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ABSTRACT
The wide spread of mobile computing devices is transform-
ing the newly emerged e-business world into a mobile e-
business one, a world in which hand-held computers are
the user's front-ends to access enterprise data. For good
mobile decision making, users need to count on up-to-date,
business-critical data. Such data are typically in the form of
summarized information tailored to suit the clients' analysis
interests. In this paper, we are addressing the issue of e�-
cient delivery of summary tables to mobile users' hand-held
computers equipped with OLAP (On-Line Analytical Pro-
cessing) front-end tools. Towards this, we propose a new on-
demand scheduling algorithm, called STOBS, that exploits
the derivation semantics among OLAP summary tables. It
maximizes the aggregated data sharing between clients and
reduces the broadcast length compared to the already ex-
isting techniques. The algorithm e�ectiveness with respect
to access time and energy consumption is evaluated using
simulation.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems|Distributed
databases, Query processing; H.4.2 [Information Systems

Applications]: Types of Systems |Decision support ; C.2.1
[Computer-Communication Networks]: Network Ar-
chitecture and Design|Wireless communication

General Terms
Algorithms, Design, Experimentation, Performance, Theory
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1. INTRODUCTION
With the rapid growth in wireless technologies and the cost
e�ectiveness in deploying wireless networks, wireless devices
are quickly becoming alternative platforms for accessing en-
terprise data. This combined with the increased popularity
of hand-held computers as well as the availability of light yet
powerful laptop computers, mobile computers will become
the normal front-end devices hosting sophisticated business
applications.
One such sophisticated business application which is cen-

tral to the success of any enterprise, is the support of de-
cision making. Without an e�ective decision support sys-
tem, enterprises will be unable to exploit opportunities as
they appear anywhere and anytime. For good decision mak-
ing, executives and managers need to count on up-to-date,
business-critical data, being instantly available on their hand-
held and wireless computers. Such data are typically in the
form of summarized information tailored to suit the users'
analysis interests.
In this paper, we are addressing the issue of e�cient de-

livery of summary tables to mobile clients (e.g., on a com-
pany wireless intranet) equipped with OLAP (On-Line An-
alytical Processing) front-end tools. Decision makers use
OLAP tools to execute decision support queries on the en-
terprise data warehouse or data mart [10]. In wireless net-
works, broadcasting is the primary mode of operation for the
physical layer. Thus, broadcasting is the natural method to
propagate information in wireless links and guarantee scal-
ability for bulk data transfer. Speci�cally, data can be e�-
ciently disseminated by any combination of the following two
schemes: broadcast push and broadcast pull. These exploit
the asymmetry in wireless communication and the reduced
energy consumption in the receiving mode. Client devices
are assumed to be small and portable, and most often rely
for their operation on the �nite energy provided by batter-
ies. Servers have both much larger bandwidth (downlink)
available than client devices and more power to transmit
large amounts of data.
In broadcast push the server repeatedly sends information

to the clients without explicit client requests. Any number of
clients can monitor the broadcast channel and retrieve data
as they arrive on the broadcast channel. If data is properly
organized to cater to the needs of the clients, such a scheme
makes an e�ective use of the low wireless bandwidth and is
ideal to achieve maximal scalability [1, 13, 12].
In broadcast pull, the clients make explicit requests for

data. If multiple clients request the same data at approx-
imately the same time, the server may aggregate these re-
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Figure 1: Mobile OLAP System

quests, and only broadcast the data once. Such a scheme
also makes an e�ective use of the low wireless bandwidth
and clearly improves user perceived performance. Several
scheduling algorithms have been proposed that attempt to
achieve maximum aggregation [2, 6, 23, 24].
Assuming the traditional OLAP server basic functionality,

the broadcast pull or on-demand environment as shown in
Figure 1 is the most suitable for supporting wireless OLAP
query processing. Every client request is for one of the sum-
mary tables. An interesting property in the wireless OLAP
system which we call derivation dependency is that a table
requested by a client may subsume the table requested by
another client. Since request aggregation is commonly used
by general content delivery scheduling algorithms for e�-
cient data dissemination, the derivation dependency prop-
erty adds a new optimization dimension to the request aggre-
gation process that allows further broadcast e�ciency and
scalability.
All currently available on-demand scheduling algorithms

are strict in the sense that they restrict sharing among
clients to matching requests. In the paper, we propose a
new family of 
exible scheduling algorithms that aggregate
requests by exploiting their semantics to increase sharing
among clients that goes beyond the exact match of requests.
Our proposed on-demand scheduling algorithm is called

