
Personalizing Information Gathering
for Mobile Database Clients*

Susan Weissman Lauzac
Dept. of Mathematics and Computer Science

University of Puget Sound
Tacoma WA 98416, USA

slauzac@ ups.edu

Panos K. Chrysanthis
Dept. of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260, USA

panos @cs.pitt.edu

A B S T R A C T
Mobile agents are idea] for mobile computing environments
because of their ability to support asynchronous communi-
cation and flexible query processing since tasks can be dele-
gated to mobile agents when a mobile client is disconnected.
This paper explores the use of mobile agents in personalizing
information gathering for mobile database clients. Personal-
ized data take the form of materialized views and personal-
ization is provided in the form of view maintenaxxce options.
These options, expressed using an extended SQL Create
View command, offer a finer grain of control and balance
between data availability and currency, the amount of wire-
less communication and the cost of malntaixfing consistency.
The paper defines recomputat ional consistency and intro-
duces new levels of m~terialized view consistency to be t te r
characterize the mobile client view currency customizations.

Keywords
Mobile Computing, Mobile Agents, Materialized Views, Mo-
bile Databases,Data Consistency and Currency

1. I N T R O D U C T I O N
The size of today's database and data warehousing en-

vironments as well as the Interuet 's ability to provide vast
amounts of information b.as shown that today's users need
be t te r ways of h a n d i n g what is available. Customization or
perJonalization of information gathering for mobile clients
is becoming increasingly impor tant due to the computing,
communication, end storage differences among mobile de-
vices and the amount of information available.

In database systems, views provide a mean to present dif-
ferent users with different portions of the database based on
the users ' perspective. With in relational database systems,
a view defines a function from a subset of base tables to a

*This work has been partially supported by NSF award IIS-
9812532.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies arc
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on sm'vers or to redistribute to lists, t'mtui~ prior specific
permission and/or a fee.
ACM SAC '02 Madrid. Snain

Copyright 20U2 ACM 1-58113-445-2/02/03 ...$5.00.

derived table and is materialized by physicedly storing the
tuples in the derived table. In client-server configurations,
materialized views can be stored at the clients to support]o-
ca] query processing axld operate in a fashion similar to data
car.hes [12]. In previous work, we explored the customization
and localization properties of views in the context of mobile
database environment to support disconnected query pro-
cessing and developed a view maintenance mechanism called
the View Holder [10, 11, 9].

The core of the View Holder is a versioning mechanism
that can a ~ u s t the currency of the data stored on the mo-
bile client, for example, by ldlowing a user who was discon-
nected during a plane flight to later reed updated derived
data without necessarily discarding work performed on older
data dm'ing the flight. In addition, a view holder is dynamic
and stateful with respect to an individual mobile client, and
therefore, it can respond to a mobile client's queries for in-
formation by communicat ing only the differences between
answers, thus reducing the cost of wireless communication.
In contrast to the materialized views maintained by a large,
static, and stateless data warehouse, the View Holder can
be thought of as a cnstomizab]e cllent-oriented data ware-
house, requiring no modifications to be mede to the existing
data sources.

Because the View Holder combines and computes the nec-
essary derived data, it is also able to offer different levels of
view consistency between the data available and the derived
data given to the clients. The contr ibut ion of this paper lies
in providirtg an unders tanding of how view consistency is
affected by mobile client view currency customization. Two
types of view ma~tenemce algorithmic approaches are ex-
amined, (1) recomputatlonal maintenance that constructs an
entirely new version of a materialized view, and (2) incre-
mental view maintenance tha t aJ]ows updates to be slowly
incorporated within an existing version based on the data
warehousing Strobe algorithms [13]. The paper defines re-
computational consistency and introduces new levels of ma-
terialized view consistency which correspond to specific view
currency customizations. Furthermore, it expl~_s how view
maintenance is achieved by constructing a materiafization
program utilizing mobile agents [2, 5, 8].

The next section introduces our extension to the SQL cre-
a t e v i ew s ta tement for specifying user preferences. Sec-
tion 3 examines the different choices for customizing view
currency and realizing a material ization p rog ra~ using mo-
bile agents. Section 4 formally discusses view cor~istency
and Section 5 concludes with a summery.

49

2. P E R S O N A L I Z E D DATA ACCESS
Delivering the results of queries in a mobile envi ronment

is different than in a t radi t ional d i s t r ibu ted env i ronment due
to the rapidly changing condit ions of the wireless commu-
n ica t ion network, the requi rements of the user in te rms ¢~f
the accuracy of data , and the cost the user is willing to
pay for communica t ion . Tradi t iona l query processing facili-
ties are general ly concerned wi th minimizing response t ime.
By contrast , in a mobi le envi ronment , a user may, for ex-
ample, want to in t roduce delays or change da t a accuracy
in order to save service charges or to rninlmJze required re-
sources. Clearly, there is a need for devis ing ways by which
mobile users can specify their choices for view main tenance
and communica t ion , in paxticu]ar cri teria f o r material iza-
t ion tha t describe which d a t a changes should invoke an up-
date in the view holder.

Ins tead of using a generic profile, i t seems more na tu ra l
to specify user preferences along wi th the defini t ion of the
view to be cus tomized. Thus, we propose to ex tend SQL
so tha t the c r e a t e v i e w s t a t e m e n t includes the view main-
tenance preferences of the submi t t ing appl ica t ion residing
on the mobile device. Towards this, we in t roduce the O N
condi t ion tha t can specify which d a t a should be mon i to red
by the view holder agent and how often.

Essentially, the O N condi t ion creates the cus tomizable
d a t a currency, and s u m m a r y required by the mobile cl ient 's
appl icat ion sessions (ASs). This generic condi t ion for de-
t e rmin ing mate r ia l i za t ion over d a t a servers (DSs) and da ta
warehouses (DWs) includes Update ON:

• an individual a t t r i bu t e at D S I : D S l . I t e m s . p r i c e .
• a condi t ion on an a t t r ibu te : D S l . I t e m s . p r i c e > $15.
• a change occurs a t a specific DS or table: D S I or

D S l . I t e m s
• any change: A L L T A B L E S , A L L S O U R C E S

• a ma in tenance t ransac t ion commits at DW:
DW.new_t ransac t ion .

• a given amoun t of t ime has passed: 10 minu tes or D S I
10 minutes . This suppor t s p lan disconnection.

• a specific n u m b e r of versions: D W A F T E R 3 versions.

• a logical combina t ion of any of the above: E.g.,
D S l . I t e m s . p r i c e OR DTtr.new-transaction;
D S l . l t e m a . p r i c e A N D DW.new_transae t ion .

2.1 C u s t o m i z e d SQL Sta tements
T h e ex tended SQL c r e a t e v i e w s t a t e m e n t offers three

addi t ional but opt ional ([...]) clauses: Update On, Role and
Maintenance.

