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Abstract 

Mobile commerce is the next growing area in electronic 
commerce and mobile computing. These are sophisticated, 
data intensive mobile applications whose success strongly 
depends on the eficiency by which data are disseminated 
to a large number of mobile users. Direrent techniques 
have been put forward of which the most promising are the 
push-based techniques that explore the asymmetry in wire- 
less communication and the reduced energy consumption of 
the receiving mode on mobile devices. This paper proposes 
a new broadcast indexing scheme, termed “Constant-Size 
I-node Distributed Indexing” (Cl), that offers more energy 
savings in practical applications. Our detailed simulation 
results indicate that CI which is a variant of the currently 
best pegorming Distributed Indexing, outpe~orms the lat- 
ter for broadcast sizes of 12,000 or fewer data items, reduc- 
ing the uccess time up to 25% and tuning time up to 1.5%. 

1 Introduction 

In the last decade, the emergence of the Web led to an 
unprecedented number of new applications, most notably 
Electronic Commerce (E-Commerce) applications such as 
advertising, eAuctions, on-line stock trading, to name few. 
As the popularity of these applications grows, so does the 
need for efficient and scalable dissemination of data to a 
large number of users. This need takes a new forin when 
we consider the new class of mobile users. 

In mobile environments, data dissemination is more 
challenging due to the limited, wireless bandwidth avail- 
able for communication, frequent disconnections and low 
power withholding capacity of mobile devices. Different 
techniques have been put forward to address this problem, 
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of which the most promising are the push-based techniques 
that explore the asymmetry in wireless communication and 
the reduced energy consumption of the receiving mode on 
mobile devices [4, 81. Servers have both much larger band- 
width available than mobile devices and more power to 
transmit large amounts of data. In push-based techniques, 
the server repetitively broadcasts data to the mobile users 
without a specific request. Mobile users monitor the broad- 
cast channel and retrieve data as they arrive on the broadcast 
channel. If data is properly organized to cater to the needs 
of all users, this scheme makes an effective use of the low 
wireless bandwidth [6: 1, 71 This can be achieved, for ex- 
ample, by treating user requests as feedback and adjusting 
the broadcast content to satisfy requests with similar data 
requirements by different groups of users [ 121. 

A common approach in push-based techniques is to con- 
sider “air” as virtual disk. But in broadcasting data on the 
air, access is sequential, as it is in tape drives. So, in order 
to access the required data, a user has to be in active mode, 
waiting for the data to appear on broadcast. Hand-held and 
mobile devices are typically capable to switch from active 
mode to doze mode which requires much less energy. The 
power consumption of mobile devices is a key issue as the 
lifetime of a battery is expected to increase by only 20% 
over the next 10 years [ l  11. Hence, the energy efficient way 
to access data is to tune in selectively in order to find out the 
correct position of data on broadcast and then go into doze 
mode until the data appear on the broadcast. This requires 
some form of directory information to be broadcasted along 
with data, making the broadcast self-descriptive. This direc- 
tory identifies data items by some key value and gives the 
location of the actual data on broadcast. Several broadcast 
organizations to encode this directory structure have been 
proposed. These include incorporating hashing in broad- 
casts [7], using signature techniques [ 101 and broadcasting 
index information along with data [6, 3, 81. 

In this paper, we propose a new indexing scheme, called 
Constant-size I-node Distributed Indexing (CI), that per- 
forms much better with respect to the tuning time and access 
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time for broadcast sizes in practical applications. This new 
scheme minimizes the amount of coding required for con- 
structing an index in order to correctly locate the required 
data on broadcast, thus decreasing the size of the index and 
consequently the access time as well. Our detailed simu- 
lation results indicate that CI which is a variant of the cur- 
rently best performing Distributed Indexing [6, 81, outper- 
forms it for broadcast sizes of 12,000 or fewer data items, 
reducing the access time up to 25% and tuning time by 15%. 

In the next section after introducing the broadcast model, 
we review Distributed Indexing and then in Section 3, we 
present our new broadcasting indexing scheme. In Sec- 
tion 4, we discuss in detail our simulation experiments. We 
conclude with a summary in Section 5. 

2 The Broadcast Model 

In a broadcast dissemination environment, a data server 
periodically broadcasts data items to a large client popu- 
lation. Each period of the broadcast is called a broadcast 
cycle or bcycle, while the content of the broadcast is called 
a bcast. Each mobile client (MC) listens to the broadcast 
and fetches data as they arrive. We assume that all updates 
are performed at the server and disseminated from there. 