Summary Tables On-Demand Broadcast Scheduler (STOBS-
�) which is based on the RxW algorithm [4]. STOBS-� is
non-preemptive and considers the varying sizes of the sum-
mary tables. The unique characteristic of STOBS-� is its
�-optimizer that exploits the derivation dependency among
the summary tables to increase sharing among clients. Be-
cause each table satisfying a particular request incurs a dif-
ferent processing cost, STOBS-� considers this cost when
selecting the set of requests to be aggregated into the spe-
ci�c table which is broadcast at a given point. This cost
is captured by the selected value of �. By considering that
each di�erent value of � yields a di�erent scheduler, STOBS-
� can be thought of as a family of scheduling algorithms as
well.
The e�ectiveness of our new heuristic that is based on

derivation dependency was evaluated experimentally using
simulation by comparing STOBS-� to the RxW algorithm.
To the best of our knowledge, RxW is currently the best per-
forming non-preemptive scheduler reported in the literature

[4]. Our experimental results have shown that STOBS-�
outperforms the RxW, reducing the access time by up to
83%.
For mobile clients, savings in power consumption is par-

ticularly important since they operate on batteries. Power
consumption is also becoming a key issue for all other com-
puter products given the negative e�ects of heat. Heat ad-
versely a�ects the reliability of the digital circuits and in-
creases costs for cooling [17]. STOBS achieves power reduc-
tions up to 30% less than RxW, while reducing the average
access time by 70%. The latter saving could be increased to
80%, while decreasing the energy consumption to 23% less
than RxW by adjusting the value � of the optimizer.
The rest of this paper is organized as follows. The next

section presents an overview of the related work in OLAP
technologies and broadcast-based data dissemination tech-
niques. In Section 3, we discuss our assumed wireless OLAP
environment and in Section 4, we present STOBS, our new
on-demand scheduling algorithm. Our simulation testbed
and experiments are presented in Sections 5 and 6, respec-
tively.

2. BACKGROUND AND RELATED WORK

2.1 OLAP and Summary Tables
In a decision support environment, sets of facts are analyzed
along multiple dimensions. This led to the development of
the multidimensional data model that represents a set of
facts in a multidimensional space in a way that facilitates
the generation of summarized data and reports [15]. In this
model, data is typically stored using a star schema. The
star schema consists of a single fact table storing the mea-
sures of interest (e.g., sales, or revenue) and a table for each
dimension (e.g., product, time, or region).
OLAP queries typically operate on summarized, consol-

idated data derived from fact tables. The needed consol-
idated data by an OLAP query can be derived using the
data cube operator [7]. The data cube operator is basically
the union of all possible Group-By operators applied on the
fact table. A data cube for a schema with N dimensional
attributes, will have 2N possible subcubes. Given that the
data cube is an expensive operator, often subcubes are pre-
computed and stored as summary tables at the server. Ba-
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sically, a summary table can be modeled as an aggregation
query, where the dimensions for analysis are the Group-By
attributes and the measures of interest are the aggregation
attributes. A detailed summary table Td can be used to
derive a more abstract one Ta. In such a case, the abstract
table Ta has a derivation dependency on Td. For example, in
Figure 1, by adding the measure values across supplier, the
detailed table (supplier, product, customer) can be used by
a client to extract the abstract table (product, customer).
The idea of using summary tables to derive one from an-

other has been widely used in materialized views selection.
The objective is to select the appropriate set of tables for
storing (materialization), so that to speed up future query
processing, while meeting the space constraints [10, 8, 9].
To facilitate the selection process, the search lattice was in-
troduced in [10]. The search lattice is a directed graph to
represent the subcubes space that captures the derivation
dependencies among subcubes. For example, Figure 2 shows
the lattice for the (Supplier(S), Product(P), Customer(C))
schema.
In this paper, we also use the property of derivation de-

pendency of the summarized tables and the idea of search
lattice in selecting the appropriate tables to broadcast over
wireless links, such that the user perceived latency is mini-
mized.

