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Abstract. Mobile agents are autonomous programs that migrate from
one machine to another within a network on behalf of a client, thus, they
are ideal for mobile computing environments since tasks can be delegated
to mobile agents when a mobile client is disconnected. This paper extends
the traditional functionality of a mobile service agent with capabilities
that facilitate asynchronous cooperation among mobile database clients.
In the context of mobile client-server database applications, data cached
to support disconnected operations can take the form of a materialized
view. We design mobile agents to reduce computation and wireless com-
munication costs, and use view versioning to cope with disconnected op-
erations by allowing application sessions to access current data without
invalidating work previously done. A data validation or results propa-
gation process detects inconsistencies with newer versions of data upon
reconnection. Essentially, these mobile agents will compute the period
of time or consistency window, measured in versions, for which the re-
sults of a mobile client’s application are consistent. We supply rules that
govern the creation and sharing of results and show how inconsistencies
can be detected to offer a higher availability of data while organizing
and gracefully degrading the amount of consistency achieved between
the mobile clients and the data sources.



1 Customized Query Processing for Mobile Agents

In previous work, we explored the customization and localization properties of
views in the context of mobile database environments to support disconnected
query processing and developed a view maintenance mechanism called the View
Holder [8,10]. The core of the View Holder is a versioning mechanism that can
adjust the currency of the data stored on the mobile client, for example, by
allowing a user who was disconnected during a plane flight to later read updated
derived data without necessarily discarding work performed on older data during
the flight. In addition, a view holder is dynamic and stateful with respect to an
individual mobile client, and therefore, it can respond to a mobile client’s queries
for information by communicating only the differences between answers, thus
reducing the cost of wireless communication. In contrast to the materialized
views maintained by a large, static, and stateless data warehouse, the View
Holder can be thought of as a customizable client-oriented data warehouse, and
it does not require modifications to be made to the existing data sources.

Delivering the results of queries in a mobile environment is different than in
a traditional distributed environment due to the rapidly changing conditions of
the wireless communication network, the requirements of the user in terms of
the data’s accuracy, and the cost the user is willing to pay for communication.
Traditional query processing facilities are generally concerned with minimizing
response time. By contrast, in a mobile environment, a user may want to in-
troduce delays or change data accuracy in order to save service charges or to
minimize required resources. Clearly, there is a need for devising ways by which
mobile users can specify their choices for view maintenance and communication,
in particular a criteria for materialization that describe which data changes
should invoke an update in the view holder agent.

Instead of using a generic profile, it seems more natural to specify user pref-
erences along with the definition of the view to be customized. Thus, we propose
to extend SQL so that the create view statement sent within the create view
message includes the view maintenance preferences of a cache agent (CA) re-
siding on the mobile device. Towards this, we introduce the ON condition that
can specify which data should be monitored by the view holder agent and how
often. Essentially, the ON condition creates the customizable data currency, and
summary required by the mobile client’s application sessions (ASs).

1.1 Customized SQL Statements

The extended SQL create view statement offers additional but optional ([...])
clauses such as: Update On, and Maintenance.

CREATE VIEW <name of view> AS
SELECT <attribute list>
FROM <table list>
[WHERE <selection and join conditions>]
[GROUP BY <grouping attribute(s)>]



[HAVING <group condition>>]
[ORDERED BY <attribute list>]
[UPDATE ON logical expression of pairs:
<condition for materialization[,Full or Partial] >]
[MAINTENANCE <Recomputational or Incremental>]

The MAINTENANCE clause specifies the view maintenance strategy, either
recomputational or incremental, that should be used by the view holder agent.
Finally, UPDATE-ON provides a logical expression of conditions for material-
ization. This generic condition for determining materialization over data servers
(DSs) and data warehouses (DWs) includes Update ON:

— an individual attribute at DS1: DST1.Iltems.price.
— a condition on an attribute: DS1.Items.price > $15.
— a maintenance transaction commits at DW:

DW.new_transaction.
— a given amount of time has passed: 10 minutes or DS1 10 minutes. This

helps the CA when planning a disconnection.
— a logical combination of all the above: E.g.,

DS1.Items.price OR DW.new_transaction;
DS1.Items.price AND DW.new_transaction.