The smallest logical unit of a broadcast is called a bucket. 
Buckets are analogous to blocks in disks. Each bucket has a 
header that includes useful information. The exact content 
of the bucket header depends on the specific broadcast or- 
ganization. Information in the header usually includes that 
whether the bucket contains data or index, the offset to the 
beginning of the next bcast, the offset of the bucket from the 
beginning of the bcast, and the offset to the beginning of the 
next index segment. 

A data bucket may contain several data items which cor- 
respond to database records (tuples). We assume that all 
data items can be identified by the values of some key at- 
tributes and that keys are known to the clients. The filtering 
process is simply matching the key values. Index buckets 
contain the necessary control information for filtering that 
leads to the actual location of the specified key value. We 
will discuss below the contents of index nodes of each in- 
dexing scheme in our study. 

The efficiency of accessing data on air can be character- 
ized by two parameters. 

0 Tuning Time: The amount of time spent by a user in 
active mode (listening to channel) and 

0 Access Time: The total time elapsed from the moment 
a client requests data identified by ordering key, to the 
time the client reads that data on channel. 

Ideally, we would like to reduce both tuning time, and 
access time. However, this is not possible because any im- 
provement in tuning time requires additional information 

to be broadcast which increases the bcycle and hence the 
access time. On the other hand, the best access time is 
achieved when only data are broadcast and without any in- 
dexing. Clearly, this is the worstcase for tuning time. In this 
paper, our goal is to develop an indexing scheme which pro- 
vides the best balance between the tuning and access time. 

2.1 Distributed Indexing 

Distributed Indexing (DI) [6, 81 is currently considered 
the best indexing for broadcast data. It reduces tuning time 
at a small cost in access time by distributing and selectively 
replicating part of an index over a broadcast. 

In DI, the index is organized as a tree with all the data 
buckets appearing as leaf nodes. One data bucket can have 
one or more data items. Index information is added at non- 
leaf nodes such that each node has the complete information 
about its children (their position on the broadcast cycle and 
the keys for the data they are addressing). The tree is di- 
vided into two parts: 

0 The replicated part - the top r levels of the index tree 

0 The non-replicatedpart - bottom (k-r) levels 

The tree nodes of the ( 1 .  + l ) t h  level are called imz-  
replicated roots (NRR). Figure 1 illustrates an example of a 
DI tree as given in [6] with 81 data items. The index tree has 
four levels and each node has 3 children. Level I is the root 
depicted by I .  Level 2 is depicted by {n l ,  n2, a3} .  Level 
3 {bl ,  ..., b g }  are non-replicated roots. {q to C Z ~ }  depict 
fourth level nodes and finally 0 - 80 data items, grouped in 
3, are shown in shaded nodes. 

The idea is to construct the linear broadcast such that 
each node rooted in a non-replicated root will appear only 
once in the whole broadcast just in front of the set of data 
buckets it indexes (points to). Each node of the index tree 
which appears above a non-replicated root is replicated n 
times where n is the number of the children that node has, 
forming the paths from the root to non-replicated roots. 
In this way, each bi in NRR forms an index segment of 
broadcast having the information about its children after it 
(Ind(bi)) and the information about its ancestors before it 
(Rep&)). Thus, the broadcast can be expressed as sequence 
of triples, each of which corresponds to the index segment 
of each non-replicated root bi in the tree and the pertaining 
data segment (Data&)) [6]: 

b'bi E N R R  = { b , ,  bar ..., b,} in left to right order, where 
< Rep(b i ) ,  Ind(b i ) ,  Data(bi) > 

0 Rep&) = Path(I,b,), bl is the first bucket in NRR and 

0 Rep(!),) = Path(LCA(btPl, hi) ,  b,) fori = 2, . . s, t where 
I is the root of the index tree. 

bi is the i th  index in NRR of tree. 
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NRR = (bl,b2,b3,bJ,bS,bG,b7,Ml,b91 
Rep(bl) = ( I ,  a l l  
Rep(b2) = [ a1 1 
Rep(b3) = 1 a l  I 
Rep(M) = { 142 ] 
Rcp(bS) = [ a2 1 
Rep(bG) = { a2 1 
Rep(b7j = [ La3 1 
Rep(bR) = { a3 ) 
Rep(h9j = { a3 ) 

