
Structuring the Commit Tree for Better Performance
of Two Phase Commit Processing

George Samaras, George K. Kyrou1 and Panos K. Chrysanthis1

Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus

Department of Computer Science, University of Pittsburgh, Pittsburgh, 15260 PA, USA
email: {cssamara,kyrou}@cs.ucy.ac.cy, panos@cs.pitt.edu

Abstract. Extensive research has been carried out in search for an efficient atomic
commit protocol and many optimizations have been suggested to improve the two-phase
commit protocol, either for the normal or failure case. Yet, the performance effects on
transaction processing when combining some of these optimizations have not been stud-
ied in depth. In this paper, we concentrate on the flattening-of-the-commit-tree optimi-
zation, in particular the combination of flattening with the read-only optimization. Our
simulation results reveal a major pitfall of flattening when dealing with large trees. A
new restructuring method is proposed that performs better than flattening even when
dealing with large trees. Required protocol modifications to support the suggested op-
timizations are also addressed.
Keywords: Atomic Commit Protocols, Commit Optimizations, Distributed Transaction
Processing

1 Introduction
A transaction provides reliability guarantees for shared access to data and is traditionally defined so as
to provide the properties of atomicity, consistency, isolation, and durability (ACID) for any operation
it performs. In order to ensure the atomicity of distributed transactions that access data stored at multi-
ple sites, an atomic commit protocol (ACP) needs to be followed by all sites participating in a transac-
tion execution to agree on the transaction's final outcome despite of program, site and communication
failures. That is, an ACP ensures that a distributed transaction is either committed and all its effects be-
come persistent across all sites, or aborted and all its effects are obliterated as if the transaction had
never executed at any site. The two-phase commit protocol (2PC) is the first proposed and simplest
ACP [1, 12].

It has been found that commit processing consumes a substantial amount of a transaction's execu-
tion time [20]. This is attributed to the following three factors:

!" Message complexity, which deals with the number of messages that are needed to be exchanged
between the systems participating in the execution of a transaction to reach a consistent decision
regarding the final status of the transaction.

!" Log complexity, which refers to the amount of information that needs to be recorded at each par-
ticipant site in order to achieve resiliency to failures. Typically, log complexity is expressed in
terms of the required number of non-forced log records, which are written into the log buffer in
main memory, and the forced log records, which are written into the log on the disk. During forced
log writes, the commit operation is suspended until the log record is guaranteed to be in stable stor-
age.

!" Time complexity, which corresponds to the number of rounds or sequential exchanges of mes-
sages that are required in order for a decision to reach the participants.
Since any delay in making and propagating the final decision to commit a transaction, decreases the

level of concurrency and adversely affects the performance of a distributed transaction processing sys-
tem, it is important to reduce it. In fact, over the years the 2PC protocol has been extensively optimized
to improve performance and system throughput in terms of reliability, savings in log writes and net-

1 This work was supported in part by the National Science Foundation under grant IIS-9812532.

work traffic, and reduction in resource lock time. This work resulted in a number of commit variations
[14, 11, 22, 19, 8, 17, 13, 6, 3, 5] and an even greater number of commit optimizations [18]. Yet, the
performance effects on transaction processing when combining some of these optimizations have not
been studied in depth.

In this paper, we concentrate on the flattening-of-the-commit-tree optimization, originally proposed
in [18]. We show via simulation how it improves distributed commit processing by minimizing proc-
essing delays and allowing log writes to be performed in parallel. A major shortfall of flattening when
dealing with large trees is also being investigated both analytically and quantitatively. This shortcom-
ing is unnecessarily exacerbated when dealing with partially read-only transactions. In an attempt to
combine flattening with the read-only optimization, we invent a new restructuring method which we
call restructuring-the-commit-tree around update participants (RCT-UP). RCT-UP avoids the disadvan-
tages of flattening while at the same time sustains (and in some cases improves) the performance bene-
fits of flattening. Based on simulation results, we show that restructuring around update participants,
which in essence is a combination of the flattening-the-commit-tree and the read-only optimization,
provides an overall superior performance.

The paper is organized as follows. In Section 2, we present a brief description of distributed trans-
action processing, commit processing and commit optimizations. The flattening-the-commit-tree opti-
mization is discussed and evaluated in Section 3. Section 4 deals with the inefficiencies of flattening
and investigates a new restructuring method exploiting read-only participants. In Section 5, presents an
overview of the Simulator used to support our analyses/evaluations. Section 6 concludes.

