Fine-Grained Parallelism in Dynamic Web Content
Generation: The Parse & Dispatch Approach*

Stavros Papastavrou!, George Samaras', Paraskevas Evripidou!,
Panos K. Chrysanthis?

! Computer Science Department, University of Cyprus,
75 Kallipoleos St. P.O.Box 20537, Nicosia, Cyprus
{stavrosp, cssanara, skevos }@cy.ac.cy
2 Computer Science Department, University of Pittsburgh,
Sennott Square, Pittsburgh PA 15260, USA
panos@s. pitt. edu

Abstract. Dynamic Web content is gaining in popularity over traditional static
HTML as the means of providing Web users with personalized and dynamic
information. To enable dynamic content, various technologies have been
developed for embedding of script code blocks into static HTML files in order to
perform various forms of tasks such as session tracking, bank transactions,
financial calculations, products catalog generation, dynamic image generation, or
even fetching information from remote servers. In this way, static HTML pages
are transformed into dynamic web pages. Typically, dynamic Web pages include
a number of tasks that are executed in a serial manner by current Web servers. In
this paper, we propose a back-end, finer-grained parallel approach for dynamic
content generation, and elaborate on how it affects the design and performance of
Web servers. We have developed a prototype Web server that supports the
parallel processing of tasks involved in the dynamic content generation with
improved throughput as compared to the classical (serial) approach.

1 Introduction

Web servers are the basic component of the World Wide Web [4] in terms of content
delivery. Early Web servers, such as the NSCA HTTPd Web server [15], were used for
dissemination of static documents (files) based on a specification called the Hypertext
Markup Language [13], a standard for publishing documents on the Internet. The need,
however, for the delivery of non-static content, such as documents customized on the
fly based on information provided by a single user, led to the specification of the
Common Gateway Interface (CGI) [8, 21]. Web servers supporting the CGI generate
dynamic content by running external programs (executables or scripts) that typically
access an application specific database. According to CGI, each client request requires
the separate execution of an external program.

* This work is partially funded by the Information Society Technologies programme of the European
Commission under the IST-2001-32645 DBGlobe project.

With the great expansion of the Web, the need for a more scalable, persistent, and
faster alternative to CGI revolutionized the design of Web servers. Modern Web
servers [14] support multiple runtime environments in which various augmented
versions of HTML code execute in a scripting mode in order to generate dynamic
content. Such a runtime environment executes either as library code within the Web
server process, or as a separate process communicating via a standard application
interface. Microsoft’s Active Server Pages [1], Macromedia’s Cold Fusion [12], and
PHP [19] are examples of such a runtime technology that support augmented versions
of HTML.

A typical augmented HTML script file that is executed in order to generate a
dynamic Web page consists of both standard HTML code and multiple insertions of
vendor-specific script code. A piece of script code (code block) may map to a simple
task, such as an animated counter or a personal menu bar generation, to complex tasks,
such as lengthy distributed database transactions. As we explain later on, there can be
notable delays in generating a dynamic Web page due to (a) the serial manner in which
traditional Web servers execute those tasks, and (b) the long duration of executing a
particular task.

In order to boost performance, recent studies propose a number of content-aware and
link-aware dispatching and load balancing algorithms to be used over a cluster of Web
servers [3, 5, 10, 11, 20]. According to content-aware dispatching, HTTP requests are
routed to specialized Web servers based on their content type whereas link-aware
dispatching routes HTTP request by mapping their URL using a hash table. Both
approaches can boost the total throughput of a Web site’s hosting environment by
independently executing entire HTML scripts in parallel, however, they do not improve
the throughput of a single Web server per se.

In this paper, we focus on improving a Web server’s performance in producing
dynamic Web content by introducing parallelism at finer granularities. In nutshell, our
idea is to execute the tasks included in a dynamic Web page in parallel based on the
proposed Parse and Dispatch approach. Our goal is not limited only in accelerating
Web server performance, but also in identifying the design principles and limitations of
such an approach. We study a novel Web server design and compare its performance to
that of a traditional Web server that executes those tasks in a serial manner. To the best
of our knowledge, there is neither related literature nor a Web server product that
employs such a design. Furthermore, we study the design and performance challenges
for our approach in the presence of dependencies between tasks included in a dynamic
Web page.

