Efficient Data Dissemination to Mobile Clients in E-Commerce Applications

Ruchi Agrawal

*

and Panos K. Chrysanthis

Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260, USA
{ruchi, panos}ecs.pitt.edu

Abstract

Mobile commerce is the next growing area in electronic
commerce and mobile computing. These are sophisticated,
data intensive mobile applications whose success strongly
depends on the efficiency by which data are disseminated
to a large number of mobile users. Different techniques
have been put forward of which the most promising are the
push-based techniques that explore the asymmetry in wire-
less communication and the reduced energy consumption of
the receiving mode on mobile devices. This paper proposes
a new broadcast indexing scheme, termed “Constant-Size
I-node Distributed Indexing” (CI), that offers more energy
savings in practical applications. Our detailed simulation
results indicate that CI which is a variant of the currently
best performing Distributed Indexing, outperforms the lat-
ter for broadcast sizes of 12,000 or fewer data items, reduc-
ing the access time up to 25% and tuning time up to 15%.

1 Introduction

In the last decade, the emergence of the Web led to an
unprecedented number of new applications, most notably
Electronic Commerce (E-Commerce) applications such as
advertising, eAuctions, on-line stock trading, to name few.
As the popularity of these applications grows, so does the
need for efficient and scalable dissemination of data to a
large number of users. This need takes a new form when
we consider the new class of mobile users.

In mobile environments, data dissemination is more
challenging due to the limited, wireless bandwidth avail-
able for communication, frequent disconnections and low
power withholding capacity of mobile devices. Different
techniques have been put forward to address this problem,

*This work is supported in part by National Science Foundation under
grant IR1-9502091 and 11S-9812532.

1530-1354/01 $10.00 © 2001 IEEE

58

of which the most promising are the push-based techniques
that explore the asymmetry in wireless communication and
the reduced energy consumption of the receiving mode on
mobile devices [4, 8]. Servers have both much larger band-
width available than mobile devices and more power to
transmit large amounts of data. In push-based techniques,
the server repetitively broadcasts data to the mobile users
without a specific request. Mobile users monitor the broad-
cast channel and retrieve data as they arrive on the broadcast
channel. If data is properly organized to cater to the needs
of all users, this scheme makes an effective use of the low
wireless bandwidth [6, 1, 7] This can be achieved, for ex-
ample, by treating user requests as feedback and adjusting
the broadcast content to satisfy requests with similar data
requirements by different groups of users [12].

A common approach in push-based techniques is to con-
sider “air” as virtual disk. But in broadcasting data on the
air, access is sequential, as it is in tape drives. So, in order
to access the required data, a user has to be in active mode,
waiting for the data to appear on broadcast. Hand-held and
mobile devices are typically capable to switch from active
mode to doze mode which requires much less energy. The
power consumption of mobile devices is a key issue as the
lifetime of a battery is expected to increase by only 20%
over the next 10 years [11]. Hence, the energy efficient way
to access data is to tune in selectively in order to find out the
correct position of data on broadcast and then go into doze
mode until the data appear on the broadcast. This requires
some form of directory information to be broadcasted along
with data, making the broadcast self-descriptive. This direc-
tory identifies data items by some key value and gives the
location of the actual data on broadcast. Several broadcast
organizations to encode this directory structure have been
proposed. These include incorporating hashing in broad-
casts [7], using signature techniques [10] and broadcasting
index information along with data [6, 3, 8].

In this paper, we propose a new indexing scheme, called
Constant-size I-node Distributed Indexing (CI), that per-
forms much better with respect to the tuning time and access

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:39:12 UTC from |IEEE Xplore. Restrictions apply.


mailto:ruchi,panos}@cs.pitt.edu

time for broadcast sizes in practical applications. This new
scheme minimizes the amount of coding required for con-
structing an index in order to correctly locate the required
data on broadcast, thus decreasing the size of the index and
consequently the access time as well. Our detailed simu-
lation results indicate that CI which is a variant of the cur-
rently best performing Distributed Indexing [6, 8], outper-
forms it for broadcast sizes of 12,000 or fewer data items,
reducing the access time up to 25% and tuning time by 15%.

In the next section after introducing the broadcast model,
we review Distributed Indexing and then in Section 3, we
present our new broadcasting indexing scheme. In Sec-
tion 4, we discuss in detail our simulation experiments. We
conclude with a summary in Section 5.