C R E A T E V I E W < n a m e of v i ew> A S
S E L E C T < a t t r i b u t e l i s t)
F R O M < tab l e l i s t>
[W H E R E <se lec t ion and jo in cond i t i ons)]
[G R O U P B Y < g r o u p i n g a t t r i bu t e (s)>]
[H A V I N G < g r o u p condition:>]
[O R D E R E D B Y < a t t r i b u t e list:>]
[U P D A T E O N logical expression of pairs:

<cond i t i on for mater ia l iza t ion[,Ful l or Part ial] >]
[R O L E < H o l d e r - R - P r o x y , Holder-as-Buffer ,

or Holder -as -Cache>]
[M A I N T E N A N C E <Recompu ta t i oned or Inc rementa l>]

i ac .w.mm~ vi©w ~

Mebile Otiffiat wbe . l~ l

IlSmlllplnt'nlnllll Of iDl:lllmla I`1 Vi"lV

-]

F i g u r e 1: V i e w M a i n t e n a n c e i n t h e F i x e d a n d W i r e -
l e s s N e t w o r k s

T h e]vLAINTENANCE clause specifies the view mainte-
nance s trategy, e i ther recomputat ional or incremental , t ha t
should be used by the view holder agent . The R O L E clause
specifies how m a n y versions and how much d a t a must be
maln tamed . T h e opt ions range f rom HoJder-as-Pro~j where
only the mos t recent eh ,n se s are main ta ined , to Holder-
as -Bu f fer where a larger po r t i on of the da t a is p re fe tched
for la te r use. If no role is specified then the . default is
the role Ho lde r -awProxy since i t ia the least expensive op-
tion. Finally, as we discussed above, U P D A T E - O N provides
a logic-1 expression of condit ions for mater ia l iza t ion . For
incremented view main tenance only the condi t ions axe re-
quired. For recomputa t ioned view main tenance , there is an
addi t ional op t ion corresponding to e i ther fu l l or part ial re-
compu ta t i ona l ma in tenance (e.g., (D•l .current_price, par-
tial) OR (DW.new_t ransac t ion , fu l l)) . B o t h full and par t ia l
view main tenance will be defined in Sections 3.1 a n d 3.3,
respectively. If no op t ion is p rovided then full r e compu ta -
t ional view main tenance is the defaul t .

3. C U S T O M I Z I N G V I E W C U R R E N C Y
U S I N G M O B I L E AGENTS

T h e view holder is a middleware componen t developed to
provide beneficial opt ions for communica t ion and compu-
t a t ion in both the fixed and wireless networks . Wi th in the
wireJess network, a view holder acts as the d a t a source for
the view mate r ia l i za t ion by a mobi le client whereas wi th in
the fixed network, it acts as a (cus tomized cl ient-oriented)
d a t a warehouse in tegra t ing d a t a f rom mul t ip le da t a sources.
Thus , a view holder combines two view evaluat ions when ex-
ecut ing a cus tomized c rea te view s t a t emen t .

The best choice for a mater isdizat ion mechan ism across
the expensive wireless ne twork is clearly inerement ,d view
main tenance . T h e view holder as the only da t a source com-
putes and communica tes to the mobile client the variat ions,
or A view, be tween any two and possibly non-consecut ive
versions of a mate r ia l i zed view. O n the o ther hand, the
choice of the view main tenance m e c h a n ~ m in the f ixed net-
work tha t involves mul t ip le d a t a sources is no t obvious. In
par t icular , we are in te res ted in b e t t e r unde r s t and ing the
choices in a Java -based mobile agent in f ras t ruc tu re [71 as
shown in F igure 1. DBMS-agen t s are mobi le-e~ents t h a t
can connect to a r e m o t e d a t a server and invoke da tabase
operat ions [6].

W i t h incremented view maL~tenemce algor i thms, such as
the S t robe algor i thms p resen ted in [13], a|l updates per-
formed at the da t a sources are r epo r t ed to a view mmn-
tenance mechanism. This mechan i sm is then responsible
for querying o ther d a t a sources and learning which corre-
sponding changes mus t be made to the mater ia l ized view.
In order to avoid mult iple source anomal ies due to the la-
tency inherent to receiving answers, once the c o m p u t a t i o n
of the view changes begins, new upda tes t h a t occur at the
d a t a sources must be taken into account and compensa ted .

50

Compensatory actions may lead to additional queries.
Recomputa t ional view maintenance takes a view's speci-

fication and completely recreates the view from scratch. A
relevant subquery is performed once at each data source
and the results are combined in order to re-build the ma-
terialized view. Once a new material ized view is created it
can be compared with the older material ization in order to
l e a r n what exact changes occurred during view maintenance.
Since recomputat ional maintenance does not require the ex-
act changes from the da ta sources and does not compute
the A view during reconstruction, multiple source anoma-
lies cannot occur.

Incremental view maintenance is more suitable for a data
warehouse environment where the volume of data is large
(several terabytes) and there is l imited off-line t ime that pro-
hibits the running of a very long recomputat ional view main-
tenance transaction. Incremental view maintenance allows
a data warehouse to slowly absorb incoming updates and
incrementally modify its materialized views without having
to block readers for long periods of time. Its major cost is in
the requirement of possibly several rounds of compensating
queries.

The View Holder environment is different from the data
warehouse environment. The amount of customized data
requested by a mobile client is orders of magnitude less
than what is available from a da ta warehouse. Further,
off-line times are longer because each view holder supports
typically a single user and because of the natural periods
of mobile users ~ disconnections. Thus, in contrast to data
warehouses, recomputat ional view maintenance transactions
are expected to be of short duration, have small storage
requirements for intermediate results and execute within
long off-line time. Under these circumstances, recomputa-
tional view maintenance methods are more suitable. These
same circumstances hold when using mobile agents to imple-
ment view materialization. Further, recomputat ionai main-
tenance leads to mobile agents with small footprint since it
is easy to implement and incurs fewer latencies since mo-
bile agents can travel once to each data source transporting
results and reconstructing a materialized view without hav-
ing to backtrack and perform compensatory queries at sites
already visited.

But how does the View Holder agent learn about relevant
changes that occur at the data sources to perform recom-
putation of a view? An SQL query expressing a customized
materialized view specification produces a materialization
program with two basic components: view evaluation that
computes the new view and condition evaluation that trig-
gers a new view materialization. The selection of the method
for evaluating an ON condition expresslon is not l imited by
the use of DBMS-agents. All three possible methods can be
used with mobile agents and their applicability only depends
on the data source capabilities.

• Monitor Data: Have the view holder agent's materi-
alization program periodically query the relevant data
sources to discover when updates or new versions have
been created.

• Monitor Catalog: Have the view holder agent's ma-
terialization program query the database's catalog to
determine from the last time a tup]e, attribute, or ta-
ble was updated if a relevant change has been made.

• T r i g g e r : Build a trigger within the data warehouse

Table rl Table r2 Table rj
A B B C C D
1 2 - 3 4
7 2

T a b l e 1: T a b l e s f o r Q u e r y 0-eMonitmr

and server so that the da ta sources notify the query
processing facility when relevant changes have occurred.

