
Semantic-Based Delivery of OLAP Summary Tables in
Wireless Environments∗

Mohamed A. Sharaf
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260, USA

msharaf@cs.pitt.edu

Panos K. Chrysanthis
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260, USA

panos@cs.pitt.edu

ABSTRACT
With the rapid growth in mobile and wireless technologies
and the availability, pervasiveness and cost effectiveness of
wireless networks, mobile computers are quickly becoming
the normal front-end devices for accessing enterprise data.
In this paper, we are addressing the issue of efficient de-
livery of business decision support data in the form of sum-
mary tables to mobile clients equipped with OLAP front-end
tools. Towards this, we propose a new on-demand schedul-
ing algorithm, called SBS, that exploits both the deriva-
tion semantics among OLAP summary tables and the mo-
bile clients’ capabilities of executing simple SQL queries. It
maximizes the aggregated data sharing between clients and
reduces the broadcast length compared to the already ex-
isting techniques. The degree of aggregation can be tuned
to control the tradeoff between access time and energy con-
sumption. Further, the proposed scheme adapts well to dif-
ferent request rates, access patterns and data distributions.
The algorithm effectiveness with respect to access time and
power consumption is evaluated using simulation.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed
databases, Query processing ; H.4.2 [Information Systems
Applications]: Types of Systems—Decision support ; C.2.1
[Computer-Communication Networks]: Network Ar-
chitecture and Design—Wireless communication

General Terms
Algorithms, Design, Experimentation, Performance, Theory

Keywords
Broadcast Scheduling, Broadcast Pull, Mobile Computing

∗This work is supported in part by NSF award ANI-0123705
and by National Center for Disease Control.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’02, November 4–9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-492-4/02/0011 ...$5.00.

1. INTRODUCTION
With the rapid growth in wireless technologies and the

cost effectiveness in deploying wireless networks, wireless de-
vices are quickly becoming alternative platforms for access-
ing enterprise data. This, combined with the increased pop-
ularity of palmtop and hand-held computers as well as the
availability of light yet powerful laptop computers, mobile
computers will become the normal front-end devices hosting
sophisticated business applications.
One such sophisticated business application which is cen-

tral to the success of any enterprise is the support of de-
cision making. Without an effective decision support sys-
tem, enterprises will be unable to exploit opportunities as
they appear anywhere and anytime. For good decision mak-
ing, executives and managers need to count on up-to-date,
business-critical data, being instantly available on their hand-
held and wireless computers. Such data are typically in the
form of summarized information tailored to suit the users’
analysis interests.
Traditionally, decision makers use OLAP (On-Line Ana-

lytical Processing) tools to execute decision support queries
on the enterprise data warehouse or data mart. OLAP tools
provide multidimensional views of data to facilitate deci-
sion making [5]. The multidimensional data model abstracts
data in the form of a data cube where dimensions are the sub-
ject of interests (aggregated attributes) and the cell values
are the measures of interest [11]. An OLAP server may store
multiple summary tables (subcubes) for efficient access by
queries issued by OLAP tools at the client. An interesting
property of summary tables which we call derivation depen-
dency, is that one summary table can be derived from one
or more summary tables.
In this paper, we are addressing the issue of efficient deliv-

ery of summary tables to wireless clients (e.g., on a company
wireless intranet) equipped with OLAP front-end tools. In
wireless networks, broadcasting is the primary mode of op-
eration for the physical layer. Thus, broadcasting is the
natural method to propagate information in wireless links
and guarantee scalability for bulk data transfer. Specifi-
cally, data can be efficiently disseminated by any combi-
nation of the following two schemes: broadcast push and
broadcast pull. These exploit the asymmetry in wireless
communication and the reduced energy consumption in the
receiving mode. Client devices are assumed to be small and
portable, and most often rely for their operation on the fi-
nite energy provided by batteries. Servers have both much
larger bandwidth (downlink) available than client devices

84

Broadcast

Product

Su
pp

lie
r

C
us

to
m

er

Product

Su
pp

lie
r

C
us

to
m

er

OLAP Server

Su
pp

lie
r

Su
pp

lie
r

C
us

to
m

er

C
us

to
m

er

Product

C
us

to
m

er

Product

Su
pp

lie
r

C
us

to
m

er

Figure 1: Wireless OLAP System

and more power to transmit large amounts of data.
In broadcast push the server repeatedly sends information

to the clients without explicit client requests. Any number of
clients can monitor the broadcast channel and retrieve data
as they arrive on the broadcast channel. If data is properly
organized to cater to the needs of the clients, such a scheme
makes an effective use of the low wireless bandwidth and is
ideal to achieve maximal scalability [1, 14, 12].
In broadcast pull, the clients make explicit requests for

data. If multiple clients request the same data at approx-
imately the same time, the server may aggregate these re-
quests, and only broadcast the data once. Such a scheme
also makes an effective use of the low wireless bandwidth
and clearly improves user perceived performance. Several
scheduling algorithms have been proposed that attempt to
achieve maximum aggregation [2, 8, 21, 22].
Considering the traditional OLAP server basic functional-

ity, the broadcast pull or on-demand environment as shown
in Figure 1, is the most suitable for supporting wireless
OLAP query processing. Interestingly, the client requests
in the wireless OLAP system exhibit the above mentioned
derivation dependency feature. That is, every client request
is for one of the summary tables and a table requested by
a client may subsume the table requested by another client.
Since request aggregation is commonly used by general con-
tent delivery scheduling algorithms for efficient data dissem-
ination, the derivation dependency property adds a new op-
timization dimension to the request aggregation process that
allows further broadcast efficiency and scalability.
In this paper, we propose a new, heuristic, on-demand