As opposed to Proxy-based [7] and server-side caching [6] approaches, Parse and
Dispatch is introduced in this paper as a back-end Web server acceleration technique,
in the sense that it is employed at the opposite side from the Web client, i.e., at the
other end of the client/server communication path. The path may also include a client
cache, a proxy server caching system(s), and a Web server cache plug-in mechanism.

The rest of this paper is organized as follows: In Section 2, we discuss some
necessary background information on dynamic content and how Web servers generate
and deliver it. In Section 3, we introduce and analyze our methodology for dynamic
content generation, while in Section 4 we put our methodology to the test assuming no
dependencies among tasks. However, in some cases, dependencies may exist between

two (or more) tasks included in an HTML script file. For example, the total amount
owed by a visitor in a retail Web site cannot be generated unless her shopping cart has
been validated. In Section 5, we present one way to handle dependencies using our
approach. We conclude and discuss future work in Section 6.

2 Background Information

2.1 Dynamic Content

Modern Web sites utilize dynamic content technology in order to respond with
dynamic and personalized content to clients/visitors without having to construct and
store it a-priori. Thus, it is possible to tailor the content served to a client according to
her most recent needs and expectations, while saving huge amounts of disk space. Web
applications that are benefited by dynamic content technology include e-commerce,
online financial brokers, portals and news related sites.

AR abcasl:bar - Microsolt Internet Explorer — o) x|
A Edt View Favertes Took Hep [= |

+ - 4 v D E A Doeach wFavormes Pieds 3| D S = 2
Addess| www.cdyramic_page com =] 6o [urks™
=l

Top Menu Bar
o

© [%2]

. O

m Main)

= Article(s) 2 o

C o [}

(0] - D

=

= 55

&= ©§

(0] x

= L

Stock Indices

=
&) Dore o intermet 4

Figure 1: The layout of a typical stock-related dynamic Web page

A typical dynamic Web page includes tasks that are processed at the Web server site
in order to produce the dynamic fragments of the Web page. Although the number of
tasks may vary across Web pages of different applications, we assume that this number
lies between four and eight. For instance, consider a typical stock-related dynamic page
(Figure 1) with the following tasks:

— Session handling (not seen in Figure 1).
— Left menu bar generation. Links are dynamically generated from the local content
database.

— Top menu bar generation. Links are customized to a particular client’s preferences
stored in the local content database.

— One or more main articles/stories retrieval. Articles are extracted from a corporate
news database.

— Current stock market indices retrieval. Indices are pulled from a remote financial
provider via XML, and they can be presented either graphically or in text.

— Currency exchange rates retrieval (Similar to stock market indices).

In addition, e-commerce dynamic Web pages include tasks such as catalog
generation code, user cart handling code, credit card verification, banner
advertisements rotation, counter update and more. Product customization pages (i.e.,
from a computer retailer site) include tasks that consist of thousands of lines of script
code and multiple database queries in order to generate dynamic Web forms for
product customization.

Dynamic Web pages are generated with the parsing of static files (HTML script
files) normally located in the file system of the Web server but not necessarily under a
public directory. Such files may have extensions such as “.asp”, “.cfm”, or “.php” that
denote different scripting languages from various vendors. The asp extension stands for
Active Server Pages, a technology developed by Microsoft Corp. that supports the
insertion of Visual Basic code (vbscript) blocks that may generate dynamic content.
Cold Fusion, a product of Macromedia Inc., uses a tagged-based script code while
PHP, o project of Apache Software Foundation, supports a Unix-like script code.

In any case, we can safely assume that the static content (HTML) and dynamic
content (blocks of script code) are both arranged in HTML script files in an interleaved
manner. Static content is transmitted to the Web user as is. The blocks of script code
that perform the tasks related to the dynamic Web page, however, are substituted by
their execution output which is then transmitted to the Web user.