In the next section, we will provide an example of how the
distributed query processing l ibrary routines can construct
a material ization program to perform recomputat ional view
maintenance when monitoring da t a axe used to evaluate the
ON condition.

3.1 View Holder's Materia l izat ion Program
Let us start by first considering a query that reflects the

join of data from tables r l , r2, ra of da ta servers DSI, DS2,
DS3, respectively and requires monitor ing at only one da ta
source. Table 1 shows the s ta te of the base tables that win
be used to construct a material ized view from the query
O n e N o n i t o r .

C R E A T E V I E W OneMoni tor A S
S E L E C T D S I . a , DS2.b, DS3.o
F R O M D S I . r l , DS2.r2, DS3.ra
W H E R E (DSl . r~ .a < 5) A N D

(DSI . r l .b =- DS2.r: .b) A N D (DS2 . r : . c -~ DS3-rs.c)
U P D A T E O N (DS2.r2, Full)
R O L E H o l d e r - a s - C a c h e
M A I N T E N A N C E R e c o m p u t a t i o n a l ;

Once this query reaches the view holder agent, if the meta.
dato maintained by the view holder agent does not contain
information about the tables rl, r2, rs, then this information
must be obtained from the individual data sources. Once
this information is gathered and stored, the query must be
processed and a materialization program formed. There are
three types of DBMS-agents that can be used when con-
structing a materialization program:

• c o o r d i n a t i n g D B M S - a g e n t : Both parts of the ma-
terialization program can be contained within one co-
ordinating DBMS-agent . The coordinating DBMS-
agent will reside at a da ta source that needs to be
monitored, and dispatch other condition evaluation
DBMS-agents to the da ta sources that need to be mon-
itored. Once the O N condition is satisfied, the coordi-
nating DBMS-agent launches a view evaluation DBMS-
agent. For every version that is created, a coordinating
DBMS-agent can only dispatch one vi.ew evaluation
DBMS-agent.

• view evaluation DBSS-agent: Whenever a new
version of a materialized view must be constructed, the
view evaluation DBMS-agent is responsible for trav-
eling to each data source, executing the appropriate
subquery~ and performing any necessary joins.

• condition evaluation DBMS-agent(s): For every
data source that must be monitored for the ON clausel
a condition evaluating DBMS-agent can be dispatched
to reside at the data source and notify the coordinating
DBMS-agent when the ON condition has been satisfied
arid a new version must be constructed.

51

~ r 7 T r ~

I ' RO. l rg~r i.b,,r.4

~ r 3 a = = rz" "" r "\

O N r 2 " x /

l[tmmmpumflmml Vh.w EvllumiJlcm

r l : e b r ~ : b E r l : © d
1 2 , 3 4
'7 "J

r2 ~)

11 I 3 41

Figure 2: Q u e r y Tree for Q u e r y 0 n e | l o n i t o :

Since, in our example, there is only one d a t a server to
monitor , we can create a mater ia l iza t ion p rogram for a co-
ordinat ing DBMS-agen t tha t performs moni tor ing and then
launches a view ewduat ion DBMS-agen t to recompute the
view whenever a change to table r~ occurs. To create this
mater ia l iza t ion program, a query expressed in SQL must
first be scanned, parsed and then validated. The scanner
identifies language tokens, while a parser and validater check
the syntax of the query Lo de termine if it is grammat ica l ly
correct. T h e n an in ternal representa t ion of the query known
as a query tree is created. This query t ree is used to create
an execut ion s t ra tegy for accessing the da t a and obtaining
the results. W h e n the execut ion s t ra tegy is combined wi th a
moni tor ing loop and condi t ion evaluation, we call this a ma-
terialization program strategy. Once the execut ion s t ra tegy
has been de te rmined the code generator generates the code
for execut ing the plan [3]. It is this code tha t can be placed
within a DBMS-agen t for execut ion at any da t a server.

For our example view OneKon i to r the query tree will ap-
pear as in Figure 2 (left-side). T h e execut ion of a query
tree consists of first execut ing the internal node operat ions
whenever its operands are available and then replacing the
internal nodes by the table tha t resul ted f rom execut ing the
operand. T h e query tree of Figure 2 reflects the query trip
plan used by the one view evaluat ion DBMS-agen t in order
to per form the joins at the da t a servers. Once the O N con-
di t ion is satisfied at DS2, the da t a of DS3.r~ and DS2.r2
will be jo ined (e.g., using a hash-join [3]) before this result is
then la ter jo ined with the da t a selected f rom table D S I . r l -

Of ten a query tree is buil t or modified to supply a more
efficient s t ra tegy for execut ing a d is t r ibuted query. Most
current d is t r ibuted query processing algori thms consider the
goal of reducing the amount of da t a t ransfered during exe-
cut ion to be the op t imiza t ion cri teria when choosing a dis-
t r ibu ted query execut ion s t ra tegy [3]. One possible modifi-
cat ion would be to know the approximate tables sizes from
the M e t a D a t a main ta ined by the view holder agent. If the
table size of D S I . r l ~= DS3.r~ then the code generator
would have wanted to per form the join be tween D S l . r l and
DS2.r2 first, and this s t ra tegy would have been reflected in
the query tree in order to reduce the amount of da ta trans-
ferred across the fixed network.

W i t h the code genera ted using the help of the d is t r ibuted
query processing library, the view holder agent could build
and launch the coordinat ing DBMS-agen t necessary for eval-
ua t ing the ON condi t ion t h a t must also contain the one
view evaluat ion DBMS-agen t necessary for r ecomput ing the
mater ial ized view of the 0 n e N o n i t o r query. The complete
mater ia l izat ion p rog ram is shown in Figure 3.

Coordinat ing DBMS-agen t 0
BeginBody

Query DS2.r2
S E L E C T DS2.r2.b, DS2.r2-c
F R O M DS2.r2

Let B = b a n d C = c
Let locai variable version n u m b e r v = 0

Star t view recomputa t ion :
Supply query tr ip plan (query tree) wi th query

DS.r2 results.
Launch view evaluat ion DBMS-agen t wi th query

trip plan, and version number v = 0.

Begin Monitoring:
Every (:Monitor _ t ime)

S E L E C T DS2.r2.b, DS2.r2 .c
F R O M DS2-r2

I f (B ~ b o r C ~ c)
Let version n u m b e r v = v -[- 1
S tar t view recomputa t ion :

Supply query trip plan (query tree) with query
DS.r2 results.

Launch view evalua t ion DBMS-agen t wi th query.
tr ip plan and current version number v.