................... X I  Ind(bl) = ( bl.cl,cZ,c3 J Data(b1) = ( 0  , 
Ind(b2) = [ b2.c4,c5.c6 1 
Ind(b3) = ( b3.c7,c8.c9 1 
Ind(b4) = {M.c1O,cll,c12 I 
Ind(h5) = [bS.c13,c14,c15 I 
lnd(b-5) = [b6.c16,c17,clB I 
Ind(h7) = [h7.c19,cZO,c21 I 
Ind(bX) = [bX.c22,c23,c24 J 
Ind(b9) = lbY,c25,cZG,c27 I 

Data(b2) = (9 , ..................... 17 J 
Data(b3) = 18 .................. 26 I 
Data(M) = [ 27 ,  ................ ,3S 1 
DaIa(bS) = 1 26, , 44 J 
Data(b6) = (45 , .................., 53 J 
Data(b7) = { 54, .................. 62 J 
Data(bX) = [ 63 , ................, 71 1 
DaIa(b9) = [ 72, ..............., 80 1 

............... 

Figure 1. Distributed Indexing Tree 

0 Path(c, b): the sequence of index nodes along the path 

0 LCA(ba, b k ) :  the least common ancestor of bi, and bk 

0 Data(bi): the set of data buckets indexed by bi. 
Ind(bi): the part of the tree below bi (including bi ) .  

from index node c to b (excluding b). 

in the index tree. 

Figure 2 depicts the linear broadcast corresponding to 
the DI tree in Figure 1. The index segments are shown in 
white. In the example, Ind(b3) consists of 3'd NRR, i.e., b3 
and its children nodes {c7,c8,c9} and Data&) consists of 
all data items { 18 ... 26) that the node bg covers in the tree. 
Rep(b3) = Path(LCA(b2, b2),b3) = al. Note that for simplic- 
ity of presentation, we are assuming that each tree node is 
stored in a separate index bucket. In our experimental eval- 
uation, we take into consideration that the size of all tree 
nodes is not the same and more than one might be fitted in 
a bucket. Similarly, we assume that each data item is stored 
in a separate data bucket. 

In the replicated part of the tree, not an entire parent node 
of a child node is replicated on the bcast. For example in 
Figure 2, for a replicated node a l ,  not the entire 1-1 is repli- 
cated. In order to determine if a data item has already ap- 
peared on the broadcast, control information is attached to 
replicated nodes, e.g., L l  and al .  The control information 
records what part of the broadcast is left behind, what lies 
ahead which is not covered by the particular node and when 
the start of the next broadcast is. Thus, if needed data is 
missed, the next start of broadcast can be determined, or if 

data is ahead in the current broadcast, then the index bucket 
having the right information can be located. 

Let us consider the case in which a mobile client MC 
searches for key 7 and tunes into the data bucket with key 
8. The index pointer in that bucket leads the MC to the next 
index segment which starts at the second-a1 (Figure 2). The 
control information in the secondal specifies that for key 
values 5 8, tune into begin (which is the start of the next 
broadcast), for key values > 26, tune into 1 2 ,  and for any 
other value (i.e., 8< key 5 26) search the value range pairs 
in second-a1 for the appropriate next pointer. Given that 
MC searches for key 7, it goes into doze mode until the 
start of the next bcast. Next, MC tunes into 1-1 (begin). The 
first range pair covers the values 0-26, for which key 7 is in 
range, so MC follows pointer-1 which leads it to firstal .  In 
first-al, the first range pair covers values 0-8 for which key 
7 is again in range so MC follows the pointer1 and tunes 
into bl . In this node, the third pair with range 6-8 covers key 
7, so MC follows pointer3 and tunes into c3. The pointer2 
in e3 leads MC to the data bucket with key 7. 

3 Constant-size I-node Distributed Indexing 

In this section, we are presenting our new indexing 
scheme termed Constant-size I-node Distributed Indexing 
(CI). CI is a variant of DI and hence, it follows the same 
tree structure formation as per DI. Given the number of data 
items N, we come up with a tree of order nk, where n is the 
number of children for each node and k is the number of 
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Figure 2. Distributed Indexing: linear broadcast with control information 

levels of the tree. As in DI, the broadcast can be expressed 
as a sequence of triples, < Rep(bi) ,  Ind(bi):  Dahi(bi) >. 
Thus, if we use the same example, select the same value 
of n and X: for the tree and make the same simplified as- 
sumptions as for DI in the previous section, the layout of 
the broadcast cycle for CI is similar to that of DI as shown 
i n  Figure 2 with one significant difference, namely, the ab- 
sence of the variable-size control inforr77utiori. In CI, no 
control inforination is attached to any node. 