2.2 Broadcast-Pull
Several scheduling policies have been proposed in the broad-
cast pull literature. These policies can be classi�ed as either
non-preemptive or preemptive. In a non-preemptive environ-
ment, it has been pointed out that that First Come First
Serve (FCFS) scheduling would provide poor access time
in broadcast pull [6] and Most Requests First (MRF) and
Longest Wait First (LWF) were proposed as e�cient alter-
natives [6, 24]. The RxW algorithm [4] combines the bene�ts
of MRF and FCFS, where the intuition underlying RxW is
that \hot" or popular data items are disseminated as soon
as possible yet it avoids starvation of \cold" or less popular
data items by means of an aging scheme.
Preemptive scheduling policies have been introduced to

handle the heterogeneous requests problem, i.e., requests
for data items of varying sizes [2]. Three preemptive algo-
rithms have been proposed, namely, Longest Total Stretch
First (LTSF), an o�-line algorithm called BASE and its on-
line approximation MAX.
Preemptive scheduling policies exhibit better performance

than the non-preemptive ones for heterogeneous requests.

However, preemptive schemes cannot in general support se-
lective tuning. Selective tuning is the fundamental property
for preserving energy where the main idea is: if su�cient
indexing information is provided to clients, then the mo-
bile device access pattern to the data stream can alternate
between a doze mode waiting for data and an active mode
tuning for required data. In a doze mode the mobile device
is consuming power orders of magnitude less than that in
the active mode. Power conservative indexing methods for
single-attribute and multi-attribute based queries in broad-
cast push environments appeared in [13, 12, 3].
The idea of merging queries with overlapping answers to

reduce broadcast data dissemination cost has been intro-
duced in the context of a multicast subscription environment
[5]. In this approach, a post-�ltering is needed at the client
side to obtain the answer to the original query. A similar
proposal appeared in [16], where a semantic description is
attached to broadcast unit, called a chunk, which is a cluster
of data items. This allows clients to determine if a query can
be answered based solely on the broadcast and to request
the remaining items in the form of a supplementary query.
A popularity-based scheduling policy was used to broadcast
the data chunks. This assumes that the server has been in-
formed about the clients' queries at the beginning of each
broadcast cycle.
Our work carries some similarity with the work in [5, 16].

However, we are modeling an on-demand broadcast environ-
ment, where the server has no prior knowledge of the arriv-
ing requests. Additionally, in our case, the requests are for
summary tables (aggregation queries) rather than queries
with selection predicates as in [5, 16], where the relative
sizes of dependent tables may vary tremendously. Hence,
an e�cient online scheduler is needed with an objective of
reducing the access time and energy consumption. The de-
sign of this scheduler is our main contribution in this paper.

3. WIRELESS OLAP MODEL
In this section, we are presenting our model for the wireless
OLAP environment. Our assumed architecture is based on
broadcast pull scheme as shown in Figure 1. The OLAP
server is responsible for maintaining and disseminating the
summary tables. We are assuming that all the lattice sub-
cubes are pre-computed and stored at the server, which is
a reasonable assumption, specially for relatively small size
data marts. The Essbase system (according to [10]) is an
example of commercial product that materialize all the pos-
sible summary tables.
A client sends an uplink request for a table on the uplink

channel. It can then be in one of two states: tune state or
wait state. When the client needs to listen to the down-
link channel, it enters the tune state and switches to active
mode. Otherwise, it is in wait state and operates in doze
mode. Clients depend on the server to satisfy all their re-
quests; they are not accessing any local storage and previous
answers are not locally cached for future use.
An uplink request Q is characterized by the set of its

