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ABSTRACT

Mobile agents are ideal for mobile computing environments
because of their ability to support asynchronous communi-
cation and flexible query processing since tasks can be dele-
gated to mobile agents when a mobile client is disconnected.
This paper explores the use of mobile agents in personalizing
information gathering for mobile database clients. Personal-
ized data take the form of materialized views and personal-
ization is provided in the form of view maintenance options.
These options, expressed using an extended SQL Create
View command, offer a finer grain of control and balance
between data availability and currency, the amount of wire-
less communication and the cost of maintaining consistency.
The paper defines recomputational consistency and intro-
duces new levels of materialized view consistency to better
characterize the mobile client view currency customizations.
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1. INTRODUCTION

The size of today’s database and data warehousing en-
vironments as well as the Internet’s ability to provide vast
amounts of information has shown that today’s users need
better ways of handling what is available. Cusiomization or
personalization of information gathering for mobile clients
is becoming increasingly important due to the computing,
communication, and storage differences among mobile de-
vices and the amount of information available.

In database systems, views provide a mean to present dif-
ferent users with different portions of the database based on
the users’ perspective. Within relational database systems,
a view defines a function from a subset of base tables to a
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derived table and is materialized by physically storing the
tuples in the derived table. In client-server configurations,
materialized views can be stored at the clients to support lo-
cal query processing and operate in a fashion similar to data
¢aches [12]. In previous work, we explored the customization
and localization properties of views in the context of mobile
database environment to support disconnected query pro-
cessing and developed a view maintenance mechanism called
the View Holder [10, 11, 9].

The core of the View Holder is a versioning mechanism
that can adjust the currency of the data stored on the mo-
bile client, for example, by allowing a user who was discon-
nected during a plane flight to later read updated derived
data without necessarily discarding work performed on older
data during the flight. In addition, a view holder is dynamic
and stateful with respect to an individual mobile client, and
therefore, it can respond to a mobile client’s queries for in-
formation by communicating only the differences between
answers, thus reducing the cost of wireless communication.
In contrast to the materialized views maintained by a large,
static, and stateless data warehouse, the View Holder can
be thought of as a customizable client-oriented data ware-
house, requiring no modifications to be made to the existing
data sources.

Because the View Holder combines and computes the nec-
essary derived data, it is alse able to offer different levels of
view consistency between the data available and the derived
data given to the clients. The contribution of this paper lies
in providing an understanding of how view consistency is
affected by mobile client view currency customization. Two
types of view maintenance algorithmic approaches are ex-
amined, (1) recomputational maintenance that constructs an
entirely new version of a materialized view, and (2) incre-
mental view maintenance that allows updates to be slowly
incorporated within an exdsting version based on the data
warehousing Strobe algorithms [13]. The paper defines re-
computational consisiency and introduces new levels of ma-
terialized view consistency which correspond to specific view
curtency customizations. Furthermore, it explains how view
maintenance is achieved by constructing a materialization
program utilizing mobile agents [2, 5, 8].

The next section introduces our extension to the SQL cre-
ate view statement for specifying user preferences. Sec-
tion 3 examines the different choices for customizing view
currency and realizing a materialization program using mo-

_ bile agents. Section 4 formally discusses view consistency

and Section 5 concludes with a summary.



2. PERSONALIZED DATA ACCESS

Delivering the results of queries in a mobile environment
is different than in a traditional distributed environment due
to the rapidly changing conditions of the wireless commu-
nication network, the requirements of the user in terms of
the accuracy of data, and the cost the user is willing to
pay for communication. Traditional query processing facili-
ties are generally concerned with minimizing response time.
By contrast, in a mobile environment, a user may, for ex-
ample, want to introduce delays or change data accuracy
in order to save service charges or to minimize required re-
sources. Clearly, there is a need for devising ways by which
mobile users can specify their choices for view maintenance
and communication, in particular criteria for materializa-
tion that describe which data changes should invoke an up-
date in the view holder.

Instead of using a generic profile, it seems more natural
to specify user preferences along with the definition of the
view to be customized. Thus, we propaose to extend SQL
so that the create view statement includes the view main-
tenance preferences of the submitting application residing
on the mobile device. Towards this, we introduce the ON
condition that can specify which data should be monitored
by the view holder agent and how often.

