size increased from zero, the per-
formance improved quickly, but after the cache size reached
50, the performance improvement slowed down and leveled
for cache sizes greater than 70. This means that for 625
(25 data items times 25 versions) data elements the optimal
cache size is about 50-70, which is 8-11% of the amount
of data. Increasing of the data items to 50 and versions to
50 lead to increasing the optimal size of the cache to about
200-220 that also is 8-9% of the amount of data.

6

Vertical broadcast
Random access

0
0 Vertical broadcast
% Number of elements=15

00

Random access
Number of elements=15

i
194694

Access gain (%)
Hit rate (%)

0 5 10 15 20
Broadcast number

Broadcast number

Figure 7. Access
gain vs. cache size

Figure 8. Hit rate vs.
cache size

7 Conclusion

In this paper, we studied the effect of client caching in a
multiversion push environment. Different cache schemes
based on Least Recently Used replacement method have
been evaluated. The use of our compression technique in
the client cache exhibited similar advantages as in the case
of the compressed broadcast, effectively increasing the size
of the cache and consequently, the number of hits. How-
ever, the most interesting property exhibited by the client
caching is that it can be used as a tool to ameliorate the neg-
ative effects due to any incompatibilities between a broad-
cast organization and a client data access behavior.

References

[1] S. Acharya, M. Franklin, S. Zdonik, “Balancing Push
and Pull for Data Broadcast”, ACM SIGMOD Conf.,
pp- 183-194, 1997.

J. Jing, A. H. Elmargarmid, S. Helal, R. Alonso, “Bit-

Sequences: An adaptive Cache Invalidation Method

in Mobile Client/Server Environment”, ACM/Baltzer

MONET, 2(2):115-127,1997.

E. Pitoura and P. K. Chrysanthis, “Exploiting Versions

for Handling Updates in Broadcast Disks”, 25th VLDB

Conf., pp. 114-125, 1999.

[4] J. Shanmugasundaram, A. Nithrakashyap, R.

Sivasankaran and K. Ramamrithamt, “Efficient Con-

currency Control for Broadcast Environments”, ACM

SIGMOD Conf., pp. 85-96, 1999.

O. Shigiltchoff, P K. Chrysanthis and E. Pitoura,

“Multiversion Data Broadcast Organizations”, 6th

ADBIS Conf., pp. 135-148, 2002.

[6] S.W. Smith, The Scientist and Engineer’s Guide to
Digital Signal Processing, California Technical Pub-
lishing, 1997.

[7] K.L. Wu, P.S. Yu, M.S. Chen, “Energy-Efficient Mo-
bile Cache Invalidation”, Distributed and Parallel
Databases, 6(4):351-372, 1998.

(2]

(5]

YF]',F.

prooeedindy BPIRES S HARTB SoHREfEiTEs oSO e ey SR SRS IR 34:15:41 UTC from EEE xplore. Resticton IR TER

0-7695-1921-0/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