Although incremental view maintenance (e.g.,[12]) can be specified, the View
Holder environment is different from the data warehousing environment. The
amount of customized data requested by mobile clients is orders of magnitude
less than what is available from a data warehouse, however, there can be many
more mobile clients and their view holder agents within the fixed network. Re-
computational view maintenance methods are more suitable under this scenario,
since we can perform recomputation without having to capture every update
performed at all the data sources because we will not be computing the A view
during reconstruction. Natural periods of disconnection or weak connectivity
allow recomputated results to be stored within the view holder agent. Recom-
putational maintenance is easier to implement and incurs fewer latencies since
several rounds of queries are no longer required. Since small amounts of data are
requested, the storage space required for intermediate results will also be orders
of magnitude smaller than what is required in data warehousing environments.
Furthermore, subqueries will be requested once and only once from each data
source during the recomputation. Therefore, recomputation of the view within
the fixed network is more appropriate when using DBMS-agents, since these
agents can travel once to each data source transporting results and reconstruct-
ing a materialized view without having to backtrack and perform compensatory
queries at sites already visited.

Essentially, the View Holder approach as shown in Figure 1 allows either
recomputational or more complex incremental view maintenance to occur in the
fired network while only the A view (i.e., incremental maintenance) is commu-
nicated across the expensive wireless links to the cache agent residing on the



mobile device. A view holder agent computes the variations, or A view, between
any two and possibly non-consecutive versions of a materialized view. The next
section will provide an example of how the distributed query processing library
routines can construct a materialization program to perform recomputational
view maintenance when monitoring loops are used to evaluate the ON condi-

tion.
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Fig. 1. View Maintenance in the Fixed and Wireless Networks

1.2 The View Holder’s Materialization Program

How does the View Holder learn about relevant changes that occur at the data
sources? There are three possible solutions:

— Monitor Data: Have the view holder agent’s materialization program pe-
riodically query the relevant data sources to discover when updates or new
versions have been created.

— Monitor Catalog: Have the materialization program query the database’s
catalog to determine from the last time a tuple, attribute, or table was
updated if a relevant change has been made.

— Trigger: Build a trigger within the data warehouse and server so that the
data sources notify the query processing facility of relevant changes.

Let us start by considering a query that reflects the join of data from tables
r1, 72, r3 of data servers DS1, DS2, DS3 respectively and requires monitoring at
only one data source.

CREATE VIEW OneMonitor AS
SELECT DSl.a, DS2.b, DS3.c
FROM DS1.ry, DS2.r9, DS3.73
WHERE (DS1.r1.b = DS2.r3.6) AND (DS2.r3.c = DS3.r3.¢)
AND (DSl.ry.a < 5)
UPDATE ON (DS2.rq, full)
MAINTENANCE Recomputational
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Table 1. Tables for Query OneMonitor

Table 1.2 shows the state of the base tables that will be used to construct
a materialized view from the query OneMonitor. Once this query reaches the
view holder agent, if the MetaData maintained by the view holder agent does
not contain information about the tables rq, rq, r3, then this information must
be obtained from the individual data sources. Once this information is gathered
and stored, the query must be processed and a materialization program formed.

In this example, two DBMS-agents are necessary for the view recomputa-
tion. The condition evaluation DBMS-agent performs monitoring at DS2. The
view evaluation DBMS-agent recomputes the view whenever a change to table
ro9 occurs. To create this materialization program, a query that is expressed in
a high-level query language such as SQL is represented internally as a structure
known as the query tree. This query tree is used to create an execution strategy
for accessing the data and obtaining the results. When the execution strategy is
combined with a monitoring loop and condition evaluation, we call this a mate-
rialization program strategy. Once the execution strategy has been determined
the code generator generates the code for executing the plan. It is this code that
can be placed within a view evaluation DBMS-agent for execution at any data
server.
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Fig. 2. Query Tree for Query OneMonitor



For our example view OneMonitor the query tree will appear as in Figure 2
(left-side). The query tree reflects the query trip plan used by the view evaluation
DBMS-agent in order to perform the joins at the data servers. Once the ON
condition is satisfied at DS2, the data of DS3.r3 and DS2.r; will be joined
(e.g., using a hash-join [2]) before this result is then later joined with the data
selected from table DS1.rq.