Essentially, the ON condition creates the customizable
data currency, and summary required by the mobile client’s
application sessions (ASs). This generic condition for de-
termining materialization over data servers (DSs) and data
warehouses (DWs) includes UUpdate ON:

e an individual attribute at DS1: DS1.Items.price.
e a condition on an attribute: DSI1.Items_price > §15.

e a change occurs at a specific DS or table: DSI or
DS1.Items

e any change: ALL TABLES, ALL SOURCES

e a maintenance transaction commits at DW:
DW .new_transaction.

e agiven amount of time has passed: 10 minutesor DS1
10 minutes. This supports plan disconnection.

e a specific number of versions: DW AFTER 3 versions.

e a logical combination of any of the above: E.g.,
DS1.Items.price OR DW.new_transaction;
DS1.Items.price AND DW _new_transaction.

2.1 Customized SQL Statements

The extended SQL create view statement offers three
additional but optional ([...]) clauses: Update On, Role and
Maintenance.

CREATE VIEW <name of view> AS
SELECT <attribute list>
FROM <table list>
[WHERE <selection and join conditions>>]
[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>>]
[ORDERED BY <attribute list>]
[UPDATE ON logical expression of pairs:

<condition for materialization[,Full or Partial] >]
[ROLE <Holder-as-Proxy, Holder-as-Buffer,
or Holder-as-Cache>>] ’

[MAINTENANCE <Recomputational or Incremental>]
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Figure 1: View Maintenance in the Fixed and Wire-
less Networks

The MAINTENANCE clause specifies the view mainte-
nance strategy, either recomputational or incremental, that
should be used by the view holder agent. The ROLE clause
specifies how many versions and how much data must be
maintained. The options range from Holder-as- Prozy where
only the most recent changes are maintained, to Holder-
as-Buffer where a larger portion of the data is prefetched
for later use. If no role is specified then the.default is
the role Holder-as-Proxy since it is the least expensive op-
tion. Finally, as we discussed above, UPDATE-ON provides
a logical expression of conditions for materialization. For
incremental view maintenance only the conditions are re-
quired. For recomputational view maintenance, there is an
additional option corresponding to either full or partial re-
computational maintenance (e.g., (DS1.current price, par-
tial) OR (DW_new_transaction, full)). Both full and partial
view maintenance will be defined in Sections 3.1 and 3.3,
respectively. If no option is provided then full recomputa-
tional view maintenance is the default.

3. CUSTOMIZING VIEW CURRENCY
USING MOBILE AGENTS

The view holder is a middleware component developed to
provide beneficial options for communication and compu-
tation in both the fixed and wireless networks. Within the
wireless network, a view holder acts as the data source for
the view materialization by a mobile client whereas within
the fixed network, it acts as a (customized client-oriented)
data warehouse integrating data from multiple data sources.
Thus, a view holder combines two view evaluations when ex-
ecuting a customized create view statement.

The best choice for a materialization mechanism across
the expensive wireless network is clearly incremental view
maintenance. The view holder as the only data source com-
putes and communicates to the mobile client the variations,
or A view, between any two and possibly non-consecutive
versions of a materialized view. On the other hand, the
choice of the view maintenance mechanism in the fixed net-
work that involves multiple data sources is not obvious. In
particular, we are interested in better understanding the
choices in a Java-based mobile agent infrastructure [7] as
shown in Figure 1. DBMS-agents are mobile-agents that
can connect Lo a remote data server and invoke database
operations [6].

With incremental view maintenance algorithms, such as
the Strobe algorithms presented in [13], ali updates per-
formed at the data sources are reported to a view main-
tenance mechanism. This mechanism is then responsible
for querying other data sources and learning which corre-
sponding changes must be made to the materialized view.
In order to avoid multiple source anomalies due to the la-
tency inherent to receiving answers, once the computation
of the view changes begins, new updates that occur at the
data sources must be taken into account and compensated.



Compensatory actions may lead to additional queries.

Recomputational view maintenance takes a view’s speci-
fication and completely recreates the view from scratch. A
relevant subquery is performed once at each data source
and the results are combined in order to re-build the ma-
terialized view. Once a new materialized view is created it
can be compared with the older materialization in order to
learn what exact changes occurred during view maintenance.
Since recomputational maintenance does not require the ex-
act changes from the data sources and does not compute
the A view during reconstruction, multiple source anoma-
lies cannot occur.

Incremental view maintenance is more suitable for a data
warehouse environment where the volume of data is large
(several terabytes) and there is limited off-line time that pro-
hibits the running of a very long recomputational view main-
tenance transaction. Incremental view maintenance allows
a data warehouse to slowly absorb incoming updates and
incrementally modify its materialized views without having
to block readers for long periods of time. Its major cost is in
the requirement of possibly several rounds of compensating
queries.