scheduling algorithm called Subsumption-Based Scheduler
(SBS-α). SBS-α is non-preemptive and considers the vary-
ing sizes of the summary tables. The unique characteristic of
SBS-α is its α-optimizer that exploits the derivation depen-
dency among the summary tables to increase sharing among
clients that goes beyond the exact match of requests of all
the current on-demand scheduling approaches. Because each
table satisfying a particular request incurs a different pro-
cessing cost, SBS-α considers this cost when selecting the
set of requests to be aggregated into the specific table which
is broadcast at a given point. This cost is captured by the
selected value of α. By considering that each different value
of α yields a different scheduler, SBS-α can be thought of
as a family of scheduling algorithms as well.
The performance of our new heuristic was evaluated ex-

perimentally using simulation. We used a non-preemptive
version of the Longest Total Stretch First (LTSF) algorithm,
both as the basis for SBS and in our comparisons. As we will

argue below, from the existing approaches, LTSF promises
the best performance for scheduling OLAP summary ta-
bles. Our experimental results have shown that exploiting
the OLAP data cubes semantics allows SBS to achieve re-
ductions up to 65% in average access time, while reducing
average energy consumption by 16%.
The rest of this paper is organized as follows. The next

section presents an overview of the related work in OLAP
technologies and broadcast-based data dissemination tech-
niques. In Section 3, we discuss our assumed wireless OLAP
environment and in Section 4, we present SBS, our new on-
demand scheduling algorithm. Our simulation testbed and
experiments are presented in Sections 5 and 6, respectively.

2. BACKGROUND AND RELATED WORK

2.1 OLAP and Summary Tables
In a decision support environment, various sets of facts are

analyzed along multiple dimensions. This led to the devel-
opment of the multidimensional data model that represents
a set of facts in a multidimensional space in a way that facil-
itates the generation of summarized data and reports [16].
In this model, data is typically stored using a star schema.
The star schema consists of a single fact table storing the
measures of interest (e.g., sales, or revenue) and a table for
each dimension (e.g., product, time, or region).
OLAP queries typically operate on summarized, consol-

idated data derived from fact tables. The needed consol-
idated data by an OLAP query can be derived using the
data cube operator [9]. The data cube operator is basically
the union of all possible Group-By operators applied on the
fact table. A data cube for a schema with N dimensional
attributes will have 2N possible subcubes. Given that the
data cube is an expensive operator, often subcubes are pre-
computed and stored as summary tables at the server. Ba-
sically, a summary table can be modeled as an aggregation
query, where the dimensions for analysis are the Group-By
attributes and the measures of interest are the aggregation
attributes. A detailed summary table Td can be used to de-
rive a more abstract one Ta. In such a case, the abstract
table Ta is derivable from Td or Td subsumes Ta. For exam-
ple, in Figure 1, by adding the measure values across cus-
tomer, the detailed table (supplier, customer) can be used
by a client to extract the abstract table (supplier).
The idea of using summary tables to derive one from an-

other has been widely used in materialized views selection.
The objective is to select the appropriate set of tables for
materialization so that to speed up future query processing,
while meeting the space constraints [11, 10]. To facilitate the
selection process, the search lattice was introduced in [11].
The search lattice is a directed graph representing the sub-
cubes space and captures the subsumption property among
subcubes. For example, Figure 2 shows the lattice for the
(Supplier(S), Product(P), Customer(C)) schema.
In this paper, we also use the subsumption property of

summarized tables and the idea of search lattice in the schedul-
ing of requests in order to minimize the user perceived la-
tency.

2.2 Broadcast-Pull
Several scheduling policies have been proposed in the broad-

cast pull literature. These policies can be classified as either
non-preemptive or preemptive. In the non-preemptive con-

85

SP

S C

PC

SPC

SC

P

__

Figure 2: Data Cubes Lattice

text, it was pointed out that that First Come First Serve
(FCFS) scheduling would provide poor access time for a
broadcast pull environments [8] and Most Requests First
(MRF) and Longest Wait First (LWF) were proposed as al-
ternative efficient algorithms in [8, 22]. The RxW algorithm
[4] combines the benefits of MRF and FCFS, where the intu-
ition underlying RxW is that hot or popular data items are
disseminated as soon as possible yet it avoids starvation of
cold or less popular data items by means of an aging scheme.
Preemptive scheduling policies have been introduced to

handle the heterogeneous requests problem, i.e., requests
for data items of varying sizes [2]. Three preemptive algo-
rithms have been proposed, namely, Longest Total Stretch
First (LTSF), an offline algorithm called BASE and its on-
line approximation MAX.
Preemptive scheduling policies exhibit better performance

than the non-preemptive ones. However, preemptive schemes
cannot in general support selective tuning. Selective tun-
ing is the fundamental property for preserving energy where
the main idea is, if sufficient indexing information is pro-
vided to clients, then the mobile device access pattern to
the data stream can alternate between a doze mode wait-
ing for data and an active mode tuning for required data.
In a doze mode, the wireless communication equipment is
powered down, and hence the mobile device is consuming
power orders of magnitude less than that in the active mode.
Power conservative indexing methods for single-attribute
and multi-attribute based queries in broadcast push envi-
ronments appeared in [14, 12, 3]. For hybrid broadcasts, the
authors in [7] investigated two sets of broadcast protocols,
where the requested data items are broadcast in batches and
they used the techniques in [14] to index the data items on
the broadcast cycle.
The idea of merging queries with overlapping answers to

reduce broadcast data dissemination cost has been intro-
duced in the context of a multicast subscription environment
[6]. In this approach, a post-filtering is needed at the client
side to obtain the answer to the original query. A similar
proposal appeared in [17], where a semantic description is
attached to broadcast unit, called a chunk, which is a cluster
of data items. This allows clients to determine if a query can
be answered based solely on the broadcast and to request
the remaining items in the form of a supplementary query.
A popularity-based scheduling policy was used to broadcast
the data chunks. This assumes that the server has been in-
formed about the clients’ queries at the beginning of each
broadcast cycle.
Our work carries some similarity with the work in [6, 17].