Group-By attributes D. Hence, we represent a request as
QD and the corresponding table as TD. A summary table
TD1 subsumes table TD2, and consequently TD2 is depen-
dent on TD1, if D2 � D1. We denote the number of di-
mensional attributes (table dimensionality) in the set D as
jD j.
The smallest logical unit of a broadcast is called a packet
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or bucket. A broadcast table is segmented into equal sized
packets, where the �rst one is a descriptor packet. Every
packet has a header, specifying weather it is data or descrip-
tor packet, the o�set (time step) to the beginning of the next
descriptor packet, and the o�set of the packet from the be-
ginning of its descriptor packets. The descriptor packet con-
tains a table descriptor which has an identi�er that captures
the table aggregation dimensions, the number of attribute
values or tuples in the table and the number of data packets
accommodating that table. We are assuming that no sin-
gle data packet is occupied by tuples from di�erent tables.
Each summary table is broadcast within a broadcast cycle
that starts with the table descriptor packet.
By assuming each client knows the order in which at-

tributes are de�ned in the database schema, we use bit en-
coding to represent the semantics of a client request and the
table descriptor identi�er. The representation is a string
of bits; its length is equal to the number of the complete
schema dimensions and each bit position is equivalent to
one of the dimensions d1, d2, ..., dn.
If a table TD has dimension dx 2 D, then the bit at posi-

tion x is set to 1, otherwise it is a zero. For example, assume
the (supplier, product, customer) schema. The representa-
tion of the (supplier, customer) summary table will be 101.
This scheme can be easily extended to include tables with
more than one measure and di�erent aggregation functions.
But, without loss of generality, we are assuming only one
measure attribute and sum() as the aggregation function in
this paper.
When a client submits a request for table TR on the uplink

channel, it immediately tunes to the downlink channel, and
goes through a three-phase access protocol until its request
is satis�ed:

1. Initial probe,

2. Semantic matching , and

3. Table retrieval.

In the initial probe phase, the client tunes to the downlink
channel and uses the nearest packet header to locate the next
descriptor packet.
The semantic matching phase starts when the client �nds

a descriptor packet, say for table TB , then the client can
semantically classify TB as:

� Exact match: if the aggregation dimensions in TB are
the same as TR (i.e., R = B).

� Subsuming match: if TB subsumes TR, and TB is not
an exact match for TR (i.e., R � B and R 6= B).

� No match: if it is neither an exact match nor a sub-
suming match (i.e., R 6� B).

For example, assume R is (supplier, product), then B1 =
(supplier, product, customer) is a subsumption match, while
B2 = (product) and B3 = (supplier, customer) are examples
of no match.
Depending on the matching result and the scheduling al-

gorithm used (as we will see in Sections 4), the client will
either switch to the �nal retrieval phase or it will stay in
the matching one. In the former, the client stays in active
mode tuning to the next sequence of data packets to read
(download) table TB . While in the latter case, it will wait

100 G(Supp) 111 G(Supp, Prod, Cust) …

Tune Wait TuneTune

Sequence of
data packets

Descriptor

Figure 3: Client Access to Broadcast

switching to doze mode in order to reduce power consump-
tion. Using the o�set in the packet header, it wakes up just
before the next broadcast cycle (i.e., descriptor packet of the
next table on broadcast) where the semantic matching pro-
cess is repeated. The access protocol is shown in Figure 3.

3.1 Cost Model
The time interval a mobile client spends since issuing a re-
quest until the summary table is made ready for either dis-
playing or further processing, can be expressed by the fol-
lowing three components:

� Wait Time: The total period of time a client spends
waiting for a descriptor packet to appear on the down-
link channel until it �nds a matching one. A client
network interface is switched to doze mode during the
wait time.

� Tune Time: It is the total period of time spent by the
client listening to the downlink channel either reading
a descriptor packet or a stream of data packets con-
taining the requested summary table. During tuning,
the client network card is in active mode consuming
energy orders of magnitude higher than that in doze
mode.

� Processing Time: It is the total period of time needed
to convert the downloaded data into the form of the
requested summary table. During this phase, the pro-
cessor is active, accessing the table in main memory
and consuming full power.

Hence, we de�ne the Access Time (TTotal) as the total
period of the wait, tune, and processing times.