The View Holder environment is diflerent from the data
warehouse environment. The amount of customized data
requested by a mobile client is orders of magnitude less
than what is available from a data warehouse. Further,
off-line times are longer because each view holder supports
typically a single user and because of the natural periods
of mobile users’ disconnections. Thus, in contrast to data
warehouses, recomputational view maintenance transactions
are expected to be of short duration, have small storage
requirements for intermediate results and execute within
long off-line time. Under these circumstances, recomputa-
tional view maintenance methods are more suitable. These
same circumstances hold when using mobile agents to imple-
ment view materialization. Further, recomputational main-
tenance leads to mobile agents with small footprint since it
1s easy to implement and incurs fewer latencies since mo-
bile agents can travel once to each data source transporting
results and reconstructing a materialized view without hav-
ing to backtrack and perform compensatory queries at sites
already visited.

But how does the View Holder agent learn about relevant
changes that occur at the data sources to perform recom-
putation of a view? An SQL query expressing a customized
materialized view specification produces a materialization
program with two basic components: view evaluation that
computes the new view and condition evaluation that trig-
gers a new view materialization. The selection of the method
for evaluating an ON condition ezpression is not limited by
the use of DBMS-agents. All three possible methods can be
used with mobile agents and their applicability only depends
on the data source capabilities.

e Monitor Data: Have the view holder agent’s materi-
alization program periodically query the relevant data
sources to discover when updates or new versions have
been created. ]

e Monitor Catalog: Have the view holder agent’s ma-
terialization program query the database’s catalog to
determine from the last time a tuple, attribute, or ta-
ble was updated if a relevant change has been made.

e Trigger: Build a trigger within the data warehouse
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Table 1: Tables for Query OneMonitor

and server so that the data sources notify the query
processing facility when relevant changes have occurred.

In the next section, we will provide an example of how the
distributed query processing library routines can construct
a materialization program to perform recomputational view
maintenance when monitoring data are used to evaluate the
ON condition.

3.1 View Holder’s Materialization Program

Let us start by first considering a query that reflects the
join of data from tables ry,r3, rs of data servers DS1, DS2,
D53, respectively and requires monitoring at only one data
source. Table 1 shows the state of the base tables that will
be used to construct a materialized view from the query
OneMonitor.

CREATE VIEW OneMonitor AS
SELECT DSl.a, D52.b, DS3.c
FROM DS1.r1, DS2.r2, DS3.rs
WHERE (DSl.r;.a < 5) AND
(DS1.r1.b=DS52.ry.0) AND (DS2.ry.c= DS3.r3.c)
UPDATE ON (DS2.rz, Full)
ROLE Holder-as-Cache
MAINTENANCE Recomputational;

Once this query reaches the view holder agent, if the meta-
data maintained by the view holder agent does not contain
information about the tables ry, rz, ri, then this information
must be obtained from the individual data sources. Once
this information is gathered and stored, the query must be
processed and a materialization program formed. There are
three types of DBMS-agents that can be used when con-
structing a materialization program:

» coordinating DBMS-agent: Both parts of the ma-
terialization program can be contained within one co-
ordinating DBMS-agent. The coordinating DBMS-
agent will reside at a data source that needs to be
monitored, and dispatch other condition evaluation
DBMS-agents to the data sources that need to be mon-
itored. Once the ON condition is satisfied, the coordi-
nating DBMS-agent launches a view evaluation DBMS-
agent. For every version that is created, a coordinating
DBMS-agent can only dispatch one view evaluation
DBMS-agent.

s view evaluation DBMS-agent: Whenever a new
version of a materialized view must be constructed, the
view evaluation DBMS-agent is responsible for trav-
eling to each data source, executing the appropriate
subquery, and performing any necessary joins.

e condition evaluation DBMS-agent(s): For every
data source that must be monitored for the ON clause,
a condition evaluating DBMS-agent can be dispatched
to reside at the data source and notify the coordinating
DBMS-agent when the ON condition has been satisfied

and a new version must be constructed.
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Figure 2: Query Tree for Query OneMonitor

Since, in our example, there is only one data server to
monitor, we can create a materialization program for a co-
ordinating DBMS-agent that performs monitoring and then
launches a view evaluation DBMS-agent to recompute the
view whenever a change to table r2 occurs. To create this
materialization program, a query expressed in SQL must
first be scanned, parsed and then validated. The scanner
identifies language tokens, while a parser and validater check
the syntax of the query to determine if it is grammatically
correct. Then an internal representation of the query known
as a query iree is created. This query tree is used to create
an execution strategy for accessing the data and obtaining
the results. When the execution strategy is combined with a
monitoring loop and condition evaluation, we call this a ma-
terialization program sirategy. Once the execution strategy
has been determined the code generator generates the code
for executing the plan [3]. It is this code that can be placed
within a DBMS-agent for execution at any data server.