However, we are modeling an on-demand broadcast environ-
ment, where the server has no prior knowledge of the arriv-

ing requests. Additionally, in our case, the requests are for
summary tables (aggregation queries) rather than queries
with selection predicates as in [6, 17], where the relative
sizes of dependent tables may vary tremendously.

3. WIRELESS OLAP MODEL
In this section, we are presenting our model for the wire-

less OLAP environment. Our assumed architecture is based
on broadcast pull scheme as shown in Figure 1. The OLAP
server is responsible for maintaining and disseminating the
summary tables. We are assuming that all the lattice sub-
cubes are ready at the server, which is a reasonable assump-
tion, specially for relatively small size data marts. The Ess-
base system (according to [11]) is an example of commercial
product that materialize all the possible summary tables.
A client sends an uplink request for a table on the uplink

channel. Then it listens to the downlink channel for a re-
sponse. A client can be in one of two modes, either a tune
mode, listening to the broadcast, or in a wait mode, where
the client is idle waiting for the response. Clients depend on
the server to satisfy all their requests; they are not access-
ing any local storage and previous answers are not locally
cached for future use.
An uplink request Q is characterized by the set of its

Group-By attributes D. Hence, we represent a request as
QD and the corresponding table as TD. A summary table
T D1 subsumes table TD2, if D2 ⊆ D1, similarly, TD2 is
dependent on TD1. We denote the number of dimensional
attributes in the set D as |D | and the cardinality of table
T D as |TD |.
The smallest logical unit of a broadcast is called a packet

or bucket. A broadcast table is segmented into equal sized
packets, where the first one is a descriptor packet. Every
packet has a header, specifying whether it is data or de-
scriptor packet, the offset (time step) to the beginning of the
next descriptor packet, and the offset of the packet from the
beginning of its descriptor packets. The descriptor packet
contains a table descriptor which has an identifier semanti-
cally describing the table being broadcast by identifying its
aggregation dimensions, the number of attribute values or
tuples in the table and the number of data packets accom-
modating that table. We are assuming that no single data
packet is occupied by tuples from different tables. Each
summary table is broadcast within a broadcast cycle that
starts with the table descriptor packet.
Here we used bit encoding to represent the semantics of

a client request and the descriptor packet identifier. The
representation is a string of bits; its length is equal to the
number of the complete schema dimensions and each bit
position corresponds to one of the dimensions d1, d2, ..., dn.
If a table TD has dimension dx (dx ∈ D), then the bit at

position x is set to 1, otherwise it is a zero. For example,
assume the (supplier, product, customer) schema. The rep-
resentation of the (supplier, customer) summary table will
be 101. This scheme can be easily extended to include ta-
bles with more than one measure and different aggregation
functions. But, without loss of generality, we are assuming
only one measure attribute and sum() as the aggregation
function in this paper.
When a client submits a request for table TR on the up-

link channel, it immediately tunes to the downlink channel,
and goes through a three phases access protocol: (1) initial
probe; (2) semantic matching; and (3) table retrieval.

86

100 G(Supp) 111 G(Supp, Prod, Cust) …

Tune Wait TuneTune

Sequence of
data packets

Descriptor

Figure 3: A Client Access to Broadcast

In the initial probe phase, the client tunes to the downlink
channel and uses the nearest packet header to locate the
next descriptor packet. The semantic matching phase starts
when the client finds the first descriptor packet, say for table
T B, then the client can semantically classify TB as:

1. Exact match: if the aggregation dimensions in TB are
the same as TR (i.e., R = B).

2. Subsumption match: if TB subsumes T R, and T B is
not an exact match for TR (i.e., R ⊂ B and R �= B).

3. No match: if it is neither an exact match nor a sub-
suming match (i.e., R �⊆ B).

For example, assume R is (supplier, product), then B1 =
(supplier, product, customer) is a subsumption match, while
B2 = (product) and B3 = (supplier, customer) are examples
of no match.
Depending on the matching result and the scheduling al-

gorithm used (as we will see in Sections 4), the client will
either switch to the final retrieval phase or it will stay in
the matching one. In the former, the client stays in active
mode tuning to the next sequence of data packets to read
(download) table TB. While in the latter case, it will switch
to doze mode reducing power consumption. Using the off-
set in the packet header, it wakes up just before the next
broadcast cycle (i.e., descriptor packet of the next table on
broadcast) where the semantic matching process is repeated.
The access protocol is shown in Figure 3.

3.1 Performance Metrics
The performance of any scheduler in a wireless environ-

ment can be expressed in terms of:

• Access Time: It is the user perceived latency from
the time a request is posed to the time it gets the
response. Its two components are the wait time and
tune time.

• Tune Time: It is the time spent by the client listen-
ing to the downlink channel either reading a descriptor
packet or a stream of data packets containing the re-
quested summary table. During tuning, the client is
in active mode.

• Wait Time: The total of amounts of time a client
spends waiting to read a descriptor packet until it finds
a matching one. A client is in doze mode during the
wait time.

In active mode a client device consumes energy orders
of magnitude higher than in doze mode. For this reason,
tune time has been traditionally used to evaluate the power
consumption of a system in a mobile environment. However,
the energy dissipated in doze mode becomes more significant
when the client has to wait for long intervals of time until

its request is satisfied. Hence, in this paper we will adopt a
weighted energy consumption cost model that includes the
active and doze factors.