TTotal = TWait + TTune + TProcessing

Accordingly, the Total Energy Consumption (ETotal) is
formulated as:

ETotal = EDoze +EActive +EProcessing

where the energy consumed during a certain period equals
to the product of the power consumption during that period
and the duration of the period.

4. SUMMARY TABLES ON-DEMAND
BROADCAST SCHEDULER (STOBS-�)

The pro�le for OLAP summary tables access has the follow-
ing key features:

1. Heterogeneity: summary tables are of di�erent dimen-
sionalities and varying sizes
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2. Skewed Access: Request from OLAP clients usually
form a hot spot within the data cubes lattice. Most
of the time queries are accessing low dimensionality
tables and they often drill down for detailed ones.

3. Derivation dependency: it is often possible to use one
detailed table to extract other tables.

The Summary Tables On-Demand Broadcast Scheduler
(STOBS-�) that we are proposing in this section, consists
of two components: A normalizing (basic selection) compo-
nent, which captures the �rst and second features above and
the �-optimizing component that exploits the third feature
above to control the degree of sharing. The basic selection
component is an extension of RxW that takes into consid-
eration the table size. It normalizes the value of RxW by
dividing it by the size of the table (R�W

S
).

Speci�cally, the server queues up the clients requests as
they arrive. For each request QX for a summary table TX ,
the server maintains the following three values:

� R: The number of requests for TX . This value is in-
cremented with every arrival of a request for TX .

� W : The time the �rst request QX has been waiting
for table TX .

� S: The size of table TX .

When it is time for the server to make a decision which
table to broadcast next, it computes the R�W

S
value for each

request in the queue. The request with the highest value is
selected to be broadcast.
The parameter � de�nes the degree of 
exibility in broad-

casting a summary table and eliminating from the broadcast
some of its dependent tables. For example, for � = 2, if the
server selects a table TX to broadcast, then the server dis-
cards every request in the queue for a table TY that can be
derived from TX and is up to two levels lower in the data
cubes lattice.
More precisely, TY can be discarded and it is not broad-

cast if Y � X and j X j � j Y j� 2. Consequently, a client
will use a table TX that subsumes the table it originally re-
quested TY and is up to two levels higher in the data cubes
lattice. That is, a client requested TY will use TX if Y � X

and j X j � j Y j� 2.

In general, the formal criterion at the server to discard
a request for table TY and aggregate it into a request for
table TX is:

TY is discarded i� TX is broadcast and Y � X and
j X j � j Y j� �

The same criterion is used at the client side to determine
if it has to use table TX that subsumes its original request
for table TY that has been discarded at the server and will
not be broadcast.
The value of � ranges from 0 to the maximum data cube

dimensionality MAX. At � = 0 there is no 
exibility in
using summary tables and the client access is restricted to
exact match. At � = MAX, a client will use the �rst sub-
suming matching table. STOBS-0 is basically R�W

S
and is a

strict algorithm, while the family of STOBS-�, where � > 0,
are 
exible algorithms. The value of � is made known to the
clients by including it as part of the table descriptor in-
formation along with the dimensionality of the broadcasted
table.
As an example, consider the search lattice shown in Fig-

ure 4, in which nodes are summary tables. Assume the
search lattice nodes shown in �gure, are the tables for which
there exist at least one request. Also, let assume that QX

is a request to the 4-dimensional table TX :(d1, d2, d3, d4)
that is selected to be broadcast next. All the shaded tables
in the �gure can be derived from TX . These are (d1), (d2),
(d3), (d4), (d1, d2), (d1, d3), (d1, d2, d3), and (d1, d2, d4).
However, if we assume that � = 2 then clients' requests for
tables (d1, d2), (d1, d3), (d1, d2, d3), and (d1, d2, d4) will be
satis�ed by TX and hence the requests for these tables will
be discarded; whereas the requests for tables (d1), (d2), (d3),
and (d4) will remain in the queue for future consideration.