2 Distributed Transaction Concepts
The following three sections describe the system model, the basic two-phase commit protocol and the
needed commit optimizations that are used throughout this paper.
2.1 Distributed Computations
A distributed system consists of a set of computing nodes linked by a communications network. The
nodes cooperate with each other in order to process distributed computations. For the purpose of coop-
eration, the nodes communicate by exchanging messages via the network. A transaction consists of a
set of operations that are executed to perform a particular logical task, generally making changes to
data resources such as databases or files [2]. The changes to these resources must be committed or
aborted before the next transaction in the series can be initiated.

A distributed transaction is associated with a tree of processes that is created as the transaction exe-
cutes (Fig. 2-1). Processes may be created at remote sites (or even locally) in response to the data ac-
cess requirements imposed by the transaction. Consequently, there exists a parent-child relationship be-
tween the processes. The tree may grow as new sites are accessed by the transactions. Sub-trees may
disappear in response to application logic or because of a site or communication link failure.

The client process at the root is the
overall initiator of the commit protocol.
Consequently, the commit protocol tree is
the same as the process tree so that the
parent-child relationship implies the co-
ordinator-subordinate relationship for
executing the commit protocol.

Once the computations of a transaction
are completed, the application instructs the
transaction manager (TM) of its site (i.e.,
P1) to initiate and coordinate the commit
protocol. The coordinator TM must arrive
at a commit or abort decision and propa-
gate that decision to all subordinates. Sub-
ordinate TMs propagate the decision to
their subordinate TMs.

Site 2

P2

Site 4

P4

Site 3

P3

Site 5

P5

Site 6

P6

Site 7

P7

Servers

Figure 2-1. A process tree within the client server model.

Site 1

P1

Client

= t

t1
t2
t3
t4
t5
t6
t7

2.2 The Two-Phase Commit Protocol
The two-phase commit protocol (2PC) [1, 12], as the name implies, involves two phases: a voting (or
prepare) phase and a decision (or commit) phase (Figure 2-2). During the voting phase, it is decided
whether to commit or abort the transaction and at the decision phase, all participants apply the deci-
sion. To provide fault-tolerance the protocol uses a log to record its progress.
The Voting Phase
During the voting phase, the coordinator requires
via the "prepare" message that all participants in
a transaction agree to make the transaction's
changes to data permanent. When a participant in
a transaction has completed the voting phase
�“positively�”, it is considered prepared. Being
prepared means that the participant has received
the prepare message, has processed the request,
has forced-logged a prepare log record and has
returned a message (namely the "Yes" message)
to the coordinator stating that it has completed
the prepare phase. Once a participant in a trans-
action is prepared, it can no longer unilaterally decide to abort or commit the transaction and it is con-
sidered blocked. If a participant cannot prepare itself (that is, if it cannot guarantee that it can commit
the transaction), it must abort the transaction and respond to the prepare request with the "No" vote.

Coord inator P artic ipant

P repare

Yes

F orce W rite
P repared R ec ord

Voting Phase

D ec ision

Fo rc e W rite
D ec ision R ec ord

F orce W rite
D ec ision R eco rd

D
ecision Phase

Ac k
W rite non-forced
End R eco rd

Figure 2-2. Simple Two-Phase Commit Processing.

The Decision Phase
When it has received a positive vote (i.e. the "Yes" vote) from each of the participants, the coordinator
force writes a commit log record. Logging the commit decision ensures that even in case of failures and
when all the participating systems are again available, the transaction can complete successfully. If any
of the participants voted "No" the coordinator force-writes instead the abort log record.
After the coordinator has forced written a commit (or abort) log record, is ready to initiate the decision
phase. The coordinator sends a "Commit" (or "Abort") message to all the voting �“Yes�” participants.
Each participant force writes a commit (or abort) log record to indicate that the transaction is commit-
ted (or aborted), releases all resources held on behalf of the transaction, and returns an acknowledg-
ment (namely the "Ack" message) to the coordinator. Once a commit log record has been written, the
changes made by the transaction can be applied to the database.

From the above it follows that, during normal processing the cost to commit or abort a transaction
executing at n participants is the same. The log complexity of 2PC amounts to 2n-1 force log writes
(one forced write at the coordinator's site and two at each participant), and the message complexity to
4(n-1) messages. The time complexity of 2PC is 4 rounds, first is the sending of the "prepare" requests,
second is the sending of votes, third is the sending of the decision message and last is the sending of
the acknowledgement message.
2.3 Read-Only Optimization
Traditionally, a transaction is called read-only if all operations it has performed on behalf of a transac-
tion were reads. On the other hand, a transaction is called partially read-only if some of its participants
have executed writes as well. Otherwise, a transaction is called an update transaction.