Let B = b and C = c
End If

E n d Every
EndBody

Figure 3: R e c o m p u t a t l o n a l M a t e r i a l i z a t i o n Pro-
gram for the OneMonitor V i e w

Since each r ecom pu ted version of the materieaized view is
associated wi th the launching of a view evaluat ion DBMS-
agent, we want these mobile agents to be processed by the
da t a sources and view holder agent in the order they ewe
launched. Therefore , we can associate a version number wi th
each view evaluat ion DBMS-agen t . At the da t a sources,
mobile agents are buffered and execu ted in the order of their
version number . Note tha t this m e t h o d does not require the
not ion of a global t ime, since the version number is a locally
main ta ined variable of the coord ina t ing DBMS-agent -

The mater ia l iza t ion p rogram presented for 0 n e N o n i t o r r e -
fleets the worst case scenario where a b ru te force me thod is
used to per form condi t ion evaluat ion by compar ing the val-
ues of b and c tuple by tuple. However , a special da tabase
differential ut i l i ty might be helpful in reducing the cost of
comparison. For example, i f deletions are not permi t ted , a
differential can be de tec ted by jus t r emember ing the total
number of tuples in a table or count (*) and compar ing tl~s
value wi th the current c o u n t (.) result . In this case, j u s t
one ar i thmet ic opera t ion is required in order to de termine if
the view evaluat ion DBMS-agen t shou ld be launched. Also,
it should be no ted tha t there is no need to retr ieve non-
upda tab le a t t r ibutes .

3.2 C o o r d i n a t i n g oN Cond i t ion Eva lua t ion
In general, the condi t ion evaluat ion par t of a mater ia l -

izat ion p rogram may require mult iple condi t ion evaluat ion
DBMS-agents . For example, condl OR cond2 where condl
and cond2 must be examined at separa te sites, D S 1 and
D S 2 respectively, would require a coordinat ing DBMS-agen t
residing at D S 2 to launch a condi t ion evaluat ing DBMS-

52

agent that would reside at DS1. The coordinating DBMS-
agent provides the condition evaluating DBMS-agent with
the version number v. When one of the conditions is sat-
isfied, say at DS1, then the appropriate results from DS1
should be sent to the coordinating DBMS-agent with the
current version number v. The version number prevents the
same materialized view version from being recomputed twice
in the case where multiple condition eveauating DBMS-agents
send their results to the coordinating DBMS-agent. In other
words, al though condl and cond2 require the use of two mo-
bile agents, both mobile agents work toward the creation of
the same view version v.

Storing the results at the t ime the condition becomes true
at D5'1 allows the condition evaluation DFlMS-agent to take
a "snapshot" of the data server at a t ime when the ONcon-
dition was satisfied. This allows the materialized view to be
built such that the ON condition is satisfied for version v.
For example, consider the ON condition eondl A N D cond2,
Figure 4 shows which states of the da ta servers are com-
bined to form a new state of the materialized view. Each
time the condition is satisfied at DS1 a new version of the
materialized view will be s tar ted and sent to the coordinat-
ing DBMS-agent at D~'2. However, ouly once the condition
is satisfied at DS2 can an entire version of the materialized
view be created by a view evaluation DBMS-agent with a
satisfied ON condition.

view holder In l t l~ view

- /7_ / : ©zordJnator a t

- - ~ I e l

*¥ ~ ON ~ d l [I m i ~dlA/led s t thlJ site with verslum number v

Figure 4: E v a l u a t i n g the C o n j u n c t i o n o f T w o O N
C o n d i t i o n s

It is important to remember that there may be e ther re-
mote data servers that are not part of the O N condition
and yet are still part of the recomputat ion of a materialized
view. Once the ON condition is satisfied, the view evalua-
tion DBMS-agent may still have other remote data servers
to visit according to its query trip plan.

3.3 P a r t i a l M a t e r i a l i z a t i o n a n d V i e w Currency
We have seen how information from the user's customized

create v i e w s ta tement can specify when view maintenance
should occur. The information contained in the ON condi-
tion can also be used to avoid the full recomputat ion of a
materialized view whenever the condition is satisfied. For
example, suppose the ON condition is used to specify which
da ta is of the most importance to the user. In our query
0neHoni to r , the condition U P D A T E ON DS2.r2 reflects
that changes to the table r2 hold more interest for the user
and their application session than other updates. In order
to process end deliver these changes faster, a partially ma-
terialized version of the view could be created by combining
the changes detected by the condition evaluating DlqMS-
agent at DS2 with the da ta already stored at the view
holder agent without performing an entire view reeompu-
tation. Since the condition evaluation is separate from the

recomputat ion, this would require a message containing the
new updates to be delivered from the condition evaluator
DBMS-agent to the view holder agent. The tuples of the
version that is to be directly updated would be changed and
only these specific variations would be communicated, thus
saving even more wireless bandwidth than what is required
by a full recomputat ion of the view.

view holder initial view final view

ON D S 2 . r 2 ~ m /

Figure 5: Part ia l V i e w M a t e r i a l i z a t i o n

Figure 5 shows an example of part ial materialization. This
allows the user and application sessions to receive specific
information they will be using with less data transfer over
the wireless communicat ion links, ordy a partial view recom-
putation, a faster response time, and fewer mobile agents.
At any time, the recomputat ion part of the materialization
program can be activated, so that the view is fully recom-
puted with values from aLl the data servers involved in the
view's specification. This could be done periodically in or-
der to create view states that correspond to the state of the
data sources and this is shown in the final convergent view
created in Figure 5.

4. CUSTOMIZING VIEW C O N S I S T E N C Y
Since the mobile client may enter periods of weak connec-

tivity or disconnection in addition to other limitations such
as bat tery power, the view holder agent is responsible for
acquiring and storing the result of a query in the form of a
materialized view. However, the view holder agent must also
provide some guarantees regarding view consistency and,
therefore, mobile cfient cache consistency. As the communi-
cation capabilities vary in both the fixed and wireless net-
works, we want to customize the level of view consistency
seen by an appfication session, so that view maintenance
operations match the preferences of the user and their ap-
pfications. Application-specific access and consistency allow
mobile applications to trade consistency guarantees for com-
munication costs improvements.

We have seen how the ON condition effects view (data)
currency. Now, our goal is to understand which levels of
materialized view consistency are applicable with the View
Holders approach when recomputat ional view maintenance
is used.

In the context of incremental view materialization, the
analysis of the Strobe algorithms with two da ta sources re-
vealed that incremental mechanisms can offer four levels
of materialized view consistency. These levels, in order of
their difficulty to guarantee, are: convergence, weak consis-
tency, strong consistency, and completeness (serializability).
In addition, the level of consistency reachable for a par-
ticular view maintenance algorithm is dependent on the up-
date scenarios (i.e., single update (SUT), source-local (SLT),
or global (GT)) of the various data sources involved in the
view's specification.