This interleaved usage of static and dynamic content is a popular way of defining the
layout/arrangement of the dynamic parts in a dynamic Web page. For example, the
<table> tag, and the <tr> and <td> sub tags, are used to define the placement of the
dynamic content under the assumption that a Web page’s layout can be simply
overviewed as a grid. Consequently, HTML script files are often called “HTML
templates” and are widely employed in Content Management Tools.

In past few years, Content Management Systems (CMS) have been gaining in
popularity as the means for serving and managing dynamic Web content. Such tools
provide a secured graphical user interface for the Web site administrator to update the
contents of the Web site by updating the site’s database. To materialize a dynamic Web
page, the CMS parses an HTML template given that page’s name or unique identifier.
The http://host.com/generatepage.asp?pagename=home URL, for example, will
generate on the fly the home page of the host.com site.

2.2 Dynamic Content Generation
In this subsection, we illustrate in brief the traditional processing steps taken by a Web

server in order to generate dynamic content. We assume the usage of a Multi-Threaded
Web server over Event-Driven or Single-Process Web servers (for a descriptive

comparison between Web server architectures, please see [18]). This assumption is
based on the fact that popular multi-threaded Web servers, such as Microsoft’s Internet
Information Server [16] and Apache’s HTTP Server [9], generate the substantial
majority of dynamic Web content today. For a detailed report on Web server usage,
please see [17].

Figure 2 highlights the structure and functionality of a multi-threaded Web server. A
single parent process accepts incoming HTTP requests from Web clients in a sequential
manner through a server socket. Upon arrival of a new request, an available worker
thread is selected out of a pool of suspended pre-dispatched threads in order to serve
that request. Meanwhile, the parent process continues execution free to accept more
requests, enabling in this way the concurrent processing of multiple clients. Once a
worker thread has served its assigned request, it places itself back to the thread pool.

An upper limit on the number of worker threads allowed to execute in parallel is set
in order to ensure the proper (non-thrashing) execution of the Web server. In popular
Web servers, the pre-configured size of the thread pool ranges from five to twenty. In
the case that all worker threads are busy, excessive client requests are not accepted,
however, they are queued in the special buffer called backlog for upcoming admission.
With the backlog buffer full, additional client requests are refused.

backlog queue

requests accepted

main server
process

requests assigned to workers

R
@ pool of

worker threads
v V vV

responses transmitted to clients

Figure 2: A multi-threaded Web server

Client requests for static content refer to files located in the file system of the Web
server under a pubic html directory. Static HTML files usually have a “.html” or “htm”
extension and contain only standard HTML code. Following a client request for a static
content, a worker thread extracts the file name from the client’s HTTP request header,
and searches for that file, first, in the Web server’s cache, and then in the file system.
Once the file is found, an HTTP response header is sent to the client followed by the
contents of the requested file. The contents of a static HTML file are not always sent in
one chunk. A repeat-until loop loads and transmits successive fragments of the file until
the end of the file is reached.

As mentioned above, client requests for dynamic content refer to HTML script files
(usually having an asp, cfin, or php extension). Following a client request, the worker

thread assigned to the particular client must locate the appropriate file and, according to
the file’s extension, invoke a handler method from the appropriate library provided by
the corresponding vendor.

parsing begins
<ht m > <head>

<title>A Dynam c Page</title> parsing halts
</ head><body>
<tabl e w dt h=100% M
<Tr><td col span=3> Y execution
<! //code block #1 for top —_—