Often a query tree is built or modified to supply a more efficient strategy
for executing a distributed query. One possible modification would be to know
the approximate tables sizes from the MetaData maintained by the view holder
agent. If the table size of DS1.rq1 < DS3.r3 then the code generator would have
wanted to perform the join between DS1.r; and DS2.ry first, and this strategy
would have been reflected in the query tree in order to reduce the amount of
data transferred across the fixed network.

Since each recomputed version of the materialized view is associated with the
launching of a view evaluation DBMS-agent, we want these particular mobile
agents to be processed by the data sources and view holder agent in the order
they are launched. Therefore, we can associate a version number with each view
evaluation DBMS-agent. At the data sources, mobile agents are buffered and
executed in the order of their version number. Note that this method does not
require the notion of a global time (unlike methods from [3]). since the version
number is a locally maintained variable.

The condition evaluation part of the materialization program may require
multiple condition evaluation DBMS-agents. For example, condy OR conds where
condy and cond; must be examined at separate sites, D.S1 and DS?2 respectively,
would require a coordinating DBMS-agent to launch condition evaluating DBMS-
agents that reside at DS1 and DS2. and supply the with the current version
number.

When one of the conditions is satisfied, say at DS1, then the appropriate
results from DS1 should be sent to the coordinating DBMS-agent with the
current version number. The version number prevents the same materialized
view version from being recomputed twice in the case where multiple condition
evaluating DBMS-agents send their results to the coordinating DBMS-agent. In
other words, although cond; and cond; require the use of two mobile agents,
both mobile agents work toward the creation of the same view version.

Storing the results at the time the condition becomes true at DS1 allows
the condition evaluation DBMS-agent to take a ”snapshot” of the data server
at a time when the ON condition was satisfied. For example, consider the ON
condition condy AND conds. Figure 3 shows which states of the data servers are
combined to form a new state of the materialized view. Each time the condition
is satisfied at a data server (for example, at DS1) a new version of the material-
ized view will be started and completed later by the coordinating DBMS-agent.
However, only once the condition is also satisfied at the remaining site (DS52)
can a new version of the materialized view be created by a view evaluation
DBMS-agent. It is important to remember that there may be other remote data
servers that are not part of the ON condition and yet are still part of the re-



computation of a materialized view. The view evaluation DBMS-agent may still
have other remote data servers to visit according to its query trip plan. In [9], we
defined recomputational consistency based on the snapshots incorporated from
the data sources and introduced new levels of materialized view consistency to
better characterize the mobile view currency customizations available.
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Fig. 3. Evaluating the Conjunction of Two ON Conditions

2 Materialized Views for a Data Processing Chain

Items
itemid| iname line |current_price
2 |12” racquet|rgball $30
3 |instr. video| golf $40
Stores
sid| sname city | manager
11 |Dunham’s |Pittsburgh|Ms. Crampton
12 |Dunham’s Erie Mr. Prunty
13 |REI Sport|Pittsburgh| Mr. Atkins
Sales
sid |itemid|quantity |sales_price| date
11| 3 10 $40 2/5/01
12| 2 20 $30 2/5/01
13| 2 42 $30 2/6/01
12| 2 20 $30 2/20/01
12| 3 10 $40 2/20/01

Table 2. Tables from the Data Servers

Our data servers contain base tables regarding some sporting goods stores
(Table 2). The tables shown include Items, Stores and Sales, where Sales



gives individual item transaction information. Now suppose that a user are go-
ing to begin a business activity (e.g., rough calculations, contract, graph). Recall
that our view holder agent will contain materialized views derived from the base
tables, and maintain several separate versions of each view [10]. One material-
ized view, called TotalSales, periodically totals the sales by store and item:
TotalSales(tVN,sid,sname,itemid,line,Tsales)

tVN keeps the version number of the transaction that last updated this tuple.
The attributes sid, city and itemid are non-updatable attributes that do not
change, whereas Tsales must be periodically updated and will have a different
value among the versions. We will assume that the tuples with the largest tVN
numbers belong to the most current version of the view. Table 3 shows a possible
materialization for this view where two versions are available since the ON con-
dition was satisfied and either recomputational or incremental view maintenance
was performed.