53

ow . / f :
DSI -Y :
DS2 ,~ _ _ ~

I, Weak Congi~tcr~y

ow . / f :
DSI

2. Partial Consistency

DW ~ ~ / ~ [~-~

DSI

DS? -- -- ~ " /

3. Progressive Consisb'ncy Slrong Comistency

Figure 6: N e w Levels o f V i e w C o n s i s t e n c y f o r Re-
c o m p u t a t i o n a l V i e w M a i n t e n a n c e

I n u n d e r s t a n d i n g h o w v iew c o n s i s t e n c y is vu~Tected b y mo-
b i le v iew c u r r e n c y c u s t o m i z a t i o n w h e n r e c o m p u t a t i o n a l v iew
m a i n t e n a n c e is used , we d i s c o v e r e d two a d d i t i o n a l v i ew con-
s i s t e n c y levels t h a t we n e e d to t a k e i n t o c o n s i d e r a t i o n . T h e
f i rs t , ca l l ed p a r t i a l c o n s i s t e n c y i s a n a l o g o u s to t h e v iew con-
s i s t e n c y t h a t c a n b e a c h i e v e d w h e n p a r t i a l m a t e r i a l i z a t i o n
is u s e d as d e s c r i b e d in S e c t i o n 3.3. T h e s econd , ca l l ed pro -
g res s i ee c o n s i s t e n c y r e p r e s e n t s t h e v iew c o n s i s t e n c y t h a t is
a c h i e v e d w h e n t h e v iew is ful ly r e c o m p u t a t e d e v e r y t i m e t h e
OAr c o n d i t i o n is sa t i s f ied . F i g u r e 6 s h o w s t h e s e n e w levels
a n d h o w t h e y r e l a t e t o t h e s n a p s h o t c o n s i s t e n c y levels de-
f i ned i n [14]. T h e n e w levels a r e b e t w e e n w e a k c o n s i s t e n c y
a n d s t r o n g cons i s t ency . F o r a V i e w H o l d e r access ing two
d a t a sou rce s t h i s is a c o m p l e t e l i s t o f p o s s i b l e c o n s i s t e n c y
levels. In t h e r e s t o f th i s s ec t i on , we f o r m a l l y def ine t h e s e
c o n s i s t e n c y levels .

Fo r a p a r t i c u l a r d a t a sou rce , we c a n def ine t he source s t a t e
s e q u e n c e [13], S , , q = sso, s s l , . . . s s l ;~a t , t o h e t h e b a s e d a t a
s t a t e s a f t e r e a c h u p d a t e c o m m i t s . VSo~q ---- vso, v sx , -. .vsllnffit
is t h e s t a t e s e q u e n c e of v i ew s t a t e s c r e a t e d a f t e r e a c h v iew
r e c o m p u t a t i o n is p e r f o r m e d . I n d i v i d u a l v i ew s t a t e s of V S , ~ q
a re s t o r e d as ve r s ions w i t h i n t h e v iew h o l d e r a g e n t w h e n e v e r
a m o b i l e c l i en t ' s a p p l i c a t i o n se s s ion r e q u e s t s a p a r t i c u l a r
s t a t e . A source s t a t e vec tor , s s vN , is t h e s t a t e o f a~l s o u r c e
d a t a a t a p a r t i c u l a r m o m e n t i n t i m e a n d r e p r e s e n t s t h e con-
t e n t s of t h e b a s e t a b l e s . I f t h e r e a r e u s ou r ce s w h e r e e a c h
s o u r c e h a s a u n i q u e id z , t h e n a t a g i v e n m o m e n t in t i m e
a sou rce s t a t e v e c t o r s s v c o n t a i n s u e l e m e n t s s u c h t h a t t h e
z t h c o m p o n e n t o f t h e v e c t o r or ssv[~] c o n t a i n s t h e v is ib le
s t a t e o f s o u r c e x.

V i e w s t a t e v s j , is s n a p s h o t c o n s i s t e n t w i t h a s o u r c e s t a t e
vec to r , s s v l , i f V (v s j) = V (s s v ,) [14]. W e c a n n o w def ine
p a r t i a l a n d p r o g r e s s i v e c o n s i s t e n c y as f o r m s o f v i ew con-
s i s t e n c y s lowly a d v a n c i n g f r o m w e a k to s t r o n g cons i s t ency .
N o t e t h a t w h a t c o n s t i t u t e s a t r m m a c t i o n d e p e n d s u p o n t h e
s o u r c e u p d a t e s cena r io s .

DEFINITION 1. W e a k C o n s i s t e n c y : C o n v e r g e n c e ho lds
a n d each v i e w ' s s t a t e vs~ re f lec ts s o m e va l id source s t a t e
f o r each d a t a source . I n o t h e r words , f o r the source s t a t e
v e c t o r s s v j s u c h t h a t V (v s l) = V (s s v j) , each da ta source

e z e c u t e d a s e r i a l s c h e d u l e o f t r a n s a c t i o n s X = t l , t2, ..., t,~
t h a t c rea ted z 's e n t r y i n to the source s t a t e vec tor .

DEFINITION 2. N e w P a r t i a l C o n s i s t e n c y : F o r a v i e w ' s
s t a t e vs~, le t each d a t a s o u r c e ' s e n t r y in the source s t a t e vec-
t o r be d e n o t e d blj va~ -~ s s v l ---- [d a ~ x , d s i ~ , . . . , d s i .] f o r each
da ta sourceds~= i < x < u.

P a r t i a l c o n s i s t e n c y m e a n s t h a t weak c o n s i s t e n c y ho lds a n d
there e z i s t s a da ta source d s l j s u c h t h a t i f v s l < vat t h e n
d s l j < d s l j a n d ds~, -~ d s t . f o r a l l z ~ j .

DEFINITION 3. N e w P r o g r e s s i v e C o n s i s t e n c y : For a
v i e w ' s s t a t e v s l , l e t each da ta source ' s e n t r y in the s o u r c e
s t a t e v e c t o r be d e n o t e d by v s l = s s v l = [d s i l , d s ~ , . . . , d s ; ,]
f o r each d a t a source dsiffi 1 < z < u .

P r o g r e s s i v e c o n s i s t e n c y m e a n s t h a t weak c o n s i s t e n c y ho lds
a n d there e z i s t s a d a t a source ds~j s u c h t h a t i f v s l < vs ! t h e n
ds~j < d s l j a n d ds~, <_ dsz , f o r a l l z ~ j .

DEFINITION 4. S t r o n g C o n s i s t e n c y : W e a k C o n s i s t e n c y
ho lds a n d the o r d e r in t i m e o f the v i e w ' s s t a t e s m a t c h e s the
o rder o f the c o r r e s p o n d i n g s o u r c e s t a t e s . L e t the source s t a t e
v e c t o r s s vk ~ [dsl k, d s n k , . . . , ds~,~] c o n t a i n the s t a t e o f al l the
d a t a sources a f t e r a g i v e n s e t o f t r a n s a c t i o n s Tk h a v e been
e zecu ted . T h e n there e x i s t s a m a p p i n g m f r o m v i ew ' t o s o u r c e
s t a t e s a f t e r the e ~ e c u t i o n o f Tk t r a n s a c t i o n s s u c h tha t :

1. E a c h v i e w ' s s t a t e v s j re f lec ts a va l id source s t a t e ,
m (v s j) = ssv j , f o r s o m e k .

• . q vs j < vs , , then ,~ (v s j) < ,~ (v s ,) .