// menu bar generation .
> \\ parsing
</td></tr> resumes

<tr><td> L

<! //code block #2 for left _
// menu bar generation

1>

</td><Td> /

<! //code block #3 for main . i
[larticle retrieval parsing continues

>

<! //code block #4 for
/'l exchange rates retrieval

>

</ td><td>

<! //code block #5 for stock
//indices retrieval

>

</td></tr>

</t abl e></ body></ ht m >

Figure 3: Contents and parsing of file MainPage.dyn

Running within the worker thread’s resources, the handler method opens and parses
the script file. Static HTML content is appended in a temporary buffer while script code
forces the handler method to pause parsing, for as long as it takes, in order to execute
the task. The script code output (in HTML) is appended in the buffer (buffered mode)
and the handler method continues parsing. With the end of file reached, the entire
contents of the buffer are transmitted to the client following an HTTP response header.
Some scripting languages explicitly allow the transmission of content as soon as this
becomes available (unbuffered mode), however, a comparison in performance and
network utilization between buffered and unbuffered content transmissions on Web
servers remains an open topic for research. In either case, blocking the parsing of the
HTML script file for task execution directly hurts performance since it creates an
unnecessary processing bottleneck.

Figure 3 demonstrates the processing steps required to generate a sample home page
by executing the MainPage.dyn' HTML script file that includes five tasks. The vertical
arrows, pointing downward, represent the parsing steps and the horizontal lines the

1 We use our own file extension (.dyn), which stands for ‘dynamic’, for HTML script files in
favor of no particular vendor.

temporal halting of the parsing in order to execute the encountered script code. The
generated content is rendered by the client’s browser to display a top menu bar, a left
menu bar, the main article of the day followed the current exchange rates, and finally
the current stock marker indices. The two menu bars are generated by running queries
on a local (to the Web server) database provided the personal preferences of the user.
The main article is loaded from a news database, while the current exchange rates and
stock indices are acquired from a remote financial provider via XML.

In order to generate the dynamic content of MainPage.dyn, the parsing of the file
was suspended for five times. Table 1 contains an approximation of the execution time
for various tasks that scripting code might refer to. The execution time of tasks depends
on various parameters such as computational complexity, hardware power and network
speed.

Table 1: Approximate execution time for various tasks

Task Execution Time

Counter Update ~ 10 ms

Session Handling ~ 10 ms

SQL execution 10 to 100 ms (depending on
complexity)

Image Generation Multiples of 10 ms (depending

or resolution and contents)
Remote data retrieval ~ Multiples of 100 ms (depending
on connectivity)

3 A new Model for Dynamic Content Generation

With both the popularity of dynamic content and number of Web users growing, a
more efficient processing methodology is needed for materializing dynamic Web
pages. The current serial processing manner in which the tasks of a dynamic Web page
are executed by traditional Web servers is computationally and implementation-wise
simple, yet it is not efficient. We realize efficiency in terms of computational resources
utilization that is translated into improved Web server throughput.

Our suggested methodology puts more parallelism in dynamic content generation by
processing the tasks, embedded in a dynamic HTML file, in a concurrent fashion based
on the proposed Parse and Dispatch approach. Our methodology provides an
additional level of parallelism under the one obtained by using clustered Web servers.
We next present our approach that assumes no dependencies between tasks.

3.1 The Parse and Dispatch Approach without Dependencies
The intuition behind the Parse and Dispatch approach is to enable the

uninterrupted/non-blocking parsing of an HTML script file by assigning the execution
of the script code blocks (tasks) to auxiliary threads that run in parallel. The approach

consists of two phases: (a) the Content Expansion Phase, and (b) the Content
Serialization Phase.

The Content Expansion Phase. Following a client request, the Web server selects an
available worker thread out of the thread pool that will carry out the request. The
worker thread initializes an indexed buffer (a variable-length array with variable-length
strings as elements) that will be used as a temporary content storage. With the current
index at the buffer set to 1, the worker thread locates the requested HTML script file
and opens it for parsing.