2 The Broadcast Model

In a broadcast dissemination environment, a data server
periodically broadcasts data items to a large client popu-
lation. Each period of the broadcast is called a broadcast
cycle or beycle, while the content of the broadcast is called
a bcast. Each mobile client (MC) listens to the broadcast
and fetches data as they arrive. We assume that all updates
are performed at the server and disseminated from there.

The smallest logical unit of a broadcast is called a bucket.
Buckets are analogous to blocks in disks. Each bucket has a
header that includes useful information. The exact content
of the bucket header depends on the specific broadcast or-
ganization. Information in the header usually includes that
whether the bucket contains data or index, the offset to the
beginning of the next beast, the offset of the bucket from the
beginning of the bcast, and the offset to the beginning of the
next index segment.

A data bucket may contain several data items which cor-
respond to database records (tuples). We assume that all
data items can be identified by the values of some key at-
tributes and that keys are known to the clients. The filtering
process is simply matching the key values. Index buckets
contain the necessary control information for filtering that
leads to the actual location of the specified key value. We
will discuss below the contents of index nodes of each in-
dexing scheme in our study.

The efficiency of accessing data on air can be character-
ized by two parameters.

e Tuning Time: The amount of time spent by a user in
active mode (listening to channel) and

e Access Time: The total time elapsed from the moment
a client requests data identified by ordering key, to the
time the client reads that data on channel.

Ideally, we would like to reduce both tuning time, and
access time. However, this is not possible because any im-
provement in tuning time requires additional information

to be broadcast which increases the beycle and hence the
access time. On the other hand, the best access time is
achieved when only data are broadcast and without any in-
dexing. Clearly, this is the worst case for tuning time. In this
paper, our goal is to develop an indexing scheme which pro-
vides the best balance between the tuning and access time.

2.1 Distributed Indexing

Distributed Indexing (DI) [6, 8] is currently considered
the best indexing for broadcast data. It reduces tuning time
at a small cost in access time by distributing and selectively
replicating part of an index over a broadcast.

In DI, the index is organized as a tree with all the data
buckets appearing as leaf nodes. One data bucket can have
one or more data items. Index information is added at non-
leaf nodes such that each node has the complete information
about its children (their position on the broadcast cycle and
the keys for the data they are addressing). The tree is di-
vided into two parts:

o The replicated part —the top 1 levels of the index tree
o The non-replicated part — bottom (k-r) levels

The tree nodes of the (r + 1)!* level are called non-
replicated roots (NRR). Figure 1 illustrates an example of a
DI tree as given in [6] with 81 data items. The index tree has
four levels and each node has 3 children. Level 1 is the root
depicted by 1. Level 2 is depicted by {ay,as,as}. Level
3 {b1,..., ba} are non-replicated roots. {e1 to ca7} depict
fourth level nodes and finally 0 - 80 data items, grouped in
3, are shown in shaded nodes.

The idea is to construct the linear broadcast such that
each node rooted in a non-replicated root will appear only
once in the whole broadcast just in front of the set of data
buckets it indexes (points to). Each node of the index tree
which appears above a non-replicated root is replicated n
times where n is the number of the children that node has,
forming the paths from the root to non-replicated roots.
In this way, each b; in NRR forms an index segment of
broadcast having the information about its children after it
(Ind(b;)) and the information about its ancestors before it
(Rep(b;)). Thus, the broadcast can be expressed as sequence
of triples, each of which corresponds to the index segment
of each non-replicated root b; in the tree and the pertaining
data segment (Data(b;)) [6]:

< Rep(b;), Ind(b;), Data(b;) >
Vb; € NRR = {by, ba, ..., b;} in left to right order, where

e Rep(by) = Path(Lby), by is the first bucket in NRR and
I is the root of the index tree.

o Rep(b;) = Path(LCA(b;_1, b;), b)) fori=2, - - -, t where
b; is the " index in NRR of tree.

59

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:39:12 UTC from IEEE Xplore. Restrictions apply.