TotalSales
tVN|sid| sname [itemid| line |Tsales
3 (11 |Dunham’s| 3 golf | $400
3 |12|Dunham’s| 2 |rgball| $600
3 |13 |REI Sport| 2 |rgball|$1260
4 [11]Dunham’s[ 3 [ golf | $400
4 |12 |Dunham’s| 2 rqball| $1200
4 [12[Dunham’s| 3 [ golf | $400
4 [13[REI Sport| 2 [rgball] $1260

Table 3. View Holder’s TotalSales View

Note that the view maintenance transaction that created version 3 of the view
does not include the last two sales transactions made by the store with sid 12
on 2/20/01. Suppose a MC requested a query regarding racquetball equipment
sales and the result was materialized with respect to version 3 of the TotalSales
view. The MC may keep its materialization of the view for some time and may
not receive the most current sales figures (i.e., from version 4) due to traveling
or communication delays. Later, another application such as a spreadsheet and
graphing tool could be started. At this point, the most recent results may be
available, or communication conditions may have improved (e.g., the user is
dialing up from their hotel room after work). Now, within the new application,
the most recent sales figures can be incorporated into the spreadsheet. This shows
how versions help cope with disconnected operations, by allowing applications
to access more current data without invalidating work previously done.

Each application session (AS) running on a MC only reads view data derived
from the same consistent state at the data sources. In other words, each AS
is associated with one view state vs; from the view holder agent’s view state
sequence, V' S,.,. However, once the MC receives the most recent version of the



data, the client will be running two ASs and accessing two separate versions (or
view states) of the view at the same time.

3 Results in a Data Processing Chain

view holder version V3 version V4 final version V8
agent | RDLV3 || RDLV3 |+ RDLV3 |

: check-in &
input propagation
Results
location ——_>
dependent processing

input RDL V3

Fig. 4. Mobile Client Data Processing Chain

During disconnection and MC can execute ASs that perform work on a subset
of the data cached from the view holder agent’s view without having to lock
data at the sources or even at the view holder agent. While working a MC can
try various computations or solutions involving the data and then later, upon
reconnection or improved communication conditions, it can attempt to integrate
the results of the ASs within the view holder agent.

Figure 4 shows how this data processing chain works and is created within
the view holder agent. Version V3 of the materialized view was requested as
input to an AS. This input was possibly combined with information from the
geographical location of the mobile device in order to produce the result data
layer RDL_V3. By caching the input, the mobile client was able to do this work
even while disconnected. Later, during periods of quality connectivity, this RDL
can be stored in the view holder and coupled with the derived materialized data
used as input in producing these results, while additional application sessions
can be started using newer versions or view states as their input.

Furthermore, the integration process will allow RDL_V3 to propagate further
and become associated with successive view states that are consistent with the



results. An RDL is considered consistent with a successive view state, vs; if
vs; could have been as input to create the RDL. The versions over which a
result data layer can be integrated is called the consistency window of a RDL.
Eventually these results can be sent to a results database or a results process
such as a graphing tool, and then archived or stored within the remote data
servers for future access.

Although we have discussed the reading of data, write transactions on base
data could still originate from an AS, but these transactions are only performed
directly with the data sources and not through the materialized views stored
on the mobile client and the view holder. Changes to the base data will be
inconsistent with the current version of the derived data used by an AS, therefore,
an AS should write to the base sources only if these inconsistencies can be
tolerated.