The first consecutive block of static content (see Figure 4) is stored as a character
string at buffer index 1 and the current index is increased by one. Then, the thread
worker detects the first block of script code and initializes an auxiliary thread that will
execute the code. Reserving the current index on the buffer for the auxiliary thread, the
worker thread increases the current index by one and continues parsing.

parsing begins
<htm > <head> —
<title>A Dynanic Page</title> s—1y 1
</ head><body>
<tabl e wi dt h=100% vy 2

<Tr><td col span=3>

— V)
<! //code block #1 for top by 3
/1 menu bar generation /
1> _/6 24
Q

</td></tr> 5
<tr><td>
<! //code block #2 for left -

//menu bar generation @
1>
</ t d><Td>

<! //code block #3 for main ¥
/larticle retrieval parsing continues

1>

<! //code block #4 for
|/ exchange rates retrieval

1>
</td><td>

<! //code block #5 for stock indexed buffer
//indices retrieval

1> S: static content

</td></tr> D: dynamic content

</ t abl e></ body></ htm > A: auxiliary thread

Figure 4: Contents and parsing of file MainPage.dyn using the Parse and Dispatch approach

The same tactic is followed for the rest of the file contents. In case of having two
consecutive blocks of script code (with no static content separating them), two
successive buffer indices will be reserved. A block of uninterrupted static content is
never split. The content expansion phase ends as soon as all tasks are under processing.

The Content Serialization Phase. An auxiliary thread that finishes its script code
execution, stores the generated content in the buffer position that was reserved for it
during the content expansion phase and terminates. The worker thread waits for all the
dynamic content to become available. (In our current implementation, the worker
thread detects the termination of all the auxiliary threads by periodically checking the
reserved buffer indices.) With all the auxiliary threads terminated and the dynamic
content available, the worker thread scans the buffer and transmits both static and
dynamic content to the client. Scanning the buffer from index 1 and up ensures that the
content parts are delivered to the client in the right order.

Figure 4 illustrates both the expansion phase and the usage the indexed buffer. The
vertical arrow, pointing downward, represents the file parsing, while a curved arrow
represents the concurrent execution of the encountered script code by an auxiliary
thread. The “S” arrows denote the placement of static content in the buffer, and the “D”
arrows the placement of the dynamic content in the buffer. Figure 5 displays the a
processing timeline of the approach.

J, expansion J, serialization phase J,
phase

| worker waits auxs to finish |

c
5th task (aux. thread #5)

4th task (aux. thread #4)

b
l 3rd task (aux. thread #3)

2nd task (aux. thread #2)

€3> 4t task (aux. thread #1) <«d>»

time -

a: initialization & begin parsing & 1st task found
b: parsing until next task found

c: all tasks are under processing

d: preparing & transmission of generated content

Figure 5: Processing timeline of file MainPage.dyn using the Parse and Dispatch approach

3.2 Improving the Content Serialization Phase

During the content serialization phase, the worker thread makes sure that all the
auxiliary threads have stopped executing by periodically checking whether they have
placed their generated content in their reserved buffer index. In order to minimize the
overhead of such a procedure, the ideal scenario would be that all the auxiliary threads
terminate as soon as the worker thread finishes parsing and enters the content
serialization phase.

The worker thread, however, enters the content serialization phase before all of the
auxiliary threads have terminated and wastes valuable computational resources waiting
for them (point ¢ in Figure 5). We can exploit those wasted resources, by assigning to
the worker thread itself the execution of the last script code block of the HTML script
file. The benefits of such an optimization are twofold. First, we shorten the period that
the worker thread spends waiting for the auxiliary threads to terminate. Second, we
decrease by one the number of auxiliary threads initialized during the expansion phase.
Thread initialization may not be as expensive as process forking, nevertheless, it poses
a significant overhead in a computationally intensive, multithreaded application such as
a Web server. Figure 6 displays the processing timeline with the above improvement.