NRR = {b1,b2,b3,b4,b5,b6,b7,b8,b9}

Rep(bl) ={ I al} Indbl) = {blelc2,e3}
Rep(b2) = (al ) Ind(b2) = { b2,c4,c5.6 }
Espﬁg‘ﬂg _:-{?LZJ} Ind(b3) = { b3.c7,c8.c9}
ch(bi) ;(a'zy Ind(b4) = {bd,cl0cll,cl2}
Rep(bﬁ) ={a2) Ind(h3) = (b5,c13,c14,c15)
Rep(b7) = { La3 | Ind(b6) = {b6,c16,c17,c18 }
Rep(b8) ={a3} Ind(h7) = {b7,19,c20,c21 }
Rep(h9) = {a3 } Ind(b8) = (b8.c22,c23,c24 }

Ind(b9) = {b9,c25,¢26,c27 }

Data(bl) ={0,.

Data(h2) = { i
Data(®3) = | 6 |
Data(b4) = {27 3
Data(b5) = {26

Data(b6) = {45 ..

Data(b7) = {54

Data(®8) = {63

Data(b9y = {72,...

Figure 1. Distributed Indexing Tree

e Path(c, b): the sequence of index nodes along the path
from index node ¢ to b (excluding b).

LCA(b;, by): the least common ancestor of b;, and by
in the index tree.

e Data(h;): the set of data buckets indexed by b;.
e Ind(d;): the part of the tree below b; (including b;).

Figure 2 depicts the linear broadcast corresponding to
the DI tree in Figure 1. The index segments are shown in
white. In the example, Ind(b3) consists of 37¢ NRR, i.e., b3
and its children nodes {c7,c8,c9} and Data(bs) consists of
all data items {18 ... 26} that the node by covers in the tree.
Rep(bz) = Path(LCA(b2, b3),b3) = a1 . Note that for simplic-
ity of presentation, we are assuming that each tree node is
stored in a separate index bucket. In our experimental eval-
uation, we take into consideration that the size of all tree
nodes is not the same and more than one might be fitted in
a bucket. Similarly, we assume that each data item is stored
in a separate data bucket.

In the replicated part of the tree, not an entire parent node
of a child node is replicated on the bcast. For example in
Figure 2, for a replicated node al, not the entire I_1 is repli-
cated. In order to determine if a data item has already ap-
peared on the broadcast, control information is attached to
replicated nodes, e.g., .1 and al. The control information
records what part of the broadcast is left behind, what lies
ahead which is not covered by the particular node and when
the start of the next broadcast is. Thus, if needed data is
missed, the next start of broadcast can be determined, or if

data is ahead in the current broadcast, then the index bucket
having the right information can be located.

Let us consider the case in which a mobile client MC
searches for key 7 and tunes into the data bucket with key
8. The index pointer in that bucket leads the MC to the next
index segment which starts at the second_al (Figure 2). The
control information in the second_al specifies that for key
values < 8, tune into begin (which is the start of the next
broadcast), for key values > 26, tune into 1.2, and for any
other value (i.e., 8< key < 26) search the value range pairs
in second.al for the appropriate next pointer. Given that
MC searches for key 7, it goes into doze mode until the
start of the next beast. Next, MC tunes into I_1 (begin). The
first range pair covers the values 0-26, for which key 7 is in
range, so MC follows pointer-1 which leads it to first_.al. In
first_al, the first range pair covers values 0-8 for which key
7 is again in range so MC follows the pointer_1 and tunes
into bl. Inthis node, the third pair with range 6-8 covers key
7, so MC follows pointer 3 and tunes into ¢3. The pointer 2
in ¢3 leads MC to the data bucket with key 7.

3 Constant-size I-node Distributed Indexing

In this section, we are presenting our new indexing
scheme termed Constant-size I-node Distributed Indexing
(CI). CI is a variant of DI and hence, it follows the same
tree structure formation as per DI. Given the number of data
items N, we come up with a tree of order n®, where n is the
number of children for each node and k is the number of

60

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:39:12 UTC from IEEE Xplore. Restrictions apply.



first_al

26 ta] ] 7 b sy
T [”’ 53, L3 13
Ha2 b5 ‘c13|cl4‘015 b

[ﬁM o gsjbcgin
.

["/

1_1 (hogin)

L1|at ‘bl c

second_a2

second_a3

62, begin

b8 [c22 €23 | c24

thind_al

e )
I 26, 12
ézl b3 | e7 |c8 (¢ [

third_a2

Figure 2. Distributed Indexing: linear broadcast with control information

levels of the tree. As in DI, the broadcast can be expressed
as a sequence of triples, < Rep(b;), Ind(b;), Data(b;) >.
Thus, if we use the same example, select the same value
of n and & for the tree and make the same simplified as-
sumptions as for DI in the previous section, the layout of
the broadcast cycle for CI is similar to that of DI as shown
in Figure 2 with one significant difference, namely, the ab-
sence of the variable-size control information. In CI, no
control information is attached to any node.