4.1 Discussion
It should be noted that our proposed R�W

S
is di�erent from

the algorithm appeared in [21] under the same name. Con-
trast to our work, in [21] requests are assumed to be homo-
geneous and the S value refers to the service time required
to extract a request at the server.
The intuition for STOBS-� is to capture all the speci�c

features of summary tables access in an on-demand broad-
cast environment. The R�W

S
encapsulates all the factors

a�ecting a response access time. The � parameter controls
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Q1 Q2 Q3 Q4

Ri 2 1 1 2
Ai 5 4 10 14
Si 20 25 50 60

Table 1: Example Settings

Algorithm BSeq AAT BSize
RxW T4, T1, T3, T2 102.8 155

STOBS-0 T1, T4, T2, T3 85.3 155
STOBS-2 T1, T4, T3 77.0 130

Table 2: Example Results

the degree of 
exibility. The advantage of the 
exibility is
to �nd another aspect of common interest other than the
exact strict one. The drawback is the extra time and energy
needed for tuning in and processing a detailed table rather
than a summarized one. Picking a reasonable value for � will
balance the trade-o� between reducing the wait time and in-
creasing the tune and processing times. As in [10], we are
assuming a linear cost model for aggregate query process-
ing, where a table scan is required to compute the result.
During processing, the processor accesses the downloaded
summary table from memory and the memory transfer rate
determines the time taken for processing.
As an example for the 
exibility trade-o�, consider the

case where � is set to 2. In case of request for table Thigh,
where jX j � jhigh j� 2. If the R�W

S
value for the request

for table Thigh is still not high enough, then disseminating
TX will reduce the wait time by a client requested Thigh.
On the contrary, a client requested table T low , where jX j
� j low j> 2, if TX is disseminated, the client requested T low

would rather wait for the next broadcast cycles to avoid the
costly tune time needed for downloading TX and internally
processing it.
Let us now consider a simple numeric example that high-

lights the di�erences in scheduling decisions and average ac-
cess time between the strict scheme and our proposed 
ex-
ible approach. Table 1 shows the example settings, where
there are four pending requests Q1, Q2, Q3, and Q4 for four
di�erent tables T1, T2, T3, and T4. The Ri, Ai, and Si values
for request Qi are as described above. Additionally, we are
assuming that table T2 is derivable from T4 and T2 is within
two levels lower than T4 in the subcubes lattice. Each sched-
uler has to make a decision what is the sequence of tables
to broadcast given the queue status at each broadcast cy-
cle. In this snapshot, the four requests constitute the whole
workload, i.e., no more requests will arrive at the server.
Table 2 shows the broadcast sequence (BSeq) generated

by each algorithm (left most table is the �rst to be broad-
cast), the corresponding average access time (AAT), and the
broadcast size (BSize). Assume that the transmission time
of a table is equal to its size, hence, the transmission time
for table T1 is 20 units and its access time using RxW is
equal to A1 +S4+S1, where (A1+S4) is the wait time and
S1 is the tune time.
We can see in the sequence generated using RxW that the

large table T4 is the �rst to be broadcasted due to its high A
and R values. In the case of the strict STOBS-0, sending the
small popular table T1 �rst, followed by T4, gave an average
access time 17% less than the strict RxW. As it is possible
to derive T2 from T4, STOBS-2 selects T4 for transmission
and discards T2, converting the wait time for T2 into a tune

time to T4 and in addition eliminating part of the wait time
for T3. This broadcast sequence gave an average access time
that is 10% less than that achieved by STOBS-0.

5. PERFORMANCE EVALUATION
TESTBED

We implemented a system simulation model to evaluate the
potential gains using the STOBS-� algorithm by comparing
it to the RxW scheduling algorithm. We modeled the en-
vironment as a single server with a set of clients. There is
a single downlink broadcast channel over which all data is
disseminated to the clients and a single uplink channel that
clients use to send uplink requests. We are assuming that
clients are able to complete any uplink request in a single
uplink packet.
We generated a synthesized lattice for a six-dimensional