\: expansion :, \: ser. :,

phase phas.

c 5th task (exec. by
worker)

4th task (aux. thread #4)

b
l 3rd task (aux. thread #3)

2nd task (aux. thread #2)

€3> 45t task (aux. thread #1) <«d>»

I time -

a: initialization & begin parsing & 1st task found
b: parsing until next task found

c: all tasks are under processing

d: preparing & transmission of generated content

Figure 6. Processing timeline of MainPage.dyn using the improved Parse & Dispatch approach

The challenge is how the worker thread detects the final script code block in order to
hold back from initializing the last auxiliary thread. An apparent solution would be to
delay an auxiliary thread initialization and parse ahead to detect the next script code
block occurrence or detect the end of file. Nonetheless, such a tactic would harm
performance since it widens the time gap between the initialization of auxiliary threads
and thus reducing parallelism. A more efficient solution requires from the worker
thread to know, prior to the expansion phase, the exact number of script code blocks in
an HTML script file. For that reason, an additional piece of code is inserted in the
beginning of a file in the form of a pre-processor directive. Such a directive may look
like “<script_blocks count=5/>", or “<tasks count=5/>" and it is the first code that the
worker thread parses during the Content Expansion phase.

4 Evaluating the Parse and Dispatch Approach without
Dependencies

In our experiments, we compare the performance between (a) a traditional multi-
threaded Web server that executes the tasks of dynamic Web page in serial (as
described in Section 2.1), and (b) an experimental multi-threaded Web server that
executes the tasks of a dynamic Web page in parallel according to the Parse and
Dispatch approach assuming no dependencies between two tasks. Next, we describe
our experimental setup in terms of hardware, software and topology. We then discuss
the experiments and our findings.

4.1 Experimental Setup

For the development of the traditional Web server, we adopted the thread management
and client admittance routines from the Java-based Apache Web server (Jserv). We
then developed the proposed experimental Web server by (a) modifying the code of the
worker threads and, (b) adding support for the auxiliary threads and the indexed buffer.
We chose to derive the experimental Web server from the traditional one to ensure
maximum compatibility between the performance results of the two approaches. The
decision for using Java was based on the language’s rich, easy-to-use APIs that speed-
up the programming of experimental multi-threaded, and network applications [2].

lanmnn

= A0
Local DB Server Remote DB Server
| |

T T
o<1 script files
Web Server

HHAY

client connections
1111
Client Generator

Application

—
LAIN WAN
(—

Figure 7: Topology of the experiments

For both the traditional and the experimental Web servers, we assume a worker
thread pool of size 21, meaning that both Web servers do not admit more than 21
concurrent clients. We base our assumption on the fact that popular Web servers

recommend a size between 5 and 20. It will be made clear by the performance results
that this assumption does provide a complete scope of results for evaluating the two
approaches.

Our next consideration is the formation of the HTML script files that the Web
servers will process in the experiments, given that dynamic Web pages from various
applications differ on the blend and number of tasks that they include. For example, a
financial-related Web page may include more tasks that generate dynamic content with
data obtained by remote financial providers. On the other hand, an e-commerce Web
page may include more tasks for dynamic catalog generation by querying local
databases.

For the structure of the tasks, we assume a typical task with an approximate
execution time of 50 milliseconds that favors no particular type of application. The
typical task consists of the following: (a) script code for two queries performed
randomly either on a local or a distant database to emulate local or remote database
access, (b) script code for string manipulation that executes in long loops to emulate
dynamic HTML generation. The decision on forming the typical task is based on
certain experience gained in working with commercial Web sites.

The topology of the experimental setup is shown in Figure 7 and attempts to emulate
a real-world commercial environment. The Web server (either the traditional or the
experimental one) runs on our main server machine in our local area network. The
HTML script files to be processed are copied under the Web server’s public directory.
The first content database server is installed locally to the Web server while the second
one is installed on a remote machine through a WAN.

The last piece of our setup is the application program that implements the client
requests called the Client Generator. This application is capable of instantiating a
predefined number of individual client programs each one capable of independently
submitting consecutive HTTP requests to a Web server. Client programs are
implemented by threads and are arbitrated, similar to a Web server, by the Client
Generator program using a thread pool. The Client Generator program can emulate a
number of concurrent clients that submit requests on a Web server for a given period.
To avoid interfering with the Web server’s computational resources, the Client
Generator resides locally on a different machine.