For our example view OneMonitor the query tree will ap-
pear as in Figure 2 (left-side). The execution of a query
tree consists of first executing the internal node operations
whenever its operands are available and then replacing the
internal nodes by the table that resulted from executing the
operand. The query tree of Figure 2 reflects the query trip
plan used by the one view evaluation DBMS-agent in order
to perform the joins at the data servers. Once the ON con-
dition is satisfied at DS2, the data of DS3.r; and DS2.r;
will be joined (e.g., using a hash-join [3]) before this result is
then later joined with the data selected from table DS1.r;.

Often a query tree is built or modified to supply a more
efficient strategy for executing a distributed query. Most
current distributed query processing algorithms consider the
goal of reducing the amount of data transfered during exe-
cution to be the optimization criteria when choosing a dis-
tributed query execution strategy [3]. One possible modifi-
cation would be to know the approximate tables sizes from
the MetaData maintained by the view holder agent. If the
table size of DS1.r1 < DS3.rs then the code generator
would have wanted to perform the join between DS1.r1 and
DS2.rq first, and this strategy would have been reflected in
the query tree in order to reduce the amount of data trans-
ferred across the fixed network.

With the code generated using the help of the distributed
query processing library, the view holder agent could build
and launch the coordinating DBMS-agent necessary for eval-
uating the ON condition that must also contain the one
view evaluation DBMS-agent necessary for recomputing the
materialized view of the OneMonitor query. The complete
materialization program is shown in Figure 3.
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Coordinating DBMS-agent ()
BeginBody
Query DS2.r3
SELECT DS2.ry.b, DS2.r2.c
FROM DS2.r»

Let B=band C =c
Let local variable version number v =0

Start view recqmputation:
Supply query trip plan (query tree) with query
Dg.rz results.
Launch view evaluation DBMS-agent with query
trip plan, and version number v = 0.

Begin Monitoring:
Every (Monitor_time)
SELECT DS52.r2.b, DS2.r2.c
FROM DS52.r3

If(B#borC#c)
Let version number v=v 4+ 1
Start view recomputation:
Supply query trip plan (query tree) with query
DS.ry results.
Launch view evaluation DBMS-agent with query.
trip plan and current version number v.
Let B=band C=c
End If
End Every
EndBody

Figure 3: Recomputational Materialization Pro-
gram for the OneMonitor View

Since each recomputed version of the materialized view is
associated with the launching of a view evaluation DBMS-
agent, we want these mobile agents to be processed by the
data sources and view holder agent in the order they are
launched. Therefore, we can associate a version number with
each view evaluation DBMS-agent. At the data sources,
mobile agents are buffered and executed in the order of their
version number. Note that this method does not require the
notion of a global time, since the version number is a locally
maintained variable of the coordinating DBMS-agent.

The materialization program presented for OneMonitorre-
flects the worst case scenario where a brute force method is
used to perform condition evaluation by comparing the val-
ues of b and ¢ tuple by tuple. However, a special database
differential utility might be helpful in reducing the cost of
comparison. For example, if deletions are not permitted, a
differential can be detected by just remembering the total
number of tuples in a table or count (*) and comparing this
value with the current count(*) result. In this case, just
one arithmetic operation is required in order to determine if
the view evaluation DBMS-agent should be launched. Also,
it should be noted that there is no need to retrieve non-
updatable attributes.

3.2 Coordinating o~ Condition Evaluation

In general, the condition evaluation part of a material-
ization program may require multiple condition evaluation
DBMS-agents. For example, condi OR cond; where cond,
and conds must be examined at separate sites, D51 and
DS?2 respectively, would require a coordinating DBMS-agent
residing at DS2 to launch a condition evaluating DBMS-



agent that would reside at DS1. The coordinating DBMS-
agent provides the condition evaluating DBMS-agent with
the version number v. When one of the conditions is sat-
isfied, say at DS1, then the appropriate results from D.S1
should be sent to the coordinating DBMS-agent with the
current version number v. The version number prevents the
same materialized view version from being recomputed twice
in the case where multiple condition evaluating DBMS-agents
send their results to the coordinating DBMS-agent. In other
words, although cond; and cond, require the use of two mo-
bile agents, both mobile agents work toward the creation of
the same view version wv.