The second difkrcnce is that, in CI, the size of index 
nodes in the tree is constant. An index node in  CI has a pair 
of range keys defined by IIZLZX key and min key which defines 
the range of data indexed by the node and one pointer which 
points at the next bucket to tune into. This is in contrast to 
DI in which the size of' index node is variable and contains 
n such pairs of range and pointer as the number of children 
nodes. Figure 3 shows for both the DI and CI schemes, the 
content of the first four index nodes in  the bcast of our ex- 
ample index tree in  Figure 1 .  In both schemes, the header of 
each node is of' the same size and contains an extra field that 
in the case of DI, encodes whether or not a nodc contains 
control information whereas in the case of CI, it encodes 
the node level. By eliminating the control information and 
maintaining index nodes of constant size equal to the mini- 
mum size of the index node in D1, C1 results in smaller size 
bcast and hence requires less access time. 

3.1 Access Protocol 

The ingenuity of the CI scheme lies in the way the single 
pointer in index nodes is interpreted at each level of the tree. 
The protocol can be understood by keeping in view the tree 
structure and its linear layout on bcast. If the search key 
lies within the range of an index node, say IN, (i.e., it is a 
hit), then the data item lies in the subtree for which IN is 
the root. On linear bcast, this subtree starts just after IN and 

hence there is no need for an explicit pointer. An MC just 
needs to read the next index node on bcast. This process 
goes on recursively for each subsequent hit. For the index 
nodes which are at the last level (kt"), intuitively, in case 
of a hit, the pointer must point to the data item. Our access 
protocol complies with this observation and the pointers for 
k t l L  level nodes points to the start of thc group of I I  data 
items which is indexed by that kt" level index node. 

In the case that the search key does not lie in the range 
given by IN (i.e., it is a miss), it means that the data item 
is not in the subtree for which IN is the root and the next 
subtree needs to be searched, for which the root is the next 
subsequent index node at same level. In case of replicated 
nodes, in order to ensure that the next index node at same 
level is not a replication, but a different node, the pointer is 
made to point at the index node which is one level higher. 
The same strategy is used for index nodes which are NRR. 
The pointer points at one higher level node, so that, com- 
parisons can be made at a higher level and in case of miss, 
a larger portion of the tree can be skipped. In case of other 
non-replicated nodes, the pointer siinply points at the next 
subsequent node at the same level. 

In the case of nodes which are at the lowest level ( k t h ) ,  
as stated above, the pointer would be needed to point at data 
items. It would seem, another pointer is needed to point to 
index nodes in case of miss. But, in linear bcast, k t h  level 
nodes are placed one after the other in group of n (number 
of children). This observation made it possible to have only 
one pointer at k ' l L  level too. In case of a miss, an MC just 
reads the next node on the bcast which is of same level. 

The steps of access protocol are given below: 

0 For nodes which belong to levels 1 to r+l (which is the 
level of NRR), if the search key does not lie in between 
miri and max key specified in the index node, the client 
uses the pointer to read the next higher level node (in 
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Figure 3. DI and CI index nodes 

case of level 1, this is the next bcast). Otherwise, if the 
search key is within the range, the client reads the next 
index node on broadcast (which is always one level 
lower). 

0 For nodes which belong to the level between r+2 to 
k-1, which are all non-replicated index nodes, if the 
search key is not within range, the client uses the 
pointer to read the next index node at the same level. 
Otherwise, if the search key is within range, the client 
reads the next index node which again, is one level 
lower. 

0 In the case of kLtL level index (last index level) if the 
search key is within the range, the client follows the 
pointer which points at the start of the data segment 
indexed by the k t h  level node. Then, the client tries 
to match the search key with key in data items one by 
one. Since the data items are sorted, the client stops 
if it encounters a data item with a key having greater 
value than search key or it has checked n data items 
(which is the number of its children). If the MC cannot 
find the required key, it concludes that the data item is 
not on the bcast. 