4. SUBSUMPTION-BASED SCHEDULER
The access profile for OLAP summary tables has the fol-

lowing key features:

1. Heterogeneity: summary tables are of different dimen-
sionality (number of dimensional attributes) and vary-
ing sizes.

2. Skewed Access: Request from OLAP clients usually
form a hot spot within the data cubes lattice. Most
of the time queries are accessing low dimensionality
tables and they often drill down for detailed ones.

3. Subsumption: it is often possible to use one detailed
table to extract other summarized ones.

Hence, an appropriate scheduler should consider all of the
above features with the objective of reducing access time and
energy consumption. Apparently, these requirements can be
satisfied using one of the preemptive algorithms proposed
in [2], where the preemptive policy exhibited significant re-
duction in access time compared to the non-preemptive one
which does not consider heterogeneity. However, as men-
tioned above, the use of preemption deprives a broadcast
policy from deploying an effective indexing technique as in
[14] which is essential for energy saving. Of the preemp-
tive scheduling algorithms, LTSF has a corresponding non-
preemptive version that retains its basic properties and can
support selective tuning (in the form of basic indexing).
Given our dual objective, we selected the non-preemptive
LTSF as the basis of our proposed scheduler. In LTSF, the
data item which has the longest total current stretch, i.e.,
the sum of the current stretches of all pending requests for
the item, is chosen for broadcast. The current stretch of a
pending request is the ratio of the time the request has been
in the system thus far to its service time.
The Subsumption-Based Scheduler (SBS-α) that we are

proposing in this section consists of two components: An
LTSF (basic selection) component, which captures the first
and second features above and the α-optimizing component
that exploits the third feature above to control the degree
of sharing.
In SBS, the server queues up the clients requests as they

arrive. When it is time for the server to make a decision
which table to broadcast next, it computes the total stretch
value for each table that has at least one outstanding re-
quest. The table with the highest total stretch value (say
T bcast) is selected to be broadcast as in [2].
Ignoring the subsumption semantic of summary tables,

a client that requested T req that is derivable from T bcast

will wait until T req is broadcast. While in an extreme case
of exploring the subsumption property, the client will use
T bcast to derive T req regardless of the relative cardinality
of both tables and potentially incurring some unnecessary
extra cost. Hence, we are using the parameter α to define the
degree of flexibility in using the subsumption property (that
captures the degree of sharing) and it works cooperatively
between the server and clients as follows:

• At the server side, upon deciding the broadcast of table
T bcast, the server discards every pending request for a

87

table T req that can be derived from T bcast and satisfies
the following property (α rule): The ratio of the dif-
ference in size between tables T bcast and T req to table
T bcast is less than the α value. Formally, Treq can be
discarded and is not broadcast iff T bcast is broadcast,

req ⊂ bcast and |T bcast|−|T req |
|T bcast| ≤ α.

• Consequently, when a client that requested table T req

sees table T bcast on the broadcast that subsumes T req

and satisfies the α rule, this client knows that its origi-
nal request has been discarded by the server and it has
to use T bcast instead. Formally, a client requested Treq

will use T bcast iff, req ⊂ bcast and |T bcast|−|T req |
|T bcast| ≤ α.

The value of α ranges from 0 to 1. At α = 0 there is no
flexibility in using summary tables and the client access is
restricted to exact match. In this case, SBS-0 is equivalent
to LTSF. At α = 1, it is the case of extreme flexibilty in
which a client can use any subsuming matching table.
When implementing SBS-α, there are two alternatives

of how a client can make a decision of using a subsuming
match. The first one, the server encodes in the descriptor
packet of T bcast all the requests that can be derived from
T bcast and are already eliminated from the server queue.
However, this scheme is not scalable and it increases the
broadcast size.
The second alternative, which we adopted, lets each client

make the decision locally by computing |T bcast|−|T req |
|T bcast| ≤ α.

The value of α is made known to the clients by including it
as part of the table descriptor information along with the
cardinality of T bcast. A client can easily estimate the size of
its own requested table T req using the simple formula from
[19] which only requires knowledge of the number of distinct
values for each dimension. This method is particularly ef-
ficient, especially considering that the growth rate of most
OLAP dimensions is very low, so these values can be down-
loaded once by the client and used for a long time before it
needs to download it again1.
As an example, consider the partial search lattice shown

in Figure 4, in which nodes are summary tables and the
number between braces is the table cardinality in units of
size. Assume the search lattice nodes shown in figure, are
the tables for which there exist at least one request and
α = 0.9. Also, assume that the 3-dimension table TX (d1,
d2, d3) is selected for broadcast. Then, clients requests for
tables (d1, d2) and (d1, d3) will be satisfied by TX . While
clients requested tables (d1), (d2), and (d3) will just wait for
the next broadcast cycles.