If a participant in a transaction is read-only, it does not matter whether the transaction is finally
committed or aborted since it has not modified any data. Hence, the coordinator of a read-only partici-
pant can exclude that participant from the second phase of commit processing. This is accomplished by
having the read-only participant vote "Read-Only" when it receives the "prepare" message from its co-
ordinator [14]. Then, without writing any log records, the participant releases all the resources held by
the transaction.

The read-only optimization [14] can be considered one of the most significant optimizations,
given that read-only transactions are the majority in any general database system. In fact, the perform-
ance gains allowed by the read-only optimization provided the argument in favor of Presumed Abort
(PrA) (PrA is a well known variation of the 2PC [14]) to become the current choice of commit protocol
in the OSI/TP standard [15] and other commercial systems.

3 Flattening-the-Transaction-Tree Optimization
The typical 2PC protocol treats the distributed transaction as a multi-level tree2. Each intermediate par-
ticipant propagates the various 2PC co-
ordination messages down and up the
transaction tree in a sequential manner,
level by level. This is illustrated in Fig-
ure 2-3 and in Figure 3-1 (a). The
cascading of the protocol means that
the transaction manager (TM) at site
TP-1 (in figure 3-1 (a)) must receive
and process the "prepare" message be-
fore TM-23 can be sent the cascaded
prepare from TM-1. This serialization
of the 2PC messages increases the du-
ration of 2PC processing as the tree
depth grows.

An alternative to this is feasible in
communication protocols where a round trip is required before commit processing. Remote Procedure
Calls (RPC) or message-based protocols
where each request must receive a reply,
are examples of such communication
protocols. With these protocols, the iden-
tity of the cascaded subordinate TMs can
be returned to the coordinator when the
child replies to its parent. Gaining
knowledge of the commit-tree enables
the coordinator to communicate with all
the participants directly. As a result a
multi-level tree is flatten or transformed
into a 2-level one during commit proc-
essing [18].

Coordinator Intermediate
Coordinator

Participant

Prepare
Prepare

Yes

Force Write
Prepared Record

Yes

Force Write
Prepared Record

V
o

tin
g

 P
h

ase

Decisi

Force Write
Decision Record

on
Force Write
Decision Record

Decision
Force Write
Decision Record

D
ecisio

n
 P

h
ase

Ack
Ack

Write non-forced
End Record

Figure 2-3. Two-phase commit with intermediate coordinator.

For example, consider the distributed
transaction tree of depth 3, shown in
Figure 3-1 (a). When the application fin-
ishes its processing, it issues commit to the Transaction Manager at site TP-0. TM-0 initiates the 2PC
protocol and sends prepare to TM-1. Having subordinate transaction managers, TM-1 propagates pre-
pare to TM-2. Similarly, TM-2 sends prepare to TM-3. After TM-3 receives the prepare-to-commit
message it force writes a prepared log record and responds with a "Yes" vote (or "No" if it wants to
abort) to its immediate coordinator, TM-2. When TM-2 (and every intermediate coordinator) receives
the prepare-vote from all its subordinates, it force writes a prepared log record and replies to its imme-
diate coordinator accordingly. The decision phase follows an analogous scenario.

TP-1

TM

TP-2

TM
TP-3

TM

TP-0

TM

TP-2

TM

TP-3
TM

Intermediate Coordinators Subordinate

Subordinates

Coordinator

a) A commit
tree of
depth 3

b) A commit
tree of
depth 1
(flat tree)

Figure 3-1. A commit tree of depth 3 and its flattened counterpart.

Coordinator

TP-1

TM

TP-0

TM

This sequencing of the �“prepare�” and �“decision�” message implies that:
!" A leaf participant will not receive the prepare message sent by the root coordinator until that mes-

sage has been processed by all the intermediate coordinators.
!" An intermediate coordinator will not force write a prepared log record until it has received the re-

sponses from all its subordinates.
!" A leaf participant will not force write a commit log record until the commit message has been

processed by all the intermediate coordinators.
!" An intermediate coordinator can not acknowledge commitment to its coordinator until all ac-

knowledgements from its subordinates are received, delaying the return to the application and the

2In the client/server model, this is the same as the commit tree
3 From this point forward, we refer to the Transaction Manager of side TP-i as TM-i.

processing of another transaction.
For a transaction tree of depth three, as in our example, the prepare-to-commit vote will arrive to

the coordinator after three times the cost of receiving, processing and re-sending the prepare message
and force writing a prepared log record! The same applies for the �“commit�” and �“Ack�” message.