0 At k t h  level if the search key is not within range, then 
an MC continues reading the next index node on bcast 
which is of same level, until it hits a data segment. At 
this point, if the client has notjust tuned in the k t h  level 
index segment, then it means that the data item is not 
in the bcast. Otherwise, if the client has just tuned in 

the k t h  level, the client has to start its search from the 
next index bucket pointed by the next bucket on bcast 
which is a data bucket. 

The protocol will become more clear with the follow- 
ing example which is the same used above for DI: Consider 
the broadcast structure given for 81 data items in Figures 1 
and 4. Level 1 is the root(1) and its ininkey and max-key 
covers the entire data set being broadcasted. Lower indexes 
cover their part of data. Now, consider a case when a mo- 
bile client MC is searching for key 7 and tuned into the data 
bucket with key 8. In Figure 4, the shaded boxes are the 
ones MC tunes into. Since all data buckets have a pointer 
which points to the start of the next index segment, MC 
reads the next index node second-al. This is a hit since a1 

has a range froin 0 - 26. So, MC reads the next adjacent 
lower level index node ba. This is a miss since b2 indexes 
data items between 9 - 17. According to the protocol, MC 
follows the pointer to read the next higher level index node 
th i rda l .  Again, this is a hit, and so, MC reads the adja- 
cent index node b3 which is a miss. Hence, MC follows 
the pointer to read the next higher level index node first22 
which again is a miss, so MC reads the next higher level 
node 1-3. Since 1-3 is a hit, MC reads the next (one level 
lower) index node first23 which is a miss. Thus, MC needs 
to follow again the pointer to read the next higher level node 
1-1 which is the start of the next broadcast cycle. Now, MC 
gets a hit and reads the next adjacent node, first-a1 which 
is also a hit, so it reads the next node bl which is again, a 
hit, so MC reads the next index node c l .  c1 is a miss be- 
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. . . . ... . ,._ 

Figure 4. CI: linear broadcast and tuning in search of value 7 

cause it indexes data 0 - 2. Thus, following the protocol on 
a miss between level r+l and k- I ,  MC reads the adjacent 
same level index nodes until it reads a data bucket (which 
implies the end of n last level index nodes). In our exam- 
ple, MC reads c2 which is a miss and then c g  which is a hit. 
Given the hit, MC follows the pointer in c g  which leads it to 
D6. D6 is a miss, so MC reads the adjacent data bucket D7 
which is a hit and MC finds its data. 

bucket size 1 32 bytes 
Bcast pointer 1 2 bytes 

4 Performance Evaluation 
Table 1. Simulation Parameters 

Although it is not difficult to show analytically that CI 
always supports better average access time than DI, this is 
not the case with tuning time [2]. Hence, we evaluated CI 
and DI using simulation. 

4.1 Experimental Testbed 

Our simulation model is a discrete-event simulation 
using the unit-time approach to advance the simulation 
clock [9]. We implemented our simulation model in C lan- 
guage. For experimentation, we implemented No-Indexing, 
DI and CI. No-Indexing is a good reference since it offers 
optimal access time and an upper bound for tuning time. 

Our broadcast model consists of a Server and a Mo- 
bile Client (MC). The server broadcasts data periodically 
by constructing the bcast according to a selectable indexing 
scheme for each search. For both DI and CI, given the num- 
ber of data items N on the bcast, the simulator generates a 
tree of order n k ,  where n is the number of children for each 
node and k is the number of levels of the tree, such that N 
5 min(n'). The replicated part is the top T levels of the 
tree. Our experimental results have indicated that the l k / Z ]  
is the best choice for r .  

Recall that when index nodes and data are arranged lin- 
early in a bcast, the contiguous set of either index nodes 
or data items form index and data segments, respectively. 

These index and data segments are then divided to fit into 
buckets, the physical units of bcast, which are of fixed size. 
In our experiments, the buckets are 32 bytes long. This is 
reasonable if we are focusing, for example, on stock infor- 
mation broadcast. One bucket holds either a part of data 
segment or a part of index segment, but not both, i.e., index 
segments and data segments are not mixed. As discussed 
earlier, to keep things simpler, we are assuming that one 
data item fits into one bucket. This does not affect the re- 
sults, as the policy is uniform across all indexing schemes 
discussed in this paper. Above, we have also assumed that 
each index node fits in a separate bucket. However, in our 
simulation, multiple index nodes are fitted i n  one bucket, 
or spread across multiple buckets, depending on the size of 
bucket and index node. This leads to some fragmentation of 
buckets and the unused space is padded with spaces. 