data cube. The sizes of lattice subcubes is computed as in
[14], where a subcube is given a binary code C. The binary
code is similar to the bit encoding we use for identifying
cubes on the broadcast. The subcube size (number of tu-
ples) is set to C2. The �nal cube size is the product of
generated number of tuples and the number of attributes
(dimensional and measure attributes), hence, the unit for
size is the number of attribute values in a table. Using a
six-dimensional data cube results in a maximum value for
� equals to 6. Due to similarity in performance between
close values of � and for the sake of readability, we are only
presenting results where � is set to 0, 1, 2, 3, and 6.
The way we generated the lattice ensures diversity in sub-

cubes sizes and signi�cant size di�erence between a cube and
all its dependent cubes. In the generated lattice, cubes at
the bottom left area have small sizes while those at top right
have larger sizes. This setting will results in 64 (26) possible
queries.
Derived summary tables are of di�erent sizes, i.e., they

have di�erent degrees and cardinalities. In the simulation,
we are assuming that attributes values have the same sizes
and a data packet capacity is 10 attribute values and one
attribute value is 10 bytes.
To test the system under a typical workload, requests are

generated by the clients according to Zipf distribution with
the Zipf parameter (�) default value is equal to 0.5. Queries
are sorted according to their sizes, so that queries to small
size tables occur with higher probability than queries to de-
tailed ones. These settings will create a hot spot at the
bottom of the data cubes lattice.
We control the simulation by establishing a �xed number

of requests, that is, each client was required to complete
a certain number of requests before the experiment would
terminate. A client will pose a new request as soon as it
gets an answer to its previous one.
Table 3 summarizes our simulation parameters and set-

tings reported in this paper. The combination of these pa-
rameters allows us to examine the scalability of the system
as well as the impact of a changing workload on the algo-
rithm performance.

6. RESULTS
For our evaluation, we took extensive performance measure-
ments. The time reported throughout is in Seconds and
the energy consumption is in Joule. We considered a wire-
less LAN where the broadcast channel has a bandwidth of
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Parameter Value
Base Cube Dimensionality 6 dimensions
Possible Requests 64 requests
Packet Capacity 10 attributes values
Zipf Parameter (�) 0.0 { 0.9
Simulation Length 100 requests/client
Number of Clients (Request Rate) 10 { 200 clients
�-optimization 0,1,2,3,6

Table 3: Simulation Parameters
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Figure 5: Access Time

1Mbps. We assumed clients are using the IBM ThinkPad
laptop [11] that is equipped with Pentium 4 mobile processor
which consumes 2 Watts on average, with a 100 MHz RAM
and 64 bits bus. The wireless card operates on 5 Volts using
9mA at doze mode and 185 mA at receiver mode. The pro-
cessing of a summary table is basically a scanning process,
and hence we used the memory transfer time to bound the
processing time.

6.1 Access Time
Figure 5 shows the average access time for RxW and the
STOBS family of algorithms. All algorithms exhibit a sim-
ilar behavior, that is, the average access time increases but
ultimately levels as the number of clients is increased. This
behavior is normal for broadcast data delivery to clients with
shared interests. The �gure shows how the access time is de-
creasing with increasing � for the same number of clients.
Furthermore, this reduction in access time is more signif-
icant as the load increases and more 
exibility is needed
to handle the high request rate. For instance, consider the
cases of 10 and 200 clients where � = 2 (STOBS-2). In the
case of 10 clients, the average access time decreased by 43%
compared to � = 0 (STOBS-0), while in the case of 200
clients STOBS-2 achieved 68% reduction in the access time
compared to the strict STOBS-0 and a reduction of 80%
compared to RxW. In the case of STOBS-6, and population
of 200 clients, the average access time is 83% less than RxW.
Figures 6 and 7 depicts separately the tune, processing

and wait times demonstrated in Figure 5. The two strict
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Figure 6: Tune and Processing Times

algorithms (RxW and STOBS-0) exhibit the same minimal
tune and processing times. This is re
ected in Figure 6
where their corresponding curves coincide.
Increasing the value of � leads to the increase in tune and

processing times. However, this increase was successfully
compensated by a larger decrease in wait time as shown in
Figure 7. It is worth mentioning here, that as the requests
arrival rate increases, the wait time becomes the dominant
factor in the access time computation. This observation
supports our idea of tackling the access time reduction by
decreasing the wait time even if it yields to a moderate in-
crease in the tune and processing times.