The second differcnce is that, in CI, the size of index
nodes in the tree is constant. An index node in CI has a pair
of range keys defined by max key and min key which defines
the range of data indexed by the node and one pointer which
points at the next bucket to tune into. This is in contrast to
DI in which the size of index node is variable and contains
n such pairs of range and pointer as the number of children
nodes. Figure 3 shows for both the DI and CI schemes, the
content of the first four index nodes in the becast of our ex-
ample index tree in Figure 1. In both schemes, the header of
each node is of the same size and contains an extra field that
in the case of DI, encodes whether or not a node contains
control information whereas in the case of CI, it encodes
the node level. By eliminating the control information and
maintaining index nodes of constant size equal to the mini-
mum size of the index node in DI, Cl results in smaller size
beast and hence requires less access time.

3.1 Access Protocol

The ingenuity of the CI scheme lies in the way the single
pointer in index nodes is interpreted at each level of the tree.
The protocol can be understood by keeping in view the tree
structure and its linear layout on bcast. If the search key
lies within the range of an index node, say IV, (ie., itis a
hit), then the data item lies in the subtree for which IN is
the root. On linear beast, this subtree starts just after IN and

61

hence there is no need for an explicit pointer. An MC just
needs to read the next index node on bcast. This process
goes on recursively for each subsequent hit. For the index
nodes which are at the last level (kt%), intuitively, in case
of a hit, the pointer must point to the data item. Our access
protocol complies with this observation and the pointers for
k" level nodes points to the start of the group of n data
items which is indexed by that k** level index node.

In the case that the search key does not lie in the range
given by IN (i.e., it is a miss), it means that the data item
is not in the subtree for which IN is the root and the next
subtree needs to be searched, for which the root is the next
subsequent index node at same level. In case of replicated
nodes, in order to ensure that the next index node at same
level is not a replication, but a different node, the pointer is
made to point at the index node which is one level higher.
The same strategy is used for index nodes which are NRR.
The pointer points at one higher level node, so that, com-
parisons can be made at a higher level and in case of miss,
a larger portion of the tree can be skipped. In case of other
non-replicated nodes, the pointer simply points at the next
subsequent node at the same level.

In the case of nodes which are at the lowest level (k**),
as stated above, the pointer would be needed to point at data
items. Tt would seem, another pointer is needed to point to
index nodes in case of miss. But, in linear beast, £ level
nodes are placed one after the other in group of n (number
of children). This observation made it possible to have only
one pointer at k" level too. In case of a miss, an MC just
reads the next node on the beast which is of same level.

The steps of access protocol are given below:

e For nodes which belong to levels 1 tor+1 (which is the
level of NRR), if the search key does not lie in between
min and max key specified in the index node, the client
uses the pointer to read the next higher level node (in

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:39:12 UTC from IEEE Xplore. Restrictions apply.



min_key_L =0 min_key_1 =@
max_key_1 =26 ma},kcy,l =8
pointer_1 = first_al pﬁ_mler;l =b_1
min_key_ 2 =27 min_key_2 =9
max_key_2 =53 max_key_2=17
pointer_2 = firsi_a2 P"_‘“‘E’_2 =b2
min_key_3 = 54 min_key_3 =18
max_key_3 =80 m_x_key_s =26
pointer_3 = first_a3 pointer 3=b_3
Control Tndex Control Index
NULL NULL ,NULL
26 , 12

The information in [_1 Node

The information in first_al node

min_key_1 =0 min_key_t =0
max_key_1=2 pointer_t = D)
po'mler_l =c_1 min_key_2 =1
min_key_2 =3

max_key_2 =5 pointer_2 =D1
pointer 2=c¢_2 B
min_key_3=6 min_key_3=2
max_key 3 =8 pointer_3 = D2
pointer_3=c¢_3

The information inb_1 node  The information in c_1 node

Luplementation scheme for Distributed Indexing

min_key = {
max_key = 80

pointer =1_1

The information in [_1 node

min_key =0
max_key =26

pointer=1_2

The information in first a_i node

min_key =0

max_key =2

pointer =¢_2

The information for ¢_I node

min_key =0

max_key = &

pointer = second a_{

The information for b_1 node

ion scheme for C ize [-node Distributed Indexing

Figure 3. DI and Cl index nodes

case of level 1, this is the next bcast). Otherwise, if the
search key is within the range, the client reads the next
index node on broadcast (which is always one level
lower).