Storing the results at the time the condition becomes true
at DS1 allows the condition evaluation DBMS-agent to take
a "snapshot” of the data server at a time when the ON con-
dition was satisfied. This allows the materialized view to be
built such that the ON condition is satisfied for version v.
For example, consider the ON condition cond; AND conds,
Figure 4 shows which states of the data servers are com-
bined to form a new state of the materialized view. Each
time the condition is satisfied at D.S1 a new version of the
materialized view will be started and sent to the coordinat-
ing DBMS-agent at DS2. However, only once the condition
is satisfied at DS2 can an entire version of the materialized
view be created by a view evaluation DBMS-agent with a
satisfied ON condition.

view holder Initlal view
agent 4
coordinaior at
DS2

*1 «2

*v = ON condition satlsfled at this slie with version number v

Figure 4: Evaluating the Conjunction of Two ON
Conditions

It is important to remember that there may be other re-
mote data servers that are not part of the ON condition
and yet are still part of the recomputation of a materialized
view. Once the ON condition is satisfied, the view evalua-
tion DBMS-agent may still have other remote data servers
to visit according to its query trip plan.

3.3 Partial Materialization and View Currency

We have seen how information from the user’s customized
create view statement can specify when view maintenance
should occur. The information contained in the ON condi-
tion can also be used to avoid the full recomputation of a
materialized view whenever the condition is satisfied. For
example, suppose the ON condition is used to specify which
data is of the most importance to the user. In our query
OneMonitor, the condition UPDATE ON DS52.r2 reflects
that changes to the table r; hold more interest for the user
and their application session than other updates. In order
to process and deliver these changes faster, a partially ma-
terialized version of the view could be created by combining
the changes detected by the condition evaluating DBMS-
agent at DS2 with the data already stored at the view
holder agent without performing an entire view recompu-
tation. Since the condition evaluation is separate from the
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recomputation, this would require a message containing the
new updates to be delivered from the condition evaluator
DBMS-agent to the view holder agent. The tuples of the
version that is to be directly updated would be changed and
only these specific variations would be communicated, thus
saving even more wireless bandwidth than what is required
by a full recomputation of the view.

inits final view
vi: ;ﬂ" der initial view ° ° Vie:
sz /
ON DSz.r
DS1

Figure 5: Partial View Materialization

Figure 5 shows an example of partial materialization. This
allows the user and application sessions to receive specific
information they will be using with less data transfer over
the wireless communication links, only a partial view recom-
putation, a faster response time, and fewer mobile agents.
At any time, the recomputation part of the materialization
program can be activated, so that the view is fully recom-
puted with values from all the data servers involved in the
view’s specification. This could be done periodically in or-
der to create view states that correspond to the state of the
data sources and this is shown in the final convergent view
created in Figure 5.

4. CUSTOMIZING VIEW CONSISTENCY

Since the mobile client may enter periods of weak connec-
tivity or disconnection in addition to other limitations such
as battery power, the view holder agent is responsible for
acquiring and storing the result of a query in the form of a
materialized view. However, the view holder agent must also
provide some guarantees regarding view consistency and,
therefore, mobile client cache consistency. As the communi-
cation capabilities vary in both the fixed and wireless net-
works, we want to custornize the level of view consistency
seen by an application session, so that view maintenance
operations match the preferences of the user and their ap-
plications. Application-specific access and consistency allow
mobile applications to trade consistency guarantees for com-
munication costs improvements.

We have seen how the ON condition effects view (data)
currency. Now, our goal is to understand which levels of
materialized view consistency are applicable with the View
Holders approach when recomputational view maintenance
is used.

In the context of incremental view materialization, the
analysis of the Strobe algorithms with two data sources re-
vealed that incremental mechanisms can offer four levels
of materialized view consistency. These levels, in order of
their difficulty to guarantee, are: conwergence, weak consis-
tency, strong consistency, and completeness (serializability).
In addition, the level of consistency reachable for a par-
ticular view maintenance algorithm is dependent on the up-
date scenarios (i.e., single update (SUT), source-local (SLT),
or global (GT)) of the various data sources involved in the
view’s specification.
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Figure 6: New Levels of View Consistency for Re-
computational View Maintenance

In understanding how view consistency is affected by mo-
bile view currency customization when recomputational view
maintenance is used, we discovered two additional view con-
sistency levels that we need to take into consideration. The
first, called partial consistencyis analogous to the view con-
sistency that can be achieved when partial materialization
is used as described in Section 3.3. The second, called pro-
gressive consistency represents the view consistency that is
achieved when the view is fully recomputated every time the
ON condition is satisfied. Figure 6 shows these new levels
and how they relate to the snapshot consistency levels de-
fined in [14]. The new levels are between weak consistency
and strong consistency. For a View Holder accessing two
data sources this is a complete list of possible consistency
levels. In the rest of this section, we formally define these
consistency levels.