By flattening the transaction tree, as shown in Figure 3-1 (b), we eliminate the sequencing of mes-
sages. In this way, the root coordinator sends coordination messages directly to, and receives messages
directly from, any participant. This avoids the propagation delays due to cascading of managers. By
executing the prepare and decision phases in parallel across all participants, this optimization not only
avoids the serial processing of messages, but also allows forced log writes to be performed in parallel.
In fact, time and log complexities are greatly reduced making this optimization a big performance win-
ner in distributed transactions that contain deep trees.
3.1 Performance Analysis

Let M be the average time cost for transmitting a message, L the average time cost of force writing
a log record and P the average time needed for processing a particular event. For the commit tree in
figure 3-1 (a), the minimum time to successfully commit a transaction is approximately
(4*3M+2*3L+L)P. In general, for a balanced commit tree of depth D the minimum time required for
processing commitment is (4DM+2DL+L)P; the formula is solely based on the fact that for a balanced
commit tree, commit processing (i.e. sending the various messages and force writing different log re-
cords) is done at each level in parallel (see figure 3-2). The multiplier 4 accounts for the number of
messages and 2 for the number of forced log writes required by the basic 2PC protocol. This shows that

the cost is dominated by the depth and not as much by the number of participants.

Comparing two commit trees
of depth 3

0
200
400
600
800

1000
1200

1400

0 5 10 15 20 25 30 35
MPL (# of concurrent transactions)

Th
ro

ug
hp

ut

4 Nodes
15 Nodes

The com mit trees used for th is example

For the parameters used see figure 3-3
Figure 3-2. Demonstrating the depth domination over the number of nodes when

measuring the performance of 2PC processing.

For the flattened commit tree of figure 3-1 (b) (and any commit tree of depth 1) the time cost is
only (4M+2L+L)P. This is so because the cost of sending the various messages downstream is elimi-
nated and the various force writes are now done in parallel across all the participants - transmitting the
messages (namely the "prepare" and "commit" messages) in parallel involves only minor transmission
delay4. Based on this, the formula is transformed into (4M+3L)P+2(N-1)Td, where Td is the transmis-
sion delay and N the total number of participants. This is a considerable improvement. In general, the
performance of a flattened tree is (theoretically) almost D times better than the performance of its coun-
terpart of depth D.

Our simulator indicated similar results. Figure 3-3 shows the simulation results for the example
trees in figure 3-1. The deviation from our estimate is most probably attributed to the transmission de-
lay. The boundary throughput value (~1200), on which both lines converge is the maximum system
throughput. At that point, the communication-link of the coordinator is 100% utilized. Similarly, a
boundary system throughput can be invoked by the storage subsystem. This is merely dependent on the
performance characteristics of the hard drives and of course, the maximum number of force writes exe-

4 As we will see later this is not the case for large trees.

Flattening the commit tree optimization

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45
MPL

Th
ro

ug
hp

ut

Normal

Flat Hub

Node000

Node002

Node003

Node001

Comm unication infrastructure used for
the commit trees in figure 3-1

Transmission delay = 2 ms
Propagation delay = 17 ms
Disk Seek Time = 15 ms
Disk Block Write = 3 ms

Figure 3-3. Simulation results for the normal and flat commit trees of figure 3-1.

cuted by a single system.

3.2 Acquiring Knowledge of the Commit Tree
Acquiring knowledge of the commit tree (and flattened5 it) is achieved by requiring all participants to
send their identity to the root coordinator when acknowledging the first operation. Thus, when commit
processing is initiated, the coordinator can send coordination messages directly to all participants. In
addition, assuming all participants know that this optimization is being used, they do not propagate any
2PC messages to any subordinates that they may have.
3.3 System and Communication Requirements
A limitation of this optimization is that in some distributed systems, security policies of the participat-
ing nodes may not permit direct communication with the coordinator. Protocols that support security
features that prohibit any-to-any connectivity cannot use this optimization without additional protocols
to handle the case where a partner cannot directly connect with the commit coordinator.