As stated earlier, a version of the data in the view holder agent will not
expire even if the data sources stop maintaining it. Instead the view holder must
maintain a version for as long as an AS needs it. So, the view holder agent can
be seen as a buffer, holding versions of a specialized view for a particular AS
and its results (RDLs). Therefore, even if a RDL does not propagate it can still
be consistently read along with the view state used.

4 Result Propagation and Inconsistency Detection

So far, we have described how view holders agents maintain and communicate
multiple versions of materialized views to overcome the limitations of MC discon-
nection from the data sources, and thereby, increase the concurrency of mobile
client reading. In addition, versions were created whenever ON conditions are
satisfied to prefetch updates that are of interest to a user and thus customize the
currency of the AS reads. Essentially, the data currency and consistency for one
AS is provided by the view holder without a MC having to stay in contact with
the stateless data sources. This gives the MC more options when disconnected,
for example, whenever a MC exhausts its resources, it can now suspend one or
more of its active applications and reclaim needed space, then later when recon-
nected, these ASs can finish with the view holder’s copy of the results stored
along with the original version of the derived data used to create these results. If
anew AS is started then this AS can still see the results or RDLs stored, as long
as these results are consistent with the new version of the derived view being
used as input to the new AS. In this way, ASs can propagate their work to new
sessions. In this section, we will show how the Awview between versions of the
materialized tuples read by the MC can be used to detect inconsistencies.

4.1 The View Holder Results Propagation Model

Figure 5 shows conceptually how the view holder agent maintains the results for
a MC. When a MC begins its work it requests a specific amount of data from
the sources to be maintained by the view holder agent as a materialized view.
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Fig. 5. The Result Data Layers

Subsets of this view can be cached, although how much data is stored depends
on the storage capacity of the mobile machine. Individual ASs will read tuples
from this cached subset as they perform their work, and the set of core tuples
an AS reads from a view state of the materialized view is what we call the read

set C'.

In addition, each AS executing on a MC has the ability to produce results that
will become part of the view state. The data one AS produces is the AS’s RDL.
For an AS, operating on a MC and reading from version Vy of the view holder
agent’s materialized view, we denote the RDL L; produced as, AS,L;(Vp,C),
where (' is the set of tuples read from Vy that were used to create the AS’s
results. When a MC reconnects, the data layers created during disconnection are
submitted for integration. A layer is integrated along with the version of data
read and used to produce the layer. Whether or not these integrated results are
finally committed and passed on to a results process or database is discussed
in Section 4.2. We can think of a RDL as the creation of a materialized view
derived from the tuples of one version of a view holder agent’s view.

In the figure, version Vp is created from the data sources and contains three
tuples X, Y, Z. Application sessions, AS, and AS. operating on the MC re-
quest data from tuple Z, and create results that will be stored in the RDLs,
AS,Lo(Vo, Z) and AS.L1(Vy, Z) where AS, integrated its results first. At this
point, an ON condition was satisfied, and a new version of the data appears in
the view holder as version V;. The Aview will contain the set of tuples that are
different between versions V; and V;. It will show what changes were made to Y
and Z. ASy can read tuples from version V7, but what happens during integration



of the results depend on the contents of the Aview between versions. Consider
the following three cases from Figure 5:

— AS} reads X: In this case the resulting RDL exists in both version Vy and V}
since X is not a part of the Aview, in other words, X has not changed. We
call this the backward propagation of data layers.

— AS} reads Y: In this case the resulting RDL exists in version V; and will exist
in V5 when it is created since the tuple Y is not modified between version V;
and version V5. This is called forward propagation.

— AS, reads Z: In this case the resulting RDL exists only for version V; and
does not propagate because tuple Z is part of every version’s Aview.

4.2 Types of Consistency Windows

Optimistic replication of data from the view holder agent to the mobile machines
offers a high degree of data availability. It is this availability that becomes crucial
in allowing a mobile client to work individually, especially during periods of
disconnection. However, the cost of availability in the mobile environment comes
in the form of data consistency. We can no long guarantee that work performed
by a mobile client will always be consistent with later versions of a materialized
view. As new data and versions of a materialized view are created, we make more
current data available to the application sessions, but we do so at the expense
of creating possibly even more inconsistencies.