For a particular data source, we can define the source state
sequence [13], S,.q = 330, 881, ..-88finai, to be the base data
states after each update commits. V' S,.q = v30,v81,...8final
is the state sequence of view states created after each view
recomputation is performed. Individual view states of V'.S,eq
are stored as versions within the view holder agent whenever
a mobile client’s application session requests a particular
state. A source state vector, gsv[], is the state of all source
data at a particular moment in time and represents the con-
tents of the base tables. If there are u sources where each
source has a unique id z, then at a given moment in time
a source state vector ssv contains u elements such that the
z'* component of the vector or ssv[z] contains the visible
state of source x.

View state vs;, is snapshot consistent with a source state
vector, ssv;, if V(va;) = V(ssv;) [14]. We can now define
partial and progressive consistency as forms of view con-
sistency slowly advancing from weak to strong consistency.
Note that what constitutes a transaction depends upon the
source update scenarios.

DEeFINITION 1. Weak Consistency: Convergence holds
and each view’s state vs, reflects some valid source state
for each data source. In other words, for the source staie
vector gsv; such that V(vs:) = V(ssv;), each data source
z ezecuted a serial schedule of transactions X = t;,t2,...,tn
that created '3 entry into the source state vector.

DEeFINITION 2. New Partial Consistency: For a view’s
state vs;, let each data source’s entry in the source state vec-
tor be denoted by vs; = ssv; = [dsi,,dsi,,...,dsi,] for each
data source ds;, 1 <z < u.
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Partial consistency means that weak consistency holds and
there ezists a data source ds.-j such that if vs; < vs; then
ds;; < dslj and ds;, = dai, forallz # j.

DEerFINITION 3. New Progressive Consistency: For a
view’s state vs;, let each data source’s entry in the source
state vector be denoted by vs; = ssv; = [da;,,dsi,, ..., ds;,]
Sfor each data source ds;, 1 <z < u.

Progressive consistency means that weak consistency holds
and there ezists a data source ds.-j such that ifvs; < va then
ds;; < dslj and ds;, < dsi, forallz # j.

DEFINITION 4. Strong Consistency: Weak Consistency
holds and the order in time of the view’s states matches the
order of the corresponding source states. Let the source state
vector ssvy = [ds1,,dsa,,...,ds.,] contain the state of all the
data sources after a given set of transactions Tp have been
ezecuted. Then there ezists a mapping m from viewto source
states after the ezecution of Ty transactions such that:

1. Each view’s state va; reflects a valid source state,
m(vaj) = ssvx for some k.
2. Ifvs; < vs;, then m(vs;) < m(var).-

For all three levels: weak, partial, and progressive, each
view’s state must reflect a valid state at each data source.
In addition, there may be a different schedule of updates
at each data source and the view may reflect a different
set of committed transactions at each data source. This is
true even during progressive consistency when updates may
occur at a data source after it has been visited during the
query trip plan (see number three of Figure 6).

However, when comparing different recomputed view states
we can now make sorne guarantees regarding the currency of
the data made visible during the query trip plan. Progres-
sive consistency provides the guarantee that each successive
view state contains more data currency than its predeces-
sor. Partial consistency reflects ON condition evaluation
and recomputation without the entire query trip plan being
executed once the condition is satisfied. Progression con-
sistency reflects full recomputational view maintenance. At
any time, due to the separation of condition and view evalua-
tion within the materialization program, full recomputation
can be activated or de-activated. This will change the level
of view consistency from subtransactionspartial to progres-
sive view consistency if the data sources are operating within
the SUT or SLT update scenarios. Weak consistency is still
applicable in the mobile agent scenario if, for example, mo-
bile agents are possibly allowed to read older versions of data
at a particular data source (e.g., reading old versions from
a data warehouse running 2VNL). However, we will assume
for this rest of this paper that mobile agents read the most
recent attribute values available from a data source.