4.1 Discussion
Flexibility allows us to distinguish between the already ex-

isting on-demand broadcast scheduling algorithms that are
restricted to exact match and our semantic-based SBS-α in
the context of wireless OLAP environment. Accordingly, we
are calling the algorithms mentioned in Section 2 strict algo-
rithms, while the family of SBS-α, where α > 0, are flexible
algorithms.
The intuition for SBS is to capture all the specific fea-

tures of summary tables access in an on-demand broadcast

1
The server may also periodically broadcast the number of distinct

values of each dimension along with the meta-data information about
its service.

d3 (30)d1 (10) d2 (20) d4 (40)

d1,d2 (100) d1,d3 (170)

d1,d2,d3 (1000)

d3,d4

d1,d2,d4 d2,d3,d4

d1,d2,d3,d4
TX

α = 0.9

|TX-TY|/|TX| ≤ α

Figure 4: Flexibility

environment. The LTSF basic scheduling component encap-
sulates all the factors affecting access time. The α parameter
controls the degree of flexibility based on the subsumption
semantic property.
The advantage of flexibility is to find another aspect of

common interest other than the exact strict one, hence de-
creasing the wait time and the corresponding doze energy.
The drawback is the extra time a client has to spend tuning
to a detailed table rather than a summarized one and the
accompanying high energy consumed in the active mode.
Picking a reasonable value for α will balance the trade-off
between reducing the wait time (doze energy consumption)
and increasing the tune time (active energy consumption).
As in [11], we are assuming a linear cost model for aggregate
query processing, where a table scan is required to compute
the result. Hence, when extra filtering and extraction is re-
quired, it can simply overlap with the tuning phase when the
client is downloading a table. As we will argue in Section 6
the energy required for processing is insignificant compared
to the energy needed for wireless communication and can be
ignored.
As an example for the flexibility trade-off, consider the

case where T bcast is selected for broadcast. The derived ta-
bles from T bcast with pending requests can be classified into
two groups T large and T small according to size. In case of

request for table T large, where |T bcast|−|T large |
|T bcast| ≤ α. If the

total stretch value for the request for table T large is still not
high enough, then disseminating T bcast will reduce the wait
time experienced by a client requested T large. On the con-

trary, a client requested table T small, where |T bcast|−|T small|
|T bcast| >

α, if T bcast is disseminated, the client requested T small would
rather wait for the next broadcast cycles to avoid the costly
tune time of downloading T bcast.
Let us now consider a simple numeric example that high-

lights the differences in scheduling decisions, average access
time, and average tune time for different values of the pa-
rameter α. Table 1 shows the example settings, where there
are four requests for four different tables T1, T2, T3, and T4.
The Ai value represents the wait time of a request for table
Ti, and Si value is | Ti |. Additionally, we are assuming that
tables T2 and T3 are derivable from T4. The scheduler has to
make the decision what is the sequence of tables to broad-
cast given the queue status at each broadcast cycle. In this
snapshot, the four requests constitute the whole workload,
i.e., no more requests will arrive at the server.
Table 2 shows the broadcast sequence (BSeq) generated

by setting α to the values 0, 0.25, 0.75 (left most table is
the first to be broadcast), the corresponding average access

88

T1 T2 T3 T4

Ai 10 4 10 29
Si 10 25 50 60

Table 1: Example Settings

Algorithm BSeq AAT ATT BSize
SBS-0 T1, T4, T2, T3 93.25 36.25 145

SBS-0.25 T1, T4, T2 74.5 38.75 95
SBS-0.75 T1, T4 68.25 47.5 70

Table 2: Example Results

time (AAT), average tune time (ATT) and the broadcast
size (BSize). Assume that the transmission time of a table
is equal to its size, for example, the transmission time for
table T4 is 60 units and its access time using SBS-0 is equal
to A4 +S1 +S4, where (A4 + S1) is the wait time and S4 is
the tune time.
Different degrees of flexibility in using the subsumption

property gave different tradeoffs between the access time
and tune time. Setting α to 0, which is the basic LTSF
scheduler, gave the lowest tune time but in the meantime it
has the highest access time. On the contrary, setting it to
0.75 resulted in the lowest access time and the highest tune
time. However, setting α to 0.25 reduced the access time by
21% and the increase in tune time is 7%.

5. EXPERIMENTAL TESTBED
We implemented a system simulation model to evaluate

the potential gains using the SBS-α algorithm by comparing
it to the non-preemptive version of LTSF, which is equiva-
lent to SBS-0. For the clarity of presentation, the parameter
α is only taking the values 0, 0.25, 0.5, 0.75, and 1. How-
ever, these values capture the extreme cases of flexibility in
using the subsumption property as well as the cases of low,
moderate, and high flexibility.
We modeled the environment as a single server with a

set of clients. There is a single downlink broadcast channel
over which all data is disseminated to the clients and a single
uplink channel that clients use to send uplink requests. We
are assuming that clients are able to complete any uplink
request in a single uplink packet. For the purposes of this
simulation, we have ignored all communication errors.
We generated a synthesized lattice for an n-dimensional

data cube. The values of n is in the range between 4 and 12,
with n = 6 be the default. The sizes of lattice subcubes is
computed as in [15], where a subcube is given a binary code
C. The binary code is similar to the bit encoding we used
for identifying cubes on broadcast. Then the subcube size
(number of tuples) is set to C2. The final cube size is the
product of the generated number of tuples and the number
of attributes (dimensional and measure attributes), hence,
the unit for size is the number of attribute values in a table.
We used this method to ensure diversity in subcubes sizes

and significant size difference between a cube and all its de-
pendent cubes. In the generated lattice, cubes at the bottom
left area have small sizes while those at top right have larger
sizes. This setting will results in 64 (26) possible queries for
the default case.
Derived summary tables are of different sizes, i.e., they

have different degrees and cardinalities. In the simulation,
we are assuming that attributes values have the same sizes
and a data packet capacity is 10 attribute values.