Another limitation is that a reply message is required so that the identity of all the partners is
known to the coordinator before the voting phase of the 2PC protocol. Protocols that do not require re-
plies, such as conversational protocols (for example, IBM's LU6.2 [7]), may not know the identities of
all agents. These protocols save time by not requiring a reply to every request. For those protocols, it is
possible to flatten the tree during the decision phase, by returning the identity of each subordinate to
the coordinator during the reply to the prepare message.

4 Restructuring, a New Approach
Flattening the tree can shorten the commit processing significantly at the cost of requiring extra proc-
essing on behalf of the coordinator. This is not much of a problem when transactions accommodate
only a few participants and when the network infrastructure supports multicasting. However, when this
is not the case, as with the TCP/IP communication protocol, sending commit messages to a great num-
ber of participants might have the following drawbacks:
!" Because of the transmission delay, a participant may actually receive a "prepare" or "decision"

message latter than would normally do (i.e. without flattening).
!" Communication from and to the coordinator is overloaded, effectively reducing the overall system

throughput.
To make these observations more profound consider the flattened commit tree of figure 4-1 (b). For

this tree, during the prepare phase the coordinator (P0) needs to exchange with its subordinates eight
messages. Consequently, the last subordinate to receive the "prepare" message will do so after eight
times the transmission delay. Note that the computer system hosting the coordinating process P0 is
connected to the communication network through a single line (figure 3-3). In order to send eight mes-
sages, the hardware (i.e., the network card) requires eight times the cost (transmission delay) of sending
one message. If the networking protocol used requires acknowledgment of message reception (round-
trip protocols), the cost is even greater.

Regardless of the networking protocol used, for large commit trees, consisting of hundreds of par-

5 Note that we can only minimize the depth of the commit tree not the depth of the execution tree.

ticipants or for high volume transaction-systems, the cost of exchanging a huge number of messages
can decrease the performance of two-phase commit processing dramatically. In fact, simulation results
showed that for large trees, certain non-flat structures might perform better than the flat structure! For
example, for a one-level tree with sixteen6 subordinates and a transmission delay of 3ms the two-level
non-flat commit tree performs better than its flattened counterpart (Figure 4-2). The performance col-
lapsing of the flattened tree is attributed to the transmission delay, which is exacerbated by the
communication burden placed on the coordinator. When running more than five concurrent
transactions (MPL 5) the coordinator's communication link is 100% utilized. This case, however,
represents a non-typical scenario. It is worth noting that the number is not chosen at random but is
derived with the aid of the previous formulas7.
4.1 Restructuring Around Update Participants (RCT-UP)
To avoid the previous inefficiency we can take advantage of read-only participants that can be elimi-
nated from the second phase of commit processing. Instead of flattening the commit tree completely
and having the coordinator send prepare to all participants, we only need to restructure8 and directly

send messages to the ones
that actually modified
data.

To accomplish this,
only participants that mod-
ify data notify the coordi-
nator of their identity.
They also notify their in-
termediate coordinator (if
they have one) so that dur-
ing the prepare-phase the
intermediate coordinator
can exclude these partici-
pants from its subordi-
nates. This has the notion
of removing update nodes
and even sub-trees from

the bottom of the commit tree and connecting them directly to the root (i.e. the coordinator). A useful
observation is that at the end of the data processing, in the transformed commit tree, all nodes that have
depth greater than one are read-only. Figure 4-1 (c) (and 4-3 (3)) illustrates this algorithm. For this tree,
only processes P4 and P8 need to be restructured.

P0

P1 P6 P7P2 P3 P4 P5 P8

P0

P6 P7

P2 P3

P0

P1

P6 P7

P2 P3 P4

P5

P8

a) A commit tree of depth 3 b) The flattened version of the commit tree on the left

c) An alternative* restructuring of the commit tree on the left

= Update Participants

= Read-only Participants * Partially Flat

Figure 4-1. Flattening and an alternative Restructuring based on read-only status.

P4 P5

P8

P1

Clearly, this new restructuring technique is better than the standard flattening optimization as it re-
lieves the communication from and to the coordinator, enhancing its multiprogramming efficiency (i.e.,
the ability to run many transactions concurrently). In addition, since read-only participants can be ex-
cluded from the second phase of 2PC processing, not flattening them does not affect the performance
of the two phase commit processing. Recall that each immediate subordinate (of the coordinator) in this
restructuring method "knows" that all its subordinates are read-only. Therefore, all immediate subor-
dinates can force write a prepare record and respond to the coordinator before sending any messages to
their subordinates. Of course, this is a divergence from the standard 2PC protocol, but that is the case
with almost all optimizations! On the other hand, we can just send them a read-only message [4] and be
done with them.