For all three levels: weak, partial, and progressive, each
v i e w ' s s t a t e m u s t re f lec t a va l id s t a t e a t e a c h d a t a source .
I n a d d i t i o n , t h e r e m a y b e a d i f f e ren t s c h e d u l e o f u p d a t e s
a t e ac~ d a t a s o u r c e a n d t h e v iew m a y re f lec t a d i f f e ren t
s e t o f c o m m i t t e d t r a n s a c t i o n s a t e a c h d a t a source . T h i s is
t r u e e v e n d u r i n g p r o g r e s s i v e c o n s i s t e n c y w h e n u p d a t e s m a y
o c c u r a t a d a t a s o u r c e a f t e r i t h a s b e e n v i s i t e d d u r i n g t h e
q u e r y t r i p p l a n (see n u m b e r t h r e e o f F i g u r e 6) .

H o w e v e r , w h e n c o m p a r i n g d i f f e ren t r e c o m p u t e d v i ew s t a t e s
we c a n n o w m a k e s o m e g u a r e m t e e s r e g a r d i n g t h e c u r r e n c y o f
t h e d a t a m a d e v i s ib le d u r i n g t h e q u e r y t r i p p l a n . P r o g r e s -
s ive c o n s i s t e n c y p r o v i d e s t h e g u a r a n t e e t h a t e a c h success ive
v iew s t a t e c o n t a i n s m o r e d a t a c u r r e n c y t h a n i t s p r e d e c e s -
sor . P a r t i a l c o n s i s t e n c y re f l ec t s O N c o n d i t i o n e v a l u a t i o n
a n d r e c o m p u t a t i o n w i t h o u t t h e e n t i r e q u e r y t r i p p l a n b e i n g
e x e c u t e d once t h e c o n d i t i o n is sa t i s f i ed . P r o g r e s s i o n con-
s i s t e n c y re f lec t s ful l r e c o m p u t a t i o n a l v i ew m a m t e n a n c e . A t
a n y t ime , d u e t o t h e s e p a r a t i o n of c o n d i t i o n a n d v iew eva lua -
t i o n w i t h i n t h e m a t e r i a l i z a t i o n p r o g r a m , ful l r e c o m p u t a t i o n
c a n b e a c t i v a t e d o r d e - a c t i v a t e d . T h i s wil l c h a n g e t h e level
of v i e w c o n s i s t e n c y f r o m s u b t r a x m a c t i o n s p a r t i a l t o p r o g r e s -
s ive v i ew c o n s i s t e n c y i f t h e d a t a s o u r c e s ewe o p e r a t i n g w i t h i n
t h e S U T or S L T u p d a t e s c e n a r i o s . W e a k c o n s i s t e n c y is s t i l l
a p p l i c a b l e i n t h e m o b i l e a g e n t s c e n a r i o if, fo r e x a m p l e , m o -
b i le a g e n t s axe p o s s i b l y a l lowed to r e a d o l d e r ve r s ions of d a t a
a t a p a r t i c u l a r d a t a s o u r c e (e.g. , r e a d i n g o ld ve r s ions f r o m
a d a t a w a r e h o u s e r t m n m g 2 V N L) . H o w e v e r , we wil l a s s u m e
fo r t h i s r e s t o f t h i s p a p e r t h a t m o b i l e a g e n t s r e a d t h e m o s t
r e c e n t a t t r i b u t e va lues a v a ~ b l e f r o m a d a t a source .

4.1 Customized Recomputational Consistency
W i t h o u t n e w levels o f v iew c o n s i s t e n c y , c u s t o m i z e d d a t a

access b y m o n i t o r i n g o r t r i g g e r i n g o n i n d i v i d u a l d a t a sou rce s
w o u l d r e q u i r e t he e x p e n s e of s t r o n g o r c o m p l e t e c o n s i s t e n c y
a l g o r i t h m s e x e c u t e d ac ros s all t h e u p d a t e t r a n s a c t i o n s pe r -
f o r m e d a t all t h e d a t a sou rces . R e c o m p u t a t i o n a l m a i n t e -
n a n c e does n o t r e q u i r e a c o l l e c t i o n o f t h e e x a c t c h a n g e s t h a t
h a p p e n e d a t e a c h d a t a sou rce . I f we n o w e x a m i n e t h e S U T
a n d S L T u p d a t e s c e n a r i o s w h e n r e c o m p u t a t i o n a l v iew m a i n -
tenaxlce occu r s , t h e n we c a n de f ine r e c o m p u t a t i o n a l con .
a i s t e n c y a n d r e a s o n a b o u t t h e c u s t o m i z e d r e c o m p u t a t i o n a i

54

correctness. Recomputational consistency explains why the
view state sequence created makes guarantees to ensure that
monitored updates at the data sources are chronologicedly
reflected in the view states.

A mobile agent recomputing a view will create a new view
s t a t e , vsl , b y v i s i t ing each d a t a source a n d p e r f o r m i n g a sub-
que ry f r o m the v iew ' s spec i f ica t ion . T h e c o n t e n t s of a d a t a
source 9 5 = u s e d d u r i n g view e v a l u a t i o n is t he x t h c o m p o -
n e n t of t he source s t a t e v e c t o r ssvl . We a s s u m e t h a t every
en t i r e v iew r e c o m p u t a t i o n is a s s o c i a t e d w i t h a m o n o t o n i -
cally i n c r e a s i n g s equence n u m b e r , a n d t he s equence n u m b e r s
a re p r o c e s s e d b y t h e d a t a sources mad view h o l d e r a g e n t in
o rder .

DEFINITION 5. C u s t o m i z e d R e c o m p u t a t i o n a l C o n -
s i s t e n c y : Let current[] be the source state vector reflecting
the current s tate o f the data sources. A view state sequence
V S,~q = vsx , us2, ..., v a l l na t reflecting mobile agent recom-
pu ta t iona l view ma in t enance is cons i s ten t i f there exists a
f u n c t i o n der ived: vleuJ state) source state vec tor such
that der ived(us l) = say; and,

• Convergence holds-]/r(VSflnal) = V(der ived(vsy lna i))
This means that the f inal view state is derived f rom the

f inal state of each data source.
• Weak Cons i s tencyholds : Vi, V (v s l) = V (d e r i v e d (v s i))

and each data source x executed a serial schedule of up-
date t ransact ions X -- tl , t2, ..., tn that created ~ 's en-
try in der i ved (vs l) . This means that each source state
vector is valid and reflects actual updates that occurred
at the data sources.

• Data Souree Chronology: Vi, der ived(vs l) <_ c u r r e n t ~
Since view m a i n t e n a n c e is asgnchronoua, the view's
state does not correspond to the current state of the
data sources, but only valid states that existed at some
t ime.

• View State Chronology: i f v s l < vs j t hender ived (va i) <_
der i ved (v s j). Success ive view states correspond to suc-
cessive source state vectors.