All the machines used in the experiments were Pentium 4 class computers with 1GB
of main memory and SCSI-based secondary storage. The local network was a 100Mps
Ethernet, and the remote network a 1Mbps WAN. The database servers used were both
Microsoft SQL Server 2000 and the Java Virtual Machine for both the Web servers
was version 1.3.1.

4.2 Experiments and Performance Results

We measure the performance of a Web server in terms of (a) average throughput, and
(b) client response time under different (stable) workloads. Formally, we define
throughput to be the average number of client HTTP requests that are completely
processed by a Web server in a period of one second and it is computed at the Web
server site. We define client response time to be the client perceived latency from the

moment the client issues an HTTP request to the Web server, until the client receives
the complete HTTP response.

In our experiments, Web server workload depends on the number of client requests
that are simultaneously admitted by the Web server for processing. We also refer to this
as ‘Concurrent Clients’. For our experiments, workload varies from 1 to 21 since a
Web server with a worker thread pool of size 21 does not admit more than 21
concurrent clients. Due to space shortage, in this paper we present our findings for 2
and 5 embedded tasks in an HTML script file.

2500 “Maximum
Parse & Dispatch Approach o “ Workload
2000 e
£
)
£ 1500 -
[Traditional Approach
]
2 1000 -
o
o
$ 500 |
o Minimum
Workload - >JV
0 T T
0 5 10 15
Throughput (clients served/second)

Figure 8: Performance Comparison with 5 tasks included in an HTML script file with no
dependencies between tasks

1200 i
¢ Maximum
\ Workload
& 1000 -
E
o 800 -
£
= 600 -
“:, Traditional Approach
S 400
0
[}
14 200 — \j 7
Minimum
0 Workload ™ s Parse & Dispatch Approach
0 5 10 15 20 25
Throughput (clients served/second)

Figure 9: Performance Comparison with 2 tasks included in an HTML script file with no
dependencies between tasks

The results shown in Figure 8§ indicate that, for five embedded tasks in an HTML
file, the suggested Parse and Dispatch approach outperforms the traditional approach in
both response time and throughput. However, the performance gains for the Parse and
Dispatch approach are less obvious for two included tasks (Figure 9). This is because
by having only two tasks in an HTML file, we reduce the amount of parallelism that the
Parse and Dispatch approach can benefit from.

5 Parse & Dispatch Approach with Dependent Tasks

In some Web applications, dependencies may exist between two or more tasks included
in the some HMTL script file. For example, a graph (jpeg image) that compares two
stock quotes cannot be generated unless the two user-supplied quote names have been
successfully retrieved, and analyzed. Since traditional Web servers execute the tasks of
an HTML page in serial, additional special handling of tasks is not required (given that
the developer of the Web page has put the tasks in the right order!). In the case of our
approach, we had to enhance our task dispatching algorithms.

2500 , :
Parse & Dispatch Approach with 1 Dependency
w2000
E
£ 1500 _ /
- Traditional Approach
3 /|
c 1000)
o
%
g / //
g 500 5 —
0 Parse&Dispatch Approach
0 5 10 15

Throughput (clients served/second)

Figurel0: Average throughput with 5 tasks included in an HTML script file plus the average
throughput of the Parse & Dispatch approach having 2 dependent tasks (1 dependency)

In doing so, we came across two challenges. First, we had to find a way of letting
the Parse & Dispatch Web server know about the dependencies. Then, we had to
implement a cost-efficient mechanism of executing the dependent tasks in serial. For
the former, we use a pre-processor directive of the form <dependency source=taskl
target=task3>, where source and target denote the numbering order of two dependent

tasks in the HMTL script file. For the latter, our experiments showed that it is more
efficient to have the auxiliary thread that executed the source task to also execute the
destination task. In this way, (a) we prevent the dispatching of one additional auxiliary
thread, and (b) we minimize the time gap between the successive executions of the
dependent tasks.

Figure 10 shows the performance results of the Parse & Dispatch approach with five
included tasks and having two dependent tasks (1 dependency) next to our earlier
results reported in Figure 8 with five included tasks but with no dependencies. For this
experiment, we have used various orderings for the dependent tasks and calculated
their average performance. The results indicate that the performance gains still hold
even at the existence of one dependency between two tasks.