Figure 4-3 demonstrates the performance effects of the RTC-UP optimization. The least performing
structure is the normal, non-flat tree (figure 4-3 (1)). An improvement in performance is demonstrated

6 We used a large transmission delay to show the inefficiency of the flat tree for a small number of participants to
ease the simulation. For a smaller transmission delay (< 0.5ms) which is the normal for Ethernet networks, a larger
number of participants would be needed for the performance of the flattened tree to collapse.
7 The number of intermediate participants must be greater than P*(2M+L)(D-1)/Td.
8 From this point forward, we use the term restructuring to refer to the partial flattening of the commit tree. The au-
thors of this paper consider flattening a specific form of restructuring.

Flattend vs. Non-flat commit tree

0

200

400

600

800

1000

1200

0 5 10 15 20 25
MPL

Th
ro

ug
hp

ut

Flat

Non-Flat

Flattened and Non-Flat trees used for this example

Figure 4-2. Demonstrating the performance collapsing of the flattened commit tree.

by the restructured tree (figure 4-3 (3)), so that all update participants communicate directly with the
coordinator. The interesting observation though is the performance of the flattened tree (figure 4-3 (2)).
Although initially it has a very high throughput, after MPL 15 it proves inadequate compared to the
partially flat structure. This, as we have already explained, is attributed to the transmission delay. In
both cases (flattened and partially flattened9), no prior knowledge10 of read-only participants has been
used. However, when we take advantage of the existence of read-only participants (RCT-UP), the per-

formance gains are significant. The advantage of the RCT-UP optimization is evident.

RCT-UP's Performance Superiority

0
200
400

600
800

1000
1200
1400

1600
1800

0 5 10 15 20 25 30 35
MPL

Th
ro

ug
hp

ut

Normal Flattened
Partial RCT-UP

P 0

P 1 P 6 P 7 P 2 P 3 P 4 P 5 P 8

P 0

P 1

P 6 P 7

P 2 P 3

P 4 P 5

P 8

P 0

P 1

P 6 P 7

P 2 P 3 P 4

P 5

P 8

1 . A c o m m it t r e e o f d e p th 3

2 . T h e f la t t e n e d v e r s i o n o f th e c o m m it t r e e o n t h e le f t

3 . A n a l te r n a t i v e r e s t r u c tu r in g o f th e c o m m i t t r e e o n th e le f t

= U p d a te P a r t ic i p a n t s
= R e a d - o n l y P a r t ic ip a n t s

Figure 4-3. Simulation results for the commit trees of figure 4-1 (reproduced for clarity).

5 Simulation Model
In order to evaluate reliably the performance of the optimizations studied in this paper (Flattening and
RCT-UP), we have used a realistic simulator of a distributed transaction processing system. Our simu-
lator, based on a synchronous discrete event simulation model, has been built to effectively capture not
only distributed commit execution but also the communication processing as well. In this respect, by
modeling the network infrastructure, our simulator is different from the one used in [16, 10] and to our
knowledge, any other simulator of distributed commit processing. This approach has enabled us to

9We call partially flattened the RCT-UP optimization with no prior knowledge of read-only participants.
10No knowledge of the read-only participants means that we can only utilize the traditional read-only optimization.

simulate commit processing with intermediate coordinators, and thus efficiently compare the flat struc-
ture with other, deeper commit trees.
5.1 Simulator Components

N ode 000

CM

SM

AP

Node 001

TM

LM

C M

SM

AP

LIN K LIN K

H UB

T M =T ransaction Manager
C M = C om m unication Manager
LM = Log Manager
S M =Storage M anager
AP = User Application

Param eters

Storage
Disks Used = 1
Disk Seek T im e = 15m s
Disk Block W rite = 3m s

Com m unication
T ransmiss ion Delay = 2m s
Propagation D elay = 17m s

O ther
Processing Delays =1m s
Tree Structure = predefined
MPL = N um ber of com m itted
transactions (3-35)

Figure 5-1. Simulation Model.

TM

LM

The high-level components of the simulator, as in real systems, are the computing nodes and the com-
munication links and routers (figure 5-1).