MC is provided as input a list of keys of data items which 
it has to search. In each run the access set consists of 5,000 
data iteiiis to be searched. Averages are taken over these 
5,000 searches for any result. This access data set is pre- 
pared by taking Zipf distribution function [5]. Using Zipf, 
5,000 random numbers are generated ranging between 1 to 
number of data items on hcast in each case. MC randomly 
tunes in between the broadcast and starts its search for a 
data item by comparing the keys. 
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Figure 5. Access Time for 10-1000 data items Figure 7. Tuning time for 10-1000 data items 

3-t 1 

Figure 6. Access Time for 3,000-18,000 data 
items 

In our experiments, the bcast ranges from 10 to 18000 
data items. The size of each data item is set to 30 bytes and 
the size of the key field to 2 bytes. The size of a broadcast 
pointer is 2 bytes. Each of these experiments are repeated 
30 times to take confidence intervals. The parameters of our 
simulator are summarized in Table I .  

4.2 Access Time 

Figures 5 and 6 show the average access times for differ- 
ent numbers of data items on a single channel, for each of 
the indexing schemes in our experiments. Figure 5 depicts 
the graphs for 10 to 1000 data items and Figure 6 depicts the 
graphs for 3000 to 18000 data items. Clearly, as expected, 
the increase is linear for all of the schemes. Further it is 
no surprise that No-Indexing has better access time for all 

ranges of data items, since it has the smallest bcast size. 
CI exhibits the second best performance for all data 

ranges, including the DI as predicted by our analysis. CI 
reduces the average access time as much as 25% of the av- 
erage access time of DI for broadcast sizes of 12,000 data 
items, which is considered to be an upper bound in prac- 
tical applications. Compared to No-Indexing, the average 
performance of CI is up to 20% better. 

4.3 Tuning time 

Figure 7 depicts the average tuning time for No- 
indexing, CI and DI for broadcasts of 10-1000 data items. 
The general observation is that both CI and DI significantly 
reduce the tuning time compared to No-Indexing which as 
expected, exhibits the worst average tuning time since No- 
Indexing is always in active mode. 

To enhance the readability of our results and facilitate 
their analysis, we show in Figure 8, the average tuning time 
for only DI and CI. In the left graph of Figure 8, for a very 
small number of data items (< 15) DI is performing better 
than CI. But for such a small set of data using either DI or 
CI is not practical. In fact, for such small broadcast sizes, 
No-Indexing exhibits the best performance. 

For higher ranges of data items, CI exhibits as much as 
15% better average tuning time than DI. As shown in the 
right graph of Figure 8, this trend continues until the size 
of the data set becomes 12000. At this point, a crossover 
can be seen and DI becomes a better approach. This can be 
explained by the fact that (recall section 3.1) in CI a MC 
has to perform a linear search once it reaches the beginning 
of a data segment consisting of n data items by following 
the pointer at k t h  level index node. For larger values of data 
items n becomes large and hence the MC has to perform a 
longer linear search at the data level. Since data items are 
larger in size, this increases the tuning time. 
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Figure 8. DI and CI Tuning Times 

5 Conclusions and Future Work 

Push-based data dissemination using broadcasting has 
attracted considerable attention both in  E-Commerce and 
mobile environments. This is a result of the need for a scal- 
able and efficient way of delivering information to a large 
number of clients. For mobile clients, an important factor 
for efficiency is the reduction on energy consumption. To- 
wards this, this paper proposed a new indexing protocol, 
termed Constarit-size I-node Distributed Indexing (CI) that 
outperforms the currently best performing Distributed In- 
dexing (DI) in both access time and tuning time for broad- 
cast sizes of 12,000 or fewer data itenis found in practical 
applications. Our experiments showed that CI reduces up 
to 25% the access time and 1.5% the turning time of DI, 
representing significant savings in encrgy. For example, 
the power savings can be up to 40% in the case of a client 
equipped with Hobbit Chip (AT&T) connected with a 19.6 
Kbps broadcast channel [2]. 

Our experiments suggested that the effectiveness of the 
different indexing schemes is dependent on the broadcast 
size. Currently, we are evaluating all the existing indexing 
schemes including CI for single and multiple channels to 
identify the bounds of the applicability of each scheme. We 
are also investigating several optimizations to CI. 
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