• Cus tomized On Condi t ion Data Currency: Let
der i ved (vs l) = ssv l , and d e r i v e d (v s j) = s s v j . I f
vsl < v s j then there ezists a vector en t ry x such that
ssv~[z] < asvj[z] and DS~ has an active mon i tor ing or
triggering O N condi t ion. Changes in the source state
vectors reflect updated cus tomized data currency.

THEOREM 1. Part ia l and progressive cons i s tency are
s tronger than weak consis tency.

PROOF. 1. The properties of weak consistency hold for
both partial and progressive consistency (i.e., each view state
is based on a valid data source states). 2. Partial and
progressive consistency have a property, called View State
Chronology, that provides an ordering among the view states.
If view state us; < vsj in the view state sequence then by the
definition of recomputational consistency 5, derived(vsl) <_
derived(vsj). Weak consistency does not have this prop-
erty. []

THEOREM 2. Progressive cons is tency is s tronger than par-
tial consis tency.

PROOF. (Ske tch) P rog re s s ive ha s a p r o p e r t y t h a t par t ied
does n o t have in t h a t u p d a t e d c u s t o m i z e d d a t a c u r r e n c y is
e x p e c t e d across all d a t a sources (i.e., across all c o m p o n e n t s
o f t h e source s t a t e vec to r) . []

THEOREM 3. Strong cons i s t ency is s tronger than part ial
and progressive cons is tency .

PROOF. S t r o n g c o n s i s t e n c y r equ i r e s t h a t for one v iew s t a t e
t h e c o m p o n e n t s o f t h e source s t a t e v e c t o r c o r r e s p o n d to the
d a t a sources a f t e r a se t Th of t r a n s a c t i o n s h a v e execu t ed . Le t
t h e source s t a t e v e c t o r asvk ---- [ds lk , dash, ...,ds,~h] c o n t a i n
t h e s t a t e o f all t h e d a t a sources a f t e r a g iven se t o f t r a n s a c -
t ions Tk h a v e b e e n execu t ed . S u p p o s e par t ied or p rogress ive
cons i s t ency is eq t6va l en t t o s t rong . T h e n t h e r e exis ts a m a p -
p i n g m f r o m v iew to sou rce s t a t e s a f t e r t h e e x e c u t i o n of Tk
t r a n s a c t i o n s s u c h t h a t e a c h v iew ' s s t a t e vsj" ref lects a val id
source s t a t e v e c t o r w h e r e m (v s j) ~- savk for some k. Con-
s ider the case w i t h two d a t a sources D S 1 a n d D S 2 . W h e n
r e c o m p u t i n g t h e v iew to c r e a t e s t a t e v s j i t is poss ib le to
o b t a i n d a t a f r o m 0 S 1 a f t e r Th t r a n s a c t i o n s have execu ted ,
b u t to a r r ive a t D S 2 meter Tk+z t r a n s a c t i o n s have execu ted .
The re fo re , t h e r e does n o t exis t a m a p p i n g m (v a j) = ssvk,
a n d s t r o n g cons i s t ency c a n n o t hold . []

LEMMA 1. Moni to r ing and triggering can guarantee at
best progressive cons i s t ency fo r the S U T and S L T update
scenar ios .

PROOF. We a s s u m e t h a t a m o n i t o r or t r i gge r r eads t h e
m o s t c u r r e n t values of t h e a t t r i b u t e s f r o m a b a s e t ab le w h e n
t h e O N c o n d i t i o n is sa t isf ied.

As l ong as eve ry en t i r e view r e c o m p u t a t i o n is a s soc ia t ed
w i t h a m o n o t o n i c a l l y i n c r e a s i n g s e q u e n c e n u m b e r , e n d the
s equence n u m b e r s a re p r o c e s s e d b y t he d a t a sources a n d
view h o l d e r a g e n t i n order , t h e n a n y m o n i t o r i n g or t r igger-
ing view c u r r e n c y c u s t o m i z a t i o n p rov ides p rogress ive con-
s is tency.

S t r o n g cons i s t ency m e a n s t h e o r d e r in t i m e of t h e v iew's
s t a t e s m a t c h e s the o r d e r o f t h e c o r r e s p o n d i n g source s t a t e s
a f t e r a se t T of t r emsac t ions h a v e execu t ed . Since we c a n
n o t g u a r a n t e e t h a t m o r e u p d a t e s p a s t w h a t is c o n t a i n e d in
T h a v e n o t e x e c u t e d a t a n y o f t he d a t a sources d u r i n g a
q u e r y t r ip for c r e a t i n g a n e w v iew s t a t e , s t r o n g cons i s t ency
m a y n o t hold .

C o m p l e t e n e s s r equ i res t h a t eve ry source s t a t e b e re f l ec ted
in o rde r by t h e m a t e r i a l i z e d view. Pe r iod i ca l l y q u e r y i n g t h e
d a t a b a s e ' s c a t a l o g or d a t a m a y skip u p d a t e s t h a t o c c u r a t a
p a r t i c u l a r d a t a source , a n d the re fo re , c o m p l e t e n e s s c a n n o t
b e g u a r a n t e e d . []

W e a k cons i s t ency occurs w h e n t h e s t a t e o f a m a t e r i a l -
ized view ref lects va l id u p d a t e s t h a t o c c u r r e d a t e ach d a t a
source , b u t t h e v iew m a y ref lec t a d i f ferent set of c o m m i t -
t ed t r a n s a c t i o n s a t e a c h d a t a s o u r c e [14]. I f we h a v e a g lobal
t r a n s a c t i o n G c o m p r i s e d of two , g h a t s i te D S 1 e n d gt2
at s i te D S 2 , t h e n weak c o n s i s t e n c y is t he r e su l t i n t h e G T
scenar io i f t h e s t a t e of a m a t e r i a l i z e d v iew is clerived f r o m a
source s t a t e of D S 1 a f t e r g t l execu tes , a n d a source s t a t e of
D S 2 be fo re gt2 is execu t ed . T h e view c r e a t e d would ref lect
the c o m m i t t e d g lobal t r a n s a c t i o n a t D S 1 b u t n o t a t D S 2 ,
a n d would b e weak ly c o n s i s t e n t w i t h r e s p e c t to the d a t a
S O U A ' C e s .

LEMMA 9.. Moni to r ing and triggering can guarantee at
beat weak cons is tency in the G T update scenario.

PROOF. Case I: Global transactions do not use an atomic
commit protocol.
For global tramsaction (7 ---- {gtl, gta } consider two ON con-
dition evaluators, one at DSI and one at DS2- Without

55

loss of generality, assume tha t the moni tor ing or triggering
condi t ion evaluator at DS1 ini t iates the r ecomputa t ion of
the view once gtl commits . Since nei ther moni tor ing nor
triggering can be aware of the complet ion of a global t rans-
action, the view version created could reflect the commi t t ed
global transaction at DSI but not at DS2. This version
when cached by the mobile client would be weakly consis-
tent wi th respect to the da t a sources.
Case 2: Global transactions use an atomic commit protocol.