Parameter Value
Base Cube Dimensionality 4 – 12 dimensions (default 6)
Possible Requests 16 – 4096 requests (default 64)
Packet Capacity 10 attributes values
Zipf Parameter (θ) 0.0 – 1.9 (default 0.8)
Simulation Length 100 requests/client
Number of Clients 10 – 200 clients
α-optimization 0,0.25,0.5,0.75,1

Table 3: Simulation Parameters

To test the system under a realistic workload, requests
are generated by the clients according to Zipf distribution
with the Zipf parameter (θ) default value is equal to 0.8.
Queries are sorted according to their size, so that queries to
small size tables occur with higher probability than queries
to detailed ones.
We control the simulation by establishing a fixed number

of requests, that is, each client was required to complete
a certain number of requests before the experiment would
terminate. This ensures fairness in reporting, and eliminates
any possibility of reporting partially complete data. A client
will pose a new request as soon as it gets an answer to its
previous one. We also allow for the variability of the number
of clients in the client population.
Table 3 summarizes our simulation parameters and set-

tings. The combination of these parameters allows us to
examine the scalability of the system as well as the impact
of a changing workload on the algorithm performance.

6. PERFORMANCE EVALUATION

6.1 Impact of Request Rate
In this experimental setting, the number of clients varies

between 1 to 200 clients, each client poses 100 requests. The
variation in the number of clients reflects different request
arrival rates. Requests are generated according to the pre-
viously mentioned Zipf distribution with θ equals to 0.8.
Figure 5 shows average access time for the SBS family of

algorithms. For all values of α the algorithm exhibits a sim-
ilar behavior, that is, the average access time increasing but
ultimately stabilizing as the number of clients is increased.
This behavior is the norm for broadcast data delivery to
clients with shared interests. The figure shows how the ac-
cess time is decreasing with increasing α for the same num-
ber of clients. Furthermore, this reduction in access time is
more significant as the load increases and more flexibility is
needed to handle the high request rate. For instance, con-
sider the cases of 10 and 200 clients where α = 1. In the
case of 10 clients, the average access time decreased by 25%
compared to SBS-0, while in the case of 200 clients SBS-1
achieved 65% reduction in the access time compared to the
strict SBS-0.
Figure 6 shows the simulation results for our second op-

timization objective, i.e., the energy consumption. We ex-
press energy in terms of doze mode units assuming active:doze
ratio to be 20:1 as in the ORiNOCO World PC Card [18] –
the energy consumed tuning to one packet is equivalent to
that consumed in dozing for 20 packets transmission time.
As expected, the extreme case of flexibility (α=1) leads

to an increase in the overall energy consumptions. However,
reduction in energy consumption is achieved by setting α
for values less than 1. This reduction is more noticeable at
higher loads where doze energy is playing an important role.

89

Number of Clients

0 50 100 150 200

A
cc

es
s

T
im

e
(S

im
ul

at
io

n
T

ic
ks

)

0

1000

2000

3000

4000

5000

6000

7000

SBS-0
SBS-0.25
SBS-0.5
SBS-0.75
SBS-1

Figure 5: Average Access Time

Number of Clients

0 50 100 150 200

T
ot

al
E

ne
rg

y
(D

oz
e

U
ni

ts
)

4000

6000

8000

10000

12000

14000

16000

SBS-0
SBS-0.25
SBS-0.5
SBS-0.75
SBS-1

Figure 6: Average Energy Consumption

For instance, consider again the cases of 10 and 200 clients
and α = 0.5. In the case of 10 clients, energy consumption
increased by 2% compared to SBS-0, while it decreased by
16% in the case of 200 clients. This gain is better illustrated
in Figure 7 in which the total energy consumption is de-
picted by its active and doze components. At the population
of 200 clients, SBS-0.5 provided a 48% reduction in doze en-
ergy compared to SBS-0, but, the active energy is increased
by 17%, leading to the previously observed 16% overall re-
duction in energy consumption. Additionally, watching the
SBS-0 performance, we can see that doze energy consump-
tion is growing with the increase in number of clients until it
becomes equally important as the active one. This explains
the gains obtained at high loads, where flexibility trades a
limited increase in active energy for a substantial decrease
in doze energy.

6.2 Impact of Database Size
In this experiment, we are testing the influence of chang-

ing the database size on performance, specifically the num-
ber of dimensions of the OLAP data cube, which has two
effects: 1) it changes the ratio between a summary table
and its subsuming ones; and 2) it changes the number of
generated subcubes. We experimented with number of di-
mensions varying from 4 to 12, while the number of clients
is set to 50.
In Figure 8, for clarity of presentation, we are normalizing

the flexible versions of SBS to the strict one (SBS-0). It is
interesting to observe that all algorithms exhibit the same
behavior, where the relative gain in access time decreases to
a minimum point and then it starts increasing again. The
explanation for this is that with a constant number of clients

Number of Clients

0 50 100 150 200

E
ne

rg
y

C
on

su
m

pt
io

n
(D

oz
e

U
ni

ts
)

0

2000

4000

6000

8000

10000

12000

14000

SBS-0 Active
SBS-0.5 Active
SBS-1 Active
SBS-0 Doze
SBS-0.5 Doze
SBS-1 Doze

Figure 7: Active and Doze Energy Consumption

and few dimensions the chances of exact matching between
queries are high and the impact of deploying flexibility is
small. As the number of dimensions starts growing, the
clients interests are spread in a larger lattice of subcubes.
In this case, the subsuming matchings offered by flexibility
adds significantly to the exact matching ones, yielding to a
high degree of sharing. However, as the number of dimen-
sions keeps growing, the frequency of subsuming matches
itself is decreasing. This is the case in which attempts to
aggregate requests will fail and the system should switch to
serving each clients’ request independently.
For instance, consider the performance of SBS-0.75 in the

cases of 4 and 8 dimensions. In the 4 dimensions case, the
average access time is 32% less than SBS-0, while in the 8 di-
mensions it provided a 55% reduction where more flexibility
is used to cater the diverging clients interests. However, be-
yond this minimum point (8 dimensions in our experiment),
the chances of the subsuming matching itself start to di-
minish and the performance of the flexible SBS’s is getting
close to that of SBS-0. Eventually at 12 dimensions, we can
see the SBS family performing even worse, where taking a
chance of using subsumption results in an increase in tune
time that cannot be compensated by enough reduction in
wait time due to lack of common interests.
To further investigate this behavior, we conducted another