For nodes which belong to the level between r+2 to
k-1, which are all non-replicated index nodes, if the
search key is not within range, the client uses the
pointer to read the next index node at the same level.
Otherwise, if the search key is within range, the client
reads the next index node which again, is one level
lower.

In the case of &'" level index (last index level) if the
search key is within the range, the client follows the
pointer which points at the start of the data segment
indexed by the k** level node. Then, the client tries
to match the search key with key in data items one by
one. Since the data items are sorted, the client stops
if it encounters a data item with a key having greater
value than search key or it has checked n data items
(which is the number of its children). If the MC cannot
find the required key, it concludes that the data item is
not on the bcast.

At k** level if the search key is not within range, then
an MC continues reading the next index node on bcast
which is of same level, until it hits a data segment. At
this point, if the client has not just tuned in the & ** level
index segment, then it means that the data item is not
in the bcast. Otherwise, if the client has just tuned in

62

the k*# level, the client has to start its search from the
next index bucket pointed by the next bucket on bcast
which is a data bucket.

The protocol will become more clear with the follow-
ing example which is the same used above for DI: Consider
the broadcast structure given for 81 data items in Figures 1
and 4. Level 1 is the root(I) and its min. key and max_key
covers the entire data set being broadcasted. Lower indexes
cover their part of data. Now, consider a case when a mo-
bile client MC'is searching for key 7 and tuned into the data
bucket with key 8. In Figure 4, the shaded boxes are the
ones MC tunes into. Since all data buckets have a pointer
which points to the start of the next index segment, MC
reads the next index node second_ay. This is a hit since a;
has a range from 0 - 26. So, MC reads the next adjacent
lower level index node bs. This is a miss since b, indexes
data items between 9 - 17. According to the protocol, MC
follows the pointer to read the next higher level index node
third ;. Again, this is a hit, and so, MC reads the adja-
cent index node b3 which is a miss. Hence, MC follows
the pointer to read the next higher level index node first_a2
which again is a miss, so MC reads the next higher level
node 1_.3. Since 1.3 is a hit, MC reads the next (one level
lower) index node first_a3 which is a miss. Thus, MC needs
to follow again the pointer to read the next higher level node
1.1 which is the start of the next broadcast cycle. Now, MC
gets a hit and reads the next adjacent node, first_al which
is also a hit, so it reads the next node b; which is again, a
hit, so MC reads the next index node ¢y. ¢; is a miss be-

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:39:12 UTC from |IEEE Xplore. Restrictions apply.



firsal {

[Lli'a] | MFI—I 02[63 ]Dol

cls

D36| |D44| a2 |h6 |516|c1’7|c18)D45] lDSS‘

Figure 4. Cl: linear broadcast and tuning in search of value 7

cause it indexes data 0 - 2. Thus, following the protocol on
a miss between level r+1 and k-1, MC reads the adjacent
same level index nodes until it reads a data bucket (which
implies the end of n last level index nodes). In our exam-
ple, MC reads ¢y which is a miss and then ¢3 which is a hit.
Given the hit, MC follows the pointer in ¢3 which leads it to
D6. D6 is a miss, so MC reads the adjacent data bucket D7
which is a hit and MC finds its data.

4 Performance Evaluation

Although it is not difficult to show analytically that CI
always supports better average access time than DI, this is
not the case with tuning time [2]. Hence, we evaluated CI
and DI using simulation.

4.1 Experimental Testbed

Our simulation model is a discrete-event simulation
using the unit-time approach to advance the simulation
clock [9]. We implemented our simulation model in C lan-
guage. For experimentation, we implemented No-Indexing,
DI and CI. No-Indexing is a good reference since it offers
optimal access time and an upper bound for tuning time.

Our broadcast model consists of a Server and a Mo-
bile Client (MC). The server broadcasts data periodically
by constructing the bcast according to a selectable indexing
scheme for each search. For both DI and CI, given the num-
ber of data items N on the bcast, the simulator generates a
tree of order n*, where n is the number of children for each
node and k is the number of levels of the tree, such that N
< min(n*). The replicated part is the top = levels of the
tree. Our experimental results have indicated that the | £ /2]
is the best choice for .