The goal of our results propagation model is to be able to get the most we
can from the results generated by a mobile client, in other words, to offer a
higher availability of data while organizing and gracefully degrading the amount
of consistency achieved between the results created by the mobile client and the
data sources. Here, we are referring to the consistency between a version already
constructed and stored within the view holder agent and the results produced by
a mobile client. How much consistency is desirable depends on the purpose of the
work performed. How well a MC may be able to achieve a desirable consistency
and store its results depends on the availability and cost of the wireless network
and the capabilities of the mobile client. We divide the creation of RDLs within
a view holder agent into two consistency categories:

Application-specific consistency window: Work performed while discon-
nected on older data is still valid as long as it is consistent with a specific
amount of data from within the view holder agent. This scenario is useful when-
ever results need to be generated over a period of time. For example, if each
grouping of versions represented a month of sales figures (e.g., September, Oc-
tober, November), then results integrated for each month could still be used to
generate earnings graphs and analysis. In this scenario, the application’s consis-
tency window would be the versions spanning one month of sales figures, and
we would want a RDL to integrate over all versions within the window. If a
RDL cannot be integrated over the span of the application’s consistency window



then it must be aborted and recalculated. As soon as an RDL integrates over the
application’s consistency window, it is considered committed.

Final version consistency window: This is the scenario where all RDL con-
sistent windows must include the final version. When the mobile client has com-
pleted its individual work, it must be able to store its results as RDLs that are
part of the final version of the view holder agent’s view. As long as a MC’s results
can be forward propagated to the final version, it will not need to have its appli-
cation session aborted or be forced to run a reconciliation procedure. Therefore,
when a MC integrates its work, it does so as a conditional commit until the final
version of the view holder agent is created. However, the further these results
are able to propagate towards the final version the less reconciliation would be
required. In this scenario, the consistency window for a RDL spans the initial
version used by the AS to the final version stored for the MC. This is useful
for any data processing chain where data computed at a mobile location can
be integrated at the view holder agent, and if found to be valid used for final
processing and storage.

4.3 Rules for Result Propagation

Given our results propagation model, we will now provide four rules for sharing,
and propagating the RDLs created by the mobile client’s ASs. Since the results
can be considered a materialized view derived from a view holder agent’s tuples,
the granularity for detecting inconsistencies happens at the tuple level, so first
we must define the set of tuples from which the results are derived. This set of
tuples for a RDL is called the core dependency set:

Definition 1. Core Dependency Set: An AS can read: (1} a set C' of core
tuples from version V; of the view holder agent and/or, (2) a set of result data
layers, where each layer L; is derived from a core tuple set C; of version V;.
Therefore, the set of core tuples that an AS’s results or RDL are derived from is
the set

CoreD=C U |C;.

— 1. Forward Propagation: Suppose an AS’s results are derived from the
set C'oreD from version V; of the view holder agent. The RDL produced by
the AS can be forward propagated to version Vi (k > j) if for all versions i,
where k > i > j, CoreD() N Aview; = §.

— 2. Backward Propagation: Suppose an AS’s results are derived from the
set CoreD(V;) of the view holder agent. The RDL produced by the AS can
be backward propagated to version Vi (j > k) if for all versions i, where
j>i>k, CoreD() N Aview; = .

Now we need two additional rules for integrating a RDL:

— 3. Integration: When a new RDL is integrated, there should be an attempt
to forward and backward propagate this layer to all other versions of the
view.



— 4. New View Version: When a new version Vj is created, there should be
an attempt to forward propagate all RDLs associated with Vi_; to Vj.

What happens when a new RDL can not forward propagate to the latest
version of the view depends on what kind of work is being done and what type
of consistency window is required:

— Application-Specific Commit Rule: A RDL commits if it successfully
forward and backward propagated over the application’s consistency window,
otherwise it must abort or be reconciliated.