4.1 Customized Recomputational Consistency

Without new levels of view consistency, customized data
access by monitoring or triggering on individual data sources
would require the expense of strong or complete consistency
algorithms executed across all the update transactions per-
formed at all the data sources. Recomputational mainte-
nance does notrequire a collection of the exact changes that
happened at each data source. If we now examine the SUT
and SLT update scenarios when recomputational view main-
tenance occurs, then we can define recomputational con-
sistency and reason about the customized recornputational



correctness. Recomputational consistency explains why the
view state sequence created makes guarantees to ensure that
monitored updates at the data sources are chronologically
reflected in the view states.

A mobile agent recomputing a view will create a new view
state, vs;, by visiting each data source and performing a sub-
query from the view’s specification. The contents of a data
source DS, used during view evaluation is the z°h compo-
nent of the source state vector ssv;. We assume that every
entire view recomputation is associated with a monotoni-
cally increasing sequence number, and the sequence numbers
are processed by the data sources and view holder agent in
order.

DEFINITION 5. Customized Recomputational Con-
sistency: Let current[] be the source state vector reflecting
the current state of the data sources. A view state sequence
V S.cq = v81,v92,...,03zinat reflecting mobile agent recom-
putational view maintenance is consistent if there exists a
function derived: view state — source state vector such
that derived(vs;) = ssv; and,

o Convergence holds: V(vsyinal) = V(derived(vssinat))
This means that the final view state is derived from the
final state of each data source.

e Weak Consistencyholds: ¥i, V(vsi) = V(derived(vs;))
and each data source  ezecuted a serial schedule of up-
date transactions X = t1,ta,...,tn that created ’s en-
try in derived(vs;). This means that each source state
vector 13 valid and reflects actual updates that occurred
at the data sources.

e Data Source Chronology: Vi, derived(vs;) < current(]
Since view maintenance is asynchronous, the view’s
state does not correspond to the current state of the
data sources, but only valid states that existed at some
time.

e View State Chronology: ifvs; < va; thenderived(vs;) <
derived(vs;). Successive view states correspond to suc-
cessive source state vectors.

o Customized On Condition Data Currency: Let
derived(vs;) = ssv;, and derived(vs;) = sav;. If
vs; < vs; then there erists a vector entry = such that
asv;[r] < ssv;[z] and DS has an active monitoring or
triggering ON condition. Changes in the source state
vectors reflect updated customized data currency.

THEOREM 1. Partial and progressive consistency are
stronger than weak consistency.

Proor. 1. The properties of weak consistency hold for
both partial and progressive consistency (i.e., each view state
is based on a valid data source states). 2. Partial and
progressive consistency have a property, called View State
Chronology, that provides an ordering among the view states.
If view state vs; < vs; in the view state sequence then by the
definition of recomputational consistency 5, derived(vs;) <
derived(vs;). Weak consistency does not have this prop-
erty. O

THEOREM 2. Progressive consistency is stronger than par-
tial consistency. ’

ProorF. (Sketch) Progressive has a property that partial
does not have in that updated customized data currency is
expected across all data sources (i.e., across all components
of the source state vector). [

55

THEOREM 3. Strong consistency is stronger than partial
and progressive consistency.

PROOF. Strong consistency requires that for one view state
the components of the source state vector correspond to the
data sources after a set T; of transactions have executed. Let
the source state vector ssv, = [ds1,,ds2,,...,dsw,] contain
the state of all the data sources after a given set of transac-
tions Ty have been executed. Suppose partial or progressive
consistency is equivalent to strong. Then there exists a map-
ping m from view to source states after the execution of T
transactions such that each view’s state vs; reflects a valid
source state vector where m(vs;) = sav, for some k. Con-
sider the case with two data sources DS1 and D.52. When
recomputing the view to create state vs; it 1s possible to
obtain data from DS1 after T transactions have executed,
but to arrive at DS2 after Tj.4+; transactions have executed.
Therefore, there does not exist a mapping m(vs;) = savy,
and strong consistency can not hold. []

LEMMA 1. Monitering and itriggering can guarantee at
best progressive consistency for the SUT and SLT update
scenarios.

ProoF. We assume that a monitor or trigger reads the
most current values of the attributes from a base table when
the ON condition is satisfied.

As long as every entire view recomputation is associated
with a monotonically increasing sequence number, and the
sequence numbers are processed by the data sources and
view holder agent in order, then any monitoring or trigger-
ing view currency customization provides progressive con-
sistency.