Recall that when index nodes and data are arranged lin-
early in a bcast, the contiguous set of either index nodes
or data items form index and data segments, respectively.

63

Servers 1

Clients 1

Bcast size 10-18,000 data items
bucket size 32 bytes

Bcast pointer | 2 bytes

Data size 30 bytes

Data key 2 bytes

Key searches | 5,000

Table 1. Simulation Parameters

These index and data segments are then divided to fit into
buckets, the physical units of bcast, which are of fixed size.
In our experiments, the buckets are 32 bytes long. This is
reasonable if we are focusing, for example, on stock infor-
mation broadcast. One bucket holds either a part of data
segment or a part of index segment, but not both, i.e., index
segments and data segments are not mixed. As discussed
earlier, to keep things simpler, we are assuming that one
data item fits into one bucket. This does not affect the re-
sults, as the policy is uniform across all indexing schemes
discussed in this paper. Above, we have also assumed that
each index node fits in a separate bucket. However, in our
simulation, multiple index nodes are fitted in one bucket,
or spread across multiple buckets, depending on the size of
bucket and index node. This leads to some fragmentation of
buckets and the unused space is padded with spaces.

MC is provided as input a list of keys of data items which
it has to search. In each run the access set consists of 5,000
data items to be searched. Averages are taken over these
5,000 searches for any result. This access data set is pre-
pared by taking Zipf distribution function [5]. Using Zipf,
5,000 random numbers are generated ranging between 1 to
number of data items on bcast in each case. MC randomly
tunes in between the broadcast and starts its search for a
data item by comparing the keys.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:39:12 UTC from |IEEE Xplore. Restrictions apply.



1400 T T T T

1200

1000

600

Average Access Time

400 - : et - S —

oL ; . ; ; .
o 100 200 300 400 500 600 700 800 500 1000
Numbsr of Data ems

Figure 5. Access Time for 10-1000 data items

40000 T T

hig T,

35000 |-

30000

25000

20000 |- - gl -

Average Access Time

18000 S : |

i L
2000 14000

3000 10000 1 16000
Numbsr of Data items

Q
2000 4000 6000 18000

Figure 6. Access Time for 3,000-18,000 data
items

In our experiments, the beast ranges from 10 to 18000
data items. The size of each data item is set to 30 bytes and
the size of the key field to 2 bytes. The size of a broadcast
pointer is 2 bytes. Each of these experiments are repeated
30 times to take confidence intervals. The parameters of our
simulator are summarized in Table 1.

4.2 Access Time

Figures 5 and 6 show the average access times for differ-
ent numbers of data items on a single channel, for each of
the indexing schemes in our experiments. Figure 5 depicts
the graphs for 10 to 1000 data items and Figure 6 depicts the
graphs for 3000 to 18000 data items. Clearly, as expected,
the increase is linear for all of the schemes. Further it is
no surprise that No-Indexing has better access time for all

800

700

Average Tune Time
a
8
i

ol = it e P i b
o 100 200 300 400 500 600 700 800 800 1000
Number of Data ltems

Figure 7. Tuning time for 10-1000 data items

ranges of data items, since it has the smallest bcast size.

CI exhibits the second best performance for all data
ranges, including the DI as predicted by our analysis. CI
reduces the average access time as much as 25% of the av-
erage access time of DI for broadcast sizes of 12,000 data
items, which is considered to be an upper bound in prac-
tical applications. Compared to No-Indexing, the average
performance of CI is up to 20% better.

4.3 Tuning time

Figure 7 depicts the average tuning time for No-
indexing, CI and DI for broadcasts of 10-1000 data items.
The general observation is that both CI and DI significantly
reduce the tuning time compared to No-Indexing which as
expected, exhibits the worst average tuning time since No-
Indexing is always in active mode.

To enhance the readability of our results and facilitate
their analysis, we show in Figure 8, the average tuning time
for only DI and CI. In the left graph of Figure 8, for a very
small number of data items (< 15) DI is performing better
than CI. But for such a small set of data using either DI or
CI is not practical. In fact, for such small broadcast sizes,
No-Indexing exhibits the best performance.