Each computing node consists of a transaction manager (TM), a log manager (LM), a communica-
tion manager (CM) and a storage manager (SM). The transaction manager is responsible for handling
requests to initiate new transactions and requests to initiate and coordinate the commitment of a trans-
action. The log manager executes request for forced log writes by invoking the storage manager to han-
dle disk access. The disk read/write delay is achieved using a queue, while the blocking/unblocking of
transaction processes through callback routines. Finally, the communication manager is responsible for
queuing out-going messages and redirecting incoming messages to the transaction manager.

All of these components share a single processing unit (CPU) except from the storage manager
which encapsulates the hard disk drive and controller and thus can function independently. The various
commit protocols and optimizations are coded in special classes called protocol handlers11 which are
assigned to transaction processes that are executed by the transaction manager in a Round-Robin fash-
ion. All components are built so that their real-life functionality is emulated as closely as possible. The
parameters used, closely resemble those of a real world system (see figure 5-1) [9].

Simulating the network infrastructure precisely, was also a very important requirement so that we
could capture not only the transmission and propagation delays of communication networks, but also
the queuing delays when a link is highly utilized. All links support full-duplex communication, hence
they implement two separate queues. Message routing is accomplished, with a routing device. For all
experiments mentioned in this paper, we have only used a switching Hub.
5.2 Commit processing
Since this paper concentrates on commit optimizations over a specific commit variant (namely the basic
two-phase commit) we have not utilized the data manager and thus we do not simulate (at this stage)
the data exchange that takes place before commit processing. Although this will have a significant ef-
fect on the overall system performance, we do not expect it to affect the relative performance between
the various optimizations.12

Commit processing is initiated when an application13 at a node triggers a new transaction. In re-
sponse the transaction manager spawns a new process and associates it with a protocol handler to exe-
cute the request. Based on a predetermined commit tree it also informs all the participating nodes that a
new transaction has been initiated. When the process is given CPU time to execute it will initiate the
commit protocol by executing the proper actions of the protocol handler.

11The protocol handler is probably the most complex class in our simulator. It is built around a state machine with
states and event handlers implementing all the transaction commit states and actions.
12For protocols such as Early Prepare (EP) [21], Implicit Yes Vote (IYV) [3] and Coordinator Log (CL) [22] that
require part of commit processing to be performed during data processing the data manager is essential.
13The application (AP) is also responsible for maintaining the MPL level at each coordinator node.

6 Conclusions
Flattening has been originally proposed in [18] but without any systematic analysis of its performance
benefits or pitfalls. In this paper, we presented a detailed evaluation of the flattening-the-commit-tree
optimization not only analytically but quantitatively as well with the aid of a simulation tool developed
in house [9]. We demonstrated how it improves distributed commit processing by minimizing propaga-
tion delays and allowing log writes to be performed in parallel. A major shortfall of flattening when
dealing with large transaction trees has been also discovered. It was shown that this deficiency, attrib-
uted to the transmission delay and message congestion, is exacerbated when dealing with partially read-
only transactions.

To effectively remedy this problem we invent a new restructuring method, which we call restructur-
ing-the-commit-tree around update participants (RCT-UP), that avoids the disadvantages of flattening
while at the same time improving upon its advantages. Based on simulation results, we show that RCT-
UP, which in essence is a combination of the flattening-the-commit-tree and the read-only optimization
provides an overall superior performance.

References
1. Gray J.N.: �“Notes on Data Base Operating Systems�”, in �“Operating Systems - an Advanced Course�”, by Bayer

R., Graham R. and Seegmuller G. (eds.), Springer-Verlag, LNCS Vol.60, 1978. Also Available as IBM Re-
search Report RJ2188, IBM Almaden Research Center, Feb. 1978.

2. Gray J. and Reuter A.: �“Transaction Processing: Concepts and Techniques�”, Morgan Kaufman, 1993.
3. Al-Houmaily Y.J. and Chrysanthis P.K.: "An Atomic Commit Protocol for Gigabit-Networked Distributed Da-

tabase Systems". The Journal of Systems Achitecture, 1997.
4. Al-Houmaily Y.J., Chrysanthis P.K. and Levitan S.P.: "Enhancing the Performance of Presumed Commit Pro-

tocol", Proc. 12th ACM SAC Symposium, pp.131-133, Feb. 1997.
5. Al-Houmaily Y.J., Chrysanthis P.K. and Levitan S.P.: "An Argument in Favor of Presumed Commit Protocol",