6 Conclusions and Future Work

In this paper, we introduced a new approach for dynamic Web content generation. Our
approach suggests parallelism at the granularity of dynamic Web page fragments, in
addition to that of a whole Web page obtained by using clustered Web servers. The
proposed approach, Parse and Dispatch, was used to build an experimental Web server
and its performance was compared to that of a traditional Web server. The
experimental results yielded significant performance gains in favor of our approach in
terms of Web server throughput and client response time.

As part of our future work, we are further developing a more efficient Web server
architecture focused on dynamic content, and particularly pay attention on applying
parallel processing techniques in handling dependencies between tasks included in a
HTML script file.

References
1. Active Server Pages. Available at http://www.microsoft.com/
2. K. Amold, J. Gosling: The Java Programming Language. Addison-Wesley 1996.

3. J. Aweya, L M. Ouellette, D. Y. Montuno, B. Doray, K. Felske. An adaptive load balancing
scheme for web servers. Int. J. Network Mgmt 2002; 12: 3 — 39.

4. T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, A. Secret: The World-Wide Web.
CACM 37(8): 76-82(1994).

5. V. Cardellini, E. Casalicchio, M. Colajanni, P. S. Yu: The state of the art in locally
distributed Web-server systems. ACM Computing Surveys 34(2): 263-311 (2002).

6. A. Datta, K. Dutta, K. Ramamritham, H. M. Thomas, D. E. VanderMeer: Dynamic Content
Acceleration: A Caching Solution to Enable Scalable Dynamic Web Page Generation.
SIGMOD Conference 2001.

7. A.Datta, K. Dutta, H. M. Thomas, D. E. VanderMeer, Suresha, K. Ramamritham: Proxy-
based acceleration of dynamically generated content on the world wide web: an approach
and implementation. SIGMOD Conference 2002: 97-108.

8. G. Ehmayer, G. Kappel, S. Reich: Connecting Databases to the Web: A Taxonomy of
Gateways. DEXA 1997: 1-15.

9.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.
20.

21.

R. T. Fielding, G. E. Kaiser: The Apache HTTP Server Project. IEEE Internet Computing
1(4): 88-90 (1997).

X Gan, T. Schroeder, S. Goddard, B. Ramamurthy: LSMAC and LSNAT: Two Approaches
for Cluster-Based Scalable Web Servers. ICC (2) 2000: 1164-1168

S. Goddard, T. Schroeder: The SASHA Architecture for Network-Clustered Web Servers.
HASE 2001: 163-172

G. Hutchinson, G. Baur, D. Pigford: Implementation of a Dynamic Web Database: Interface
Using Cold Fusion. SIGUCCS 1998: 131-135

HyperText Markup Language (HTML). Overview available at http://www.w3.org/MarkUp.
K. Kant, P. Mohapatra: Workshop on Performance and Architecture of Web Servers
(PAWS-2000, held in conjunction with SIGMETRICS-2000). SIGMOD Record 29(3): 12-
14 (2000).

E. D. Katz, M. Butler, R. McGrath: A Scalable HTTP Server: The NCSA Prototype.
Computer Networks and ISDN Systems 27(2): 155-164 (1994).

Microsoft Internet Information Server. Available at http://www.microsoft.com.

Netcraft Web Server Survey. Available at http://www.netcraft.com/survey/.

V. Pai , P. Druschel, W. Zwaenepoel: Flash: An Efficient and Portable Web Server.
Proceedings of the 1999 USENIX Annual Technical Conference, Monterey, CA, USA, June
1999.

PHP. Available at http://www.php.net/.

M. Di Santo, F. Frattolillo, W. Russo, E. Zimeo: Efficient Content-aware Connections
Dispatching in Clustered Web Servers. PDPTA 2002: 843-849.

The Common Gateway Interface. Overview available at
http://hoohoo.ncsa.uiuc.edu/cgi/overview.html.