For higher ranges of data items, CI exhibits as much as
15% better average tuning time than DI. As shown in the
right graph of Figure 8, this trend continues until the size
of the data set becomes 12000. At this point, a crossover
can be seen and DI becomes a better approach. This can be
explained by the fact that (recall section 3.1) in CI a MC
has to perform a linear search once it reaches the beginning
of a data segment consisting of n data items by following
the pointer at k** level index node. For larger values of data
items n becomes large and hence the MC has to perform a
longer linear search at the data level. Since data items are
larger in size, this increases the tuning time.

64

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:39:12 UTC from |IEEE Xplore. Restrictions apply.



80

25 T T T T T T T

™
=]

Average Tune Time
&

L 1

h . ; - .
400 500 600 700 800 900 1000
Number of Data ltems

0 100 200 300

55

Average Tune Tims

40

o
S
T

N
o

%,

2 14 18 18
ems X 104

08 1
Number of Data |

1
1t

Figure 8. Dl and Cl Tuning Times

5 Conclusions and Future Work

Push-based data dissemination using broadcasting has
attracted considerable attention both in E-Commerce and
mobile environments. This is a result of the need for a scal-
able and efficient way of delivering information to a large
number of clients. For mobile clients, an important factor
for efficiency is the reduction on energy consumption. To-
wards this, this paper proposed a new indexing protocol,
termed Constant-size I-node Distributed Indexing (CI) that
outperforms the currently best performing Distributed In-
dexing (DI) in both access time and tuning time for broad-
cast sizes of 12,000 or fewer data items found in practical
applications. Our experiments showed that CI reduces up
to 25% the access time and 15% the turning time of DI,
representing significant savings in encrgy. For example,
the power savings can be up to 40% in the case of a client
equipped with Hobbit Chip (AT&T) connected with a 19.6
Kbps broadcast channel [2].

Our experiments suggested that the effectiveness of the
different indexing schemes 1s dependent on the broadcast
size. Currently, we are evaluating all the existing indexing
schemes including CI for single and multiple channels to
identify the bounds of the applicability of each scheme. We
are also investigating several optimizations to CIL.

Acknowledgments: The authors thank Sujata Banerjee and
Mohamed Sharaf for their helpful comments on this work.

References

[1] Acharya S., R. Alonso, M. J. Franklin, and S. B.
Zdonik. Broadcast disks: Data management for asym-
metric communication environments. Proc. of the
SIGMOD Conference, pp. 199-210, 1995.

[10]

65

[2] Agrawal R and P. K. Chrysanthis. Improving Access
Time to Air Caches While Saving Energy. Technical
Report TR-01-07, University of Pittsburgh, Feb. 2001.
Datta A. et al. Adaptive Broadcast Protocols to Sup-
port Efficient and Energy Conserving Retrieval from
Databases in Mobile Computing Environments. Proc.
of the Int’l Conf. on Datu Engg., pp. 124—133, 1997.
FranklinM. J. and S. B. Zdonik. A framework for scal-
able dissemination-based systems. Proc. of the OOP-
SLA Conference, pp. 94 — 105, 1997.

Gray J. et al. Quickly generating billion-record syn-
thetic databases. Proc. of the SIGMOD Conference,
pp. 243-252, 1994,

Imielinski T., S. Viswanathan, and B.R. Badrinath.
Energy efficient indexing on air. Proc. of the SIGMOD
Conference, pp. 25-36, 1994,

Imielinski T., S. Viswanathan, and B.R. Badrinath.
Power efficient filtering of data on air. Proc. of the
Int’l Conf. on Extending Database Technology, 1994.
Imiclinski T., S. Viswanathan, and B. R. Badrinanth.
Data on Air: Organization and Access. JEEE Trans.
on Knowledge and Data Engg., 9(3):353-372, 1997.
Jain R.. The Art of Computer Systems Performance
Analysis. John Wiley and sons, 1991.

Lee W.C. and D. L. Lee. Using signature tecniques for
information filtering in wireless and mobile environ-
ments. Distributed and Parallel Databases, pp. 205—
227, 1996.

Sheng S., A. Chandrasekharan, R. W. Broderson. A
portable multimedia terminal for personal communi-
cations. Communication Magazine, pp. 64-75, 1992.
Stathatos K., N. Roussopoulos, and J. S. Baras. Adap-
tive data broadcast in hybrid networks. Proc. of the
VLDB Conference, pp. 326-335, 1997.

31

(41

(5]

[6

[inall

[7

—

(8]

(9]

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:39:12 UTC from |IEEE Xplore. Restrictions apply.