6.2 Energy Consumption
Figure 8 shows the average total energy consumption for
the di�erent algorithms. Recall that energy is computed by
considering the power consumption during tuning, wait, and
processing time.
In the case of the two strict algorithms RxW and STOBS-

0, the tuning and processing times are the same and hence
their corresponding energy consumptions. Consequently,
the di�erence in their energy consumption is due to their
di�erence in wait time. For example, this di�erence in wait
time in the case of 200 clients translates into a 22% less total
energy consumption by the STOBS-0.
As expected, the extreme case of 
exibility (�=6) leads

to an increase in the overall energy consumptions. However,
reduction in energy consumption is achieved by setting � to
the values of 1 and 2. This reduction is more noticeable at
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Figure 7: Wait Time

Number of Clients

0 50 100 150 200

A
ve

ra
ge

To
ta

lE
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0

0.2

0.4

0.6

0.8

RxW
STOBS-0
STOBS-1
STOBS-2
STOBS-3
STOBS-6

Figure 8: Energy Consumption

higher loads where doze energy (that is wait time is longer)
is playing an important role. For instance, consider again
the cases of 10 and 200 clients and � = 2. In the case of
10 clients, energy consumption in STOBS-2 increased by
20% compared to STOBS-0, while it decreased by 3% in the
case of 200 clients. The minimum energy consumption is
provided by STOBS-1, which reached 12% less than STOBS-
0 in the case of 200 clients.

6.3 Impact of Skewness
In all the previous comparisons, we used the default � value
of 0.5. In this section, we examine the performance for dif-
ferent values of �, i.e., the degree of skewness of access. Fig-
ure 9 shows the average access time for a setting, where the
number of clients equals to 100, each posing 100 requests.
The Zipf parameter ranges from 0 to 0.9 where for �= 0, the
distribution corresponds to the uniform one.
Since the number of clients (request rate) is kept constant,

the increased overlap in client interests allows more e�cient
use of the broadcast bandwidth. Therefore, as the skew in-
creases all algorithms provide improved reduction in access
time. However, the STOBS-� schedulers, where � > 0, are
also taking advantage of the derivation dependency prop-
erty between requested tables. Using STOBS-2 reduces the
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Figure 9: Access Time Vs. �

access time by 60% less than the STOBS-0 for all � values.
In evaluating our proposed heuristic algorithm, we have

conducted a large number of experiments, many of which
could not be included here. For experiments involving the
e�ect of varying the cube dimensionality, as well as other
parameters, see [18]. We also investigated the notion of
fairness in scheduling . Our experiments illustrating fairness
as performance metric appeared in [19].

7. CONCLUSIONS
In this paper, we re-emphasized the role of broadcast based
data dissemination in supporting e�cient access of enter-
prise data warehouse and consequently enabling good deci-
sion making anytime and anywhere. Although the emphasis
of our paper was on wireless and mobile computing envi-
ronments, our result are applicable in wired networks which
support multicasting.
More speci�cally, the major contribution of this paper is a

new optimization and a family of algorithms called STOBS-
� that use this optimization to achieve better aggregation of
OLAP requests that goes beyond the exact match. The su-
periority of the STOBS-� was demonstrated experimentally
using simulation.
A close examination of our proposed R�W

S
extension to

the RxW has shown that it can be an approximation of
the non-preemptive LTSF algorithm [2] and as such, in sub-
sequent work we experimented with LTSF as well as with
di�erent de�nitions of the �-optimizer [20].
In our future work we are planning to compare the per-

formance of R�W
S

and LTSF when each is used as the basic
selection component for our summary tables scheduler. An
e�cient implementation of the former as in [4] can exhibit
a low computational overhead while retaining performance
close to the latter.
Also we are working on techniques that strongly integrates

the 
exibility with the selection decision. We are also study-
ing the problem in a push subscribe environment. We are
planning to investigate the e�ect of deploying caching at the
client side and what will be the appropriate caching mecha-
nisms.
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