Strong consistency means the order in time of the view’s
states matches the order of the corresponding source states
after a set T' of transactions have executed. Since we can
not guarantee that more updates past what is contained in
T have not executed at any of the data sources during a
query trip for creating a new view state, strong consistency
may not hold.

Completeness requires that every source state be reflected
in order by the materialized view. Periodically querying the
database’s catalog or data may skip updates that occur at a
particular data source, and therefore, completeness can not
be guaranteed. (]

Weak consistency occurs when the state of a material-
jzed view reflects valid updates that occurred at each data
source, but the view may reflect a different set of commit-
ted transactions at each data source [14]. If we have a global
transaction G comprised of two , gt; at site DS1 and gtz
at site D.S2, then weak consistency is the result in the GT
scenario if the state of a materialized view is derived from a
source state of DS1 after gt; executes, and a source state of
D52 before gtz is executed. The view created would reflect
the committed global transaction at DS1 but not at DS2,
and would be weakly consistent with respect to the data
sources.

LEMMA 2. Monitoring and iriggering can guarantee at

best weak consistency in the GT update scenario.

ProoF. Case 1: Global transactions do not use an atomic
commit protocol.
For global transaction G = {gt1, gtz2} consider two ON con-
dition evaluators, one at DS: and one at DS;. Without



loss of generality, assume that the monitoring or triggering
condition evaluator at DS1 initiates the recomputation of
the view once gt; commits. Since neither monitoring nor
triggering can be aware of the completion of a global trans-
action, the view version created could reflect the committed
global transaction at DS1 but not at DS2. This version
when cached by the mobile client would be weakly consis-
tent with respect to the data sources. .
Case 2: Global transactions use an atomic commit protocol.
For global transactions G. = {gtz1,gtz2} and Gy = {gt;1,
gty2 }, consider an ON condition evaluator at DS;. Let the
monitoring or triggering condition evaluator at DS1 recom-
pute the view once gt,1 commits. If the global transactions
use an atomic commit protocol, such as 2PC, then gtz com-
mits < gtz2 commits. Updates obtained from DS1 will be
transferred to DS2 in order to complete the recomputation
of the view and obtain the results created from the commit-
ment of gt.2. However, upon arrival at D52, gt,» may have
committed even though the results of gt,; are not part of
the materialization. Therefore, this view version would re-
flect the committed global transaction G, at D52 but not at
D&S1, leading to weak consistency with respect to the data
sources. []

Thus, with the introduction of the two new levels of con-
sistency the full view consistency hierarchy becomes: con-
vergence C weak conaistency C partial consistency C pro-
gressive consistency C strong consistency C completeness.

4.2 Incremental View Maintenance with oN
Conditions

So far we have focused on recomputation methods be-
tween the view holder agent and the data sources as be-
ing more suitable. However, it should be pointed out that
mobile agents can be used to implement incremental view
maintenance such as the Strobe algorithms. Condition eval-
uation DBMS-agents utilizing triggering constraints can col-
lect all the insert and delete operations that occur at each
relevant data source. The Strobe algorithms can then be
used to create a new version of a materialized view that will
be maintained by the multi-versioning methods of the view
holder agent once the ON condition is satisfied.

As in the case of recomputational materialization, the ON
condition must be taken into consideration when determin-
ing the level of view consistency achieved. Thus, as discussed
above, only if an ON condition is not used, triggering will
allow a Strobe algorithm to reach the level of completeness.

5. SUMMARY

Personalizationof information gathering for mobile clients
is important due to the computing, communication, and
storage limitations of mobile devices. In this paper, we
presented an extended form of SQL that allows a mobile
client to customize the materialization of views at a view
holder agent. A materialization program is comprised of
two parts, condition evaluation and view evaluation, which
monitor the data sources and update the view when the ap-
propriate source changes have occurred. The extension or
. ON condition expresses the criteria for materialization, de-
scribing which data changes should invoke the creation of a
new version within the view holder agent.

We studied the use of mobile agents in implementing a ma-
terialization program and found that recomputational rather
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than incremental view maintenance is more suitable in a
view holder environment. In understanding how view consis-
tency is affected by mobile view currency customization, we
introduced two additional levels of view consistency. These
new levels allow a view holder agent to provide guarantees
to ensure that monitored updates at data sources operating
under the SUT or SLT update scenario are chronologically
reflected in the versions maintained for the mabile client.
We formally defined custornized recornputational consistency
and proved properties of the new view consistency hierarchy.
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