— Final Version Conditional Commit Rule: Let V), be the final version
of the view holder agent’s materialized view after the mobile client has in-
tegrated its RDLs. A RDL commits if it successfully forward propagated to
Vi, otherwise it must abort or be reconciliated.

4.4 LTVs and Propagation

The Logical Tuple Versions (LTVs) of a view holder agent operate at the gran-
ularity of the materialized view’s tuples. Figure 6 shows the scenario where an
AS has requested version 3 of the materialized view while later two additional
ASs are started using the latest version 4. In order to read a version V of the
materialized view, the cache agent residing on the mobile device will receive the
largest version number available that is less than or equal to V for each tuple in
the view holder agent.

View Holder for Key Non-updatable Updatable | Count
VN = Dunham’s _itemid 2 rgball $30 3]$600 1
REI Sport  itemid 2 rgball $30 3|%$1,260 | 1
. Key Non-updatable Updatable | Count
View Holder for
Dunham’s itemid 2 rgball $30 3] $600 1
VN = 4]$1,200 | 2
REI Sport itemid 2 rgball $30 3]$1,260 | 3

Fig. 6. Logical Tuple Versions (LTVs)

Storing the RDLs within the view holder agent’s LTVs allows layers to be
automatically propagated forwards or backwards between versions of tuples.
LTVs do this by implicitly calculating from the Aview which versions of a view’s
tuple are consistent with a particular AS’s RDL. For example, Figure 7 shows a



possible scenario for the building of RDLs from the L'TVs previously shown. As
shown in the L'TVs for version 3, suppose a MC request this version, and its AS
is started. If this application session reads the REI Sport tuple and creates some
sales results, then this work, A4S, Lo(Vs, REISport), will be associated with the
tuple REI Sport within version 3.

Once changes have occurred at the base table in the data sources, the view
holder agent will build version 4 of the view incorporating the changes to the
Dunham tuple by increasing the value of Tsales from $600 to $1,200. After
version 4 is created, two more ASs are started, AS, and AS.. However, since
the tuple REI Sport was not part of the Aview, a MC reading version 4 of this
tuple from the LTVs will actually be reading the unchanged tuple from version
3 (i.e., the largest version number less than or equal to 4 for tuple REI Sport
is version 3). Conceptually, this implies that any data layers associated with the
tuple REI Sport are automatically propagated forward to version 4.

From Figure 7 we see that within version 4, AS;, integrates data layer ASy Lg
(Va, Dunham’s), while AS, reads the tuple Dunham’s and the propagated RDL
AS, Lo (Va, REISport) in order to produce its own result data layer, AS.Lq(Va,
{Dunham’'s, REISport}). Note that since AS, reads from AS, its CoreD set
must now contain both the Dunham’s and REI Sport tuples. This happens by
the definition of the Core Dependencies Set, AS.’s results are derived from its
own core set C' and the core set of the RDL AS, Lo(Vy, RE1Sport). Therefore,
the set CoreD = { Dunham’s } U Cys,1,, where Cus,1, = { REI Sport }.
This ensures that if work done by AS, does not propagate forward, then neither
will AS.’s RDL.

I Materialized View Aview . ]
I . Version 4 I
! Version 3 changes I
Dunham’ 1

REI Sport nnam's A Lo(Vy , Dunham’s)

i Dunham’s

$600

cooperative data layer:
As Lo(V3 ,REI Sport)

As . Lo(Vyg ,{Dunham’s, REI Sport })
i AS, reads {Dunham’s, AS , Lo (V4 , REI Sport)}

Fig. 7. Result Data Layers for Figure 6

5 Utilizing RDLs for Asynchronous Cooperation

The DVS prototype as described in [7] is a multi-tiered system architecture where
the View Holders’ components mediate between the data sources and the mobile
clients. The Dictionary Vagent keeps track of all the materialized views being
maintained by the View_Agents and their locations. The View_Agents create



materialized views from the various data servers, perform view maintenance, and
execute queries on these views. By having a View_Agent also store the results
created from the mobile clients utilizing a view as described in this paper, the
View_Agent becomes a cooperative work repository and cooperation facilitator
so that ASs executing on different mobile clients can share the RDLs produced.