experiment with smaller clients population (25 Clients). The
results are shown in Figure 9. As expected, by decreasing
the number of clients, the minimum point moved towards
the left (6 dimensions). Further, we observed a reduction
in aggregation compared to the case of 50 clients which is
reflected by the difference in the slopes of the curves in Fig-
ures 8 and 9. This is because with the same number of di-
mensions, decreasing the number of clients further reduced
the degree of overlapping between interests. The two fac-
tors of reducing request rate and increasing the lattice size
result in the observed difference in performance compared
to Figure 8.
Figure 10 shows that when there is enough exact match-

ing (which is similar to a light loaded system), wait time
is not high enough to allow the flexibility to provide any
gain in energy. But, as the dimensionality increases, using
flexibility starts to significantly reduce the total energy by
reducing the doze component. This behavior is sustained
until a minimum point, beyond which the savings are de-
creasing. The explanation is that at high dimensionality,
the extra active power consumption due to the flexibility is
high compared to the scarce saving in doze energy.

90

Number of Dimensions

4 6 8 10 12

A
cc

es
s

T
im

e
(S

B
S

-α
/S

B
S

-0
)

0.2

0.4

0.6

0.8

1.0

1.2

SBS-0.25
SBS-0.5
SBS-0.75
SBS-1

Figure 8: Latency Vs. Dimensionality (50 Clients)

Number of Dimensions

4 6 8 10 12

A
cc

es
s

T
im

e
(S

B
S

-α
/S

B
S

-0
)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

SBS-0.25
SBS-0.5
SBS-0.75
SBS-1

Figure 9: Latency Vs. Dimensionality (25 Clients)

6.3 Impact of Skewness
In all the previous comparisons, we used the default θ

value of 0.8. Here, we are examining the performance for
different values of θ, i.e., the degree of skewness of access.
Figure 11 shows the average access time for a setting, where
the number of clients equals to 50, each posing 100 requests.
The Zipf parameter ranges from 0 to 1.9.
Since the number of clients (request rate) is kept con-

stant, the increased overlap in client interests allows more
efficient use of the broadcast bandwidth. Therefore, as the
skew increases all algorithms provide improved reduction in
access time. However, the SBS-α schedulers were α > 0, are
also taking advantage of the subsumption property between
requested tables. Considering the difference in savings pro-
vided by SBS-0.75 in the cases when θ is equal to 0.9 and
1.9. In the case of θ = 0.9, the average access time is re-
duced by 55% compared to SBS-0, however, the reduction
is only 25% at θ = 1.9.
The energy consumption results presented in Figure 12

came as expected. That is, the moderate use of flexibility by
SBS-0.25, SBS-0.5, and SBS-0.75 showed energy reduction
by tackling the doze component, whereas that reduction is
diminishing at the case of highly skewed data access.

6.4 Practical Implications
In order to have a realistic insight of the savings gained

by applying a semantic-based scheduling of OLAP summary
tables, as well as the effect on processing cost, let us consider
the practical implications in terms of time and energy units.
Consider a wireless LAN, where the broadcast channel has

a bandwidth of 1Mbps. Assume each attribute value in our
synthesized lattice is of size 10 bytes and each data packet

Number of Dimensions

4 6 8 10 12

E
ne

rg
y

C
on

su
m

pt
io

n
(S

B
S

-α
/S

B
S

-0
)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

SBS-0.25
SBS-0.5
SBS-0.75
SBS-1

Figure 10: Energy Vs. Dimensionality

Zip Paramerer θ

0.0 0.5 1.0 1.5 2.0

A
cc

es
s

T
im

e
(S

im
ul

at
io

n
T

ic
ks

)

0

2000

4000

6000

8000

10000

12000

SBS-0
SBS-0.25
SBS-0.5
SBS-0.75
SBS-1

Figure 11: Access Time Vs. Zipf θ

capacity is 10 attribute values. It will take about 0.8 mSec
to broadcast a single packet.
We assumed clients are using the IBM ThinkPad laptop

[13] that is equipped with Pentium 4 mobile processor which
consumes 2 Watts on average, with a 100 MHz RAM and
64 bits bus. During processing, the processor accesses the
downloaded summary table from memory and the memory
transfer rate determines the energy needed for processing.
Hence, processing a packet will take 0.125 µSec and the
processor energy consumed during this duration equals 0.125
µSec * 2 W = 0.25 µJ.
Let clients be equipped with the ORiNOCO World PC

Card. The card operates on a 5V power supply, using 9mA
at doze mode and 185 mA at receiver mode. Hence, dozing
for one packet time will consume 0.8 mSec * 9 mA * 5 V =
36 µJ, while being active tuning to one packet will take 0.8
mSec * 185 mA * 5 V = 740 µJ.
Table 4 provides a practical numeric comparison between

the the family of SBS-α algorithms. The table shows the
average access time (AAT), the average communication en-
ergy consumption (ACEC), and the average processing en-
ergy consumption (APEC) per query for 100 clients.