Proc. 13th IEEE International Data Engineering Conference, Birmingham, U.K., April 1997.
6. Al-Houmaily Y.J. and Chrysanthis P.K.: "Dealing with Incompatible Presumptions of Commit Protocols in

Multidatabase Systems." Proc. 11th ACM SAC Symposium, pp.186-195, Feb. 1996.
7. IBM Database System DB2, Version 3, Document Number SC30-3084-5, IBM, June 1994
8. Systems Network Architecture. SYNC Point Services Architecture Reference, Document Number SC31-8134,

IBM, September 1994. It introduces and describes in detail IBM�’s Presumed Nothing commit protocol. Au-
thors: George Samaras, Kathryn Britton, Andrew Citron.

9. Kyrou G. and Samaras G.: "A Graphical Simulator of Distributed Commit Protocols" Available from:
http://ada.cs.ucy.ac.cy/~cssamara/

10. Liu M., Agrawal D. and El Abbadi A.: "The Performance of Two-Phase Commit Protocols in the Presence of
Site Failures", Proc. 24th Intl. Symposium on Fault-Tolerant Computing, June 1994.

11. Lampson B. and Lomet D.: "A New Presumed Commit Optimization for Two Phase Commit", Proc. 19th
VLDB Conference, Dublin, Ireland, 1993.

12. Lampson B.: �“Atomic Transactions�”, in �“Distributed Systems: Architecture and Implementation - an Ad-
vanced Course�”, by Lampson B. (ed.), Springer-Verlag, LNCS Vol.105, pp.246-265, 1981.

13. Mohan C., Britton K., Citron A. and Samaras G.: "Generalized Presumed Abort: Marrying Presumed Abort and
SNA's LU6.2 Commit Protocols", An International Workshop on Advance Transaction Models and Architec-
tures (ATMA�’96) (edited book), Goa, India, Sept. 1996.

14. Mohan C., Lindsay B. and Obermarck R.: �“Transaction Management in the R* Distributed Data Base Man-
agement System�”, ACM Transactions on Database Systems, Vol.11, No.4, Dec. 1986. Also available as IBM
Research Report RJ5037, IBM Almaden Research Center, Feb. 1986.

15. Information Technology - Open Systems Interconnection - Distributed Transaction Processing - Part 1: OSI TP
Model; Part 2: OSI TP Service, ISO/IEC JTC 1/SC 21 N, April 1992.

16. Gupta R., Haritsa J. and Ramamritham K.: "Revisiting Commit Processing in Distributed Database Systems".
Proc. ACM SIGMOD Conference, Tucson, Arizona, May 1997.

17. Raz Y.: "The Dynamic Two-Phase Commitment (D2PC) Protocol", Proc. 5th International Conference on In-
formation Systems and Data Management (CISMOD'95), Bombay, India, Nov. 1995.

18. Samaras G., Britton K., Citron A. and Mohan C.: �“Commit Processing Optimizations in the Commercial Dis-
tributed Environment�”, Parallel and Distributed Databases, Vol.3, No.4, pp.325-361, Oct. 1995.

19. Samaras G., Britton K., Citron A. and Mohan C.�” �“Enhancing SNA's LU6.2 Sync Point to Include Presumed
Abort Protocol�”, IBM Technical Report TR29.1751, IBM Research Triangle Park, Aug. 1993.

20. Spiro P., Joshi A. and Rengarajan T.K.: �“Designing an Optimized Transaction Commit Protocol�”, Digital
Technical Journal, Vol.3, No.1, Winter 1991.

21. Stamos J.W. and Cristian F.: "A Low-Cost Atomic Commit Protocol", Proc. 9th Symposium on Reliable Dis-
tributed Systems, pp. 66-75, 1990.

22. Stamos J.W. and Cristian F.: "Coordinator Log Transaction Execution Protocol", Distributed and Parallel Da-
tabases, 1:383-408, 1993.

	Introduction
	2Distributed Transaction Concepts
	Distributed Computations
	The Two-Phase Commit Protocol
	The Voting Phase
	The Decision Phase

	Read-Only Optimization

	Flattening-the-Transaction-Tree Optimization
	Performance Analysis
	Acquiring Knowledge of the Commit Tree
	System and Communication Requirements

	Restructuring, a New Approach
	Restructuring Around Update Participants (RCT-UP)

	Simulation Model
	Simulator Components
	Commit processing

	Conclusions
	References