Some asynchronous cooperative environments that have been described in the
literature, such as CoAct [4] or Coda [5], employ optimistic replication strategies
where each client has their own copy of the shared data they require. Later, a
synchronization process allows the client’s work to be integrated with the work
of others while providing conflict detection and/or the reconciliation of conflicts
that occurred due to concurrent accesses done to the various replicas. In the
View Holder approach, the shared data is the materialized view created from the
remote databases for the mobile clients. Optimistic replication happens when a
mobile client requests a copy of a version of the materialized view. Once RDLs
are created they can be sent to the view holder agent (i.e., View_Agent) in order
to validate the RDLs and detect inconsistencies. If an RDL becomes integrated
and coupled with version(s) of the materialized view, then another mobile client
can read these results along with a version from the RDL’s consistency window.

Producing Cooperative Work

Asynchronous cooperative work varies between periods of individual MC pro-
cessing and periods of joint work [4]. During periods of individual work, MCs can
run ASs that perform work on a subset of the data cached from the view holder
agent’s view without having to lock data at the sources or at the view holder.
During these individual work periods, users can try out various computations
or solutions involving the data, whereas during joint work the users make their
results available to the other cooperative users [4].

Figure 8 shows how cooperative work is created within the view holder agent.
During a period of individual work, our mobile client may cache one or more
versions of a materialized view as described throughout this paper and produce
results such as graph data points. Later, during periods of joint work, these
results can be stored in the view holder agent and coupled with the derived
materialized data used in producing these results (RDLs). These results can
become shared among the users and eventually sent to a results database or a
results process such as a graphing tool. The cooperative clients do not update the
remote databases themselves, but perform all integration and sharing through
the view holder agent.

View Holders maintain versions of views to allow for greater flexibility and
customization in the amount of data currency and consistency achieved between
the views cached on the mobile computer and the data formed within the coop-
erative work repository. Essentially, we extend the traditional functionality of a
server-side proxy with capabilities that facilitate cooperation among the users
by providing;:

— Flexible Data Currency: The view holder agent is a mechanism where we
can adjust the currency of the data stored on the mobile client, for example,
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Fig. 8. Integrating and Sharing RDLs During Cooperation

so that an already working client or a new client joining the cooperative
effort will be able to read newly updated derived data and results previously
produced (i.e., a new version of the view and its respective RDLs). We use
versioning not only to create an optimistic asynchronous cooperative strategy
that allows individual work to be performed while disconnected, but also to
supply changes in data currency.

Cooperative Work Consistency: As individual results of the newly syn-
thesized cooperative work are created, there is a need for providing a process
that can integrate the work done by mobile clients and check for data incon-
sistencies. Essentially, we will be adding individual results to the cooperative
work repository only if the states of the cooperative work or RDLs are con-
sistent with the original derived version used as input, and the RDLs can
propagate throughout the consistency window. Looking at our example 7
again, we can now consider AS,, ASy, and AS, as application sessions exe-
cuting on different MCs. The integration process within the LTVs and the
rules for integration and sharing remain the same.

Conclusion

Within a mobile environment, we have shown how data cached can take the

form of a materialized view and described a server-side agent mechanism for

the
are
are

fixed network or view holder agent that maintains versions of the views that
required by a particular mobile client’s application sessions. View Holders
designed to reduce computation and wireless communication costs, and use

view versioning to cope with disconnected operations, by allowing application
sessions to access more current data without invalidating work previously done.

Result propagation and inconsistency detection allow work performed during



disconnection to be integrated within a view holder agent along with the original
data used as input to create the results. The results are considered valid as long as
they can be integrated within a consistency window of versions (i.e., view states)

as required by the application. Rules were supplied that govern the creation and
sharing of these result data layers among a group of application sessions possibly

executing on different mobile clients and showed how inconsistencies can be
detected within the LTVs of the view holder agent before sharing is allowed to
proceed.
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