For global t ransact ions Gffi = {gtffil, gtffi~ } and Gy : {gt~],
gti2), consider an O N condi t ion evaluator at DSI . Let the
moni tor ing or tr iggering condi t ion evaluator at DS1 recom-
pute the view once gtffil commits . If the global t ransact ions
use an atomic commit protocol, such as 2PC, then gt=l com-
mits ¢~ gtffi2 commits . Updates ob ta ined from DS1 will be
t ransferred to DS2 in order to complete the r ecomputa t ion
of the view and ob ta in the resttlts created from the commit-
ment of gtffi2. However, upon arrival at DS2, gt~2 may have
commi t t ed even though the results of gt~l are not par t of
the mater ia l izat ion. Therefore, this view version would re-
flect the commi t t ed global t ransac t ion Gy at DS2 hu t no t at
DS1, leading to weak consistency wi th respect to the da ta
Sources . []

Thus, with the introduction of the two new levels of con-
sistency the full view consistency hierarchy becomes: con-
vergence C weak cons i s tency C part ial cons is tency C pro-
gresslue cons is tency C strong cons i s tency C completeness .

4.2 I n c r e m e n t a l V i e w M a i n t e n a n c e w i t h 0N
Condit ions

So far we have focused on r ecompu ta t ion methods be-
tween the view holder agent and the da t a sources as be-
ing more suitable. However, it should be po in ted out tha t
mobile agents can be used to implement incremented view
main tenance such a.s the Strobe algorithms. Condi t ion eval-
ua t ion DBMS-agents ut i l izing tr iggering constra ints can col-
lect all the insert and delete operations that occur at each
relevant data source. The Strobe edgorithms can then be
used to create a new version of a materialized view that will
be maintained by the multi-versioning methods of the view
holder agent once the ON condition is satisfied.

As in the case of recomputational materialization, the O]V
condition must be taken into consideration when determin-
ing the level of view consistency achieved. Thus, as discussed
above, only if an ON condition is not used, triggering will
allow a Strobe algorithm to reach the level of completeness.

5. S U M M A R Y
Persona l i za t i ono f in fo rma t ion gather ing for mobile clients

is impor t an t due to the comput ing, communica t ion , and
storage l imita t ions of mobile devices. In this paper, we
presented an extended form of SQL tha t allows a mobile
client to cus tomize the mater ia l iza t ion of views at a view
holder agent. A mater ia l iza t ion program is comprised of
two parts , condi t ion evaluat ion and view evaluation, which
moni tor the d a t a sources and upda t e the view when the ap-
propr ia te source changes have occurred. The extension or

• O N condi t ion expresses the criteria for mater ia l izat ion, de-
scribing which da ta changes should invoke the creat ion of a
new version wi thin the view holder agent.

We s tudied the use of mobile agents in implement ing a ma-
terial ization p rogram and found that recomputst ioned ra ther

t h a n incrementa l view ma in tenance is more sui table in a
view holder envi ronment . In unde r s t a nd i ng how view consis-
tency is affected by mobile view currency customizat ion, we
in t roduced two addi t ional levels of view consistency. These
new levels Mlow a view holder agent to provide guarantees
to ensttre tha t moni tored upda tes at d a t a sources operat ing
under the SUT or SLT u p d a t e scenario are chronologically
reflected in the versions ma in t a ined for the mobile client.
We formally defined cus tomized recomputat ional consis tencl l
and proved propert ies of the new view consistency hierarchy.

6. R E F E R E N C E S
[1] B.R. Badr ina th , A. Fox, L. Kleinrock, G. Popek,

P. Heiher, and M- Sa tyanarayanan . A Conceptua l
F ramework for Network Adap ta t ion . [E E E Mobile
Networks and Appl icat ions , 5(4):221-231, 2000.

[2] D. Chess, B. Grosof, C. Harrison, D. Levine, C.
ParrLs, and G. Tsudik. I t i ne ran t Agents for Mobile
Comput ing . I E E E Persona l Communica t ions , 2(5):
34-49 ,1995.

[3] H. Elmasri and S- B. Navathe. F u n d a m e n t a l s of
Database Systems. Addison Wesley, 2000.

[4] R. Hull and G. Zhou. A F ramework for Suppor t ing
Da ta In tegra t ion using the Material ized and Vir tua l
Approaches. In the A C M S I G M O D Cony., pp.
481-492, 1996.

[5] D. Kotz, Rober t S. Gray, S. Nog, D. Rus, S- Chawla,
a nd G. Cybenko. A G E N T T C L : Targe t ing the Needs
of Mobile Computers . I E E E l n t e r n e t Computing,
1(4) :5S-67 , 1997.

[6] S- Papas tavrou , G. Samaras and E. P i toura . Mobile
Agents for World Wide Web Dis t r ibu ted Database
Access, I E E E T K D E , 12(5):802-820, 2000.

[7] C. Spyrou, G. Samaras , E. P i ton-a , S- Papas tavrou ,
and P. K. Chrysanthis . T h e Dynamic View System
(DVS): Mobile Agents to Suppor t W e b Views. In the
17th l n t ' i Conf. on Data Engineering, pp. 30-32, 2001.

[8] N. Suri, J .M. Bradshaw, M. R. Breedy, P .T. Groth,
G.A. Hill, and H.Jeffers. St rong Mobili ty and
Fine-gra ined Resource Control in NOMADS. In the
2nd In t ' l Syrup. on A g e n t S y s t e m s and Application5
and ~th ln t" Syrup. on Mobile Agents , 1882:2-15, 2000.

[9] S. Weissman Lauzac. The View Holder Approach:
Util izing Cus tomized Material ized Views to Create
Database Services Suitable for Mobile Database
Applicat ions. P h D Thesis , U- of P i t t sburgh , 2001.

[10] S. Weissman Lauzac and P. K. Chrysanthis .
P r og r a mmi ng Views for Mobile Database Clients. In
the 9th D E X A In t ' l Workshop on Mobilit~/ in
Databases and Dis tr ibuted Sys t ems , pp. 408-413, 1998.

[11] S. Weissman Lauzac axtd P. K. Chrysanthis . Util izing
Versions of Views wi th in a Mobile Env i ronmen t .
Journal o f Comput ing and In. formation, 1999.

[12] Y. Zhuge, H. Garcia-Molina, J- Hammer , and
J. Widom. View Main t enance in a Warehous ing
Env i ronment . In the A C M S I G M O D Cony., 1995.

[13] Y. Zhuge, H. Garcia-Molina, and J. Wiener .
Consis tency Algor i thms for Mu]ti-SouLrce Warehouse
View Main tenance . Distr ibuted and Parallel
Databases, 4(4), 1997.

[14] Y. Zhuge. Incrementa l Ma in t enance of Consis tent
D a t a Warehouses. P h D thesis, S tanford Univ. , 1999.

56