Algorithm AAT (Secs) ACEC (Joules) APEC (Joules)
SBS-0.00 4.56 0.40 0.000070
SBS-0.25 3.82 0.37 0.000072
SBS-0.50 2.6 0.34 0.000082
SBS-0.75 1.98 0.36 0.000100
SBS-1.00 1.76 0.51 0.000150

Table 4: Practical Results

As we can see from the table, SBS-0.75 is giving the best
overall performance. It reduced the access time by 57%

91

Zip Paramerer θ

0.0 0.5 1.0 1.5 2.0

E
ne

rg
y

C
on

su
m

pt
io

n
(D

oz
e

U
ni

ts
)

0

5000

10000

15000

20000

25000

30000

SBS-0
SBS-0.25
SBS-0.5
SBS-0.75
SBS-1

Figure 12: Energy Consumption Vs. Zipf θ

by aggregating requests for subsuming tables and letting
a client derive its originally request table from a detailed
one. The extra cost of active energy requirements imposed
by this flexibility in scheduling tables is successfully com-
pensated by the decrease in doze energy, even yielding a
10% reduction in total energy consumption. The table also
clearly shows how insignificant the processing energy con-
sumption is compared to the communication energy con-
sumption. This confirms our eariler assumption of ignoring
the processing energy component in calculating the overall
energy consumption.

7. CONCLUSIONS
In this paper, we re-emphasized the role of broadcast

based data dissemination in supporting efficient access of
enterprise data warehouse and consequently enabling good
decision making anytime and anywhere. Although the em-
phasis of our paper was on wireless and mobile computing
environments, our result are applicable in wired networks
which support multicasting.
More specifically, this paper has made three contributions

in the context of on-demand broadcast scheduling:

• It identified the new possibility of request aggregation
based on the subsumption semantics among summary
tables rather than just based on the exact match of
requests of all the current approaches.

• It classified on-demand scheduling algorithms into strict
and flexible based on their ability to broadcast subsum-
ing tables in respond to a given request.

• It proposed a family of heuristics called called SBS-α.
The α-optimization parameter controls the degree of
flexibility in using available subsuming tables, which
provided further reductions in access time and dissi-
pated power. The superiority of the SBS-α was demon-
strated experimentally using simulation.

We are currently investigating the effect of deploying caching
at the client side and evaluating the overhead at the server.

8. REFERENCES
[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik.

Broadcast disks: Data management for asymmetric
communication environments. In Proc. of the ACM
SIGMOD Conf., pp. 199–210, May 1995.

[2] S. Acharya and S. Muthukrishnan. Scheduling
on-demand broadcasts: New metrics and algorithms.

In Proc. of Fourth Annual ACM/IEEE Conf.
MobiCom, pp. 43–54, October 1998.

[3] R. Agrawal and P. K. Chrysanthis. Efficient data
dissemination to mobile clients in e-commerce
applications. In Proc. of the 3rd WECWIS, pp. 58–65,
June 2001.

[4] D. Aksoy and M. Franklin. RxW: A scheduling
approach for large-scale on-demand data broadcast.
IEEE/ACM Transactions On Networking,
7(6):846–860, December 1999.

[5] E.F. Codd. Providing OLAP (On-line Analytical
Processing) to User-Analysts: An IT Mandate. E.F.
Codd and Associates, 1993.

[6] A. Crespo, O. Buyukkokten, and H. G. Molina.
Efficient query subscription processing in a multicast
environment (extended abstract). In Proc. of the 16th
ICDE Conf., February 2000.

[7] A. Datta, D. E. VanderMeer, A. Celik, and V. Kumar.
Broadcast protocols to support efficient retrieval from
databases by mobile users. ACM Transactions on
Database Systems (TODS), 24(1):1–79, 1999.

[8] H. D. Dykeman, M. Ammar, and J. W. Wong.
Scheduling algorithms for videotex systems under
broadcast delivery. In Proc. of the 1986 Int’l Conf. on
Communications, pp. 1847–1851, June 1986.

[9] J. Gray, et. al. Data Cube: A Relational Aggregation
Operator Generalizing Group-by, Cross-Tab, and Sub
Totals. In Proc. of the ICDE Conf., pp. 152–159,
February 1996.

[10] H. Gupta. Selection of views to materialize in a data
warehouse. In Proc. of ICDT, pp. 98–112, Jan. 1997.

[11] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In Proc. of the
ACM SIGMOD Conf., pages 205–216, June 1996.

[12] Q. Hu, W.-C. Lee, and D. L. Lee. Power conservative
multi-attribute queries on data broadcast. In Proc. of
the 16th ICDE Conf., pp. 157–166, 2000.

[13] http://www.ibm.com
[14] T. Imielinski, S. Viswanathan, and B. R. Badrinath.

Energy efficient indexing on air. In Proc. of the ACM
SIGMOD Conf., pp. 25–36, May 1994.

[15] P. Kalnis, N. Mamoulis, and D. Papadias. View
selection using randomized search. DKE,
42(1):89–111, 2002.

[16] R. Kimball. The Data Warehouse Toolkit. John Wiley,
1996.

[17] K. C. K. Lee, H. V. Leong, and A. Si. A semantic
broadcast scheme for a mobile environment based on
dynamic chunking. In Proc. of the IEEE Int’l Conf.
on Distributed Computing Systems, pp. 522–529, 2000.

[18] ORiNOCO World PC Card. www.orinocowireless.com
[19] A. Shukla, P. M. Deshpande, J. F. Naughton, and K.

Ramasamy. Storage estimation for multidimensional
aggregates in the presence of hierarchies. In Proc. of
the VLDB Conf., pp. 522–531, Aug. 1996.

[20] K. Stathatos, N. Roussopoulos, and J.S. Baras.
Adaptive data broadcast in hybrid networks. The
VLDB Journal, pp. 326–335, 1997.

[21] N. H. Vaidya and S. Hameed. Scheduling data
broadcast in asymmetric communication
environments. ACM/Baltzer Wireless Networks,
5(3):171–182, 1999.

[22] J. W. Wong. Broadcast delivery. Proc. of the IEEE,
76:1566–1577, 1988.

92

