Two-Phase Commit Processing
with Restructured Commit Tree

George Samaras'*, George K. Kyrou!-2**, and Panos K. Chrysanthis?**

! Department of Computer Science, University of Cyprus
Nicosia, Cyprus
{cssamara,kyrou}@cs.ucy.ac.cy
2 Department of Computer Science, University of Pittsburgh
Pittsburgh, PA 15260, USA
panos@cs.pitt.edu

Abstract. Extensive research has been carried out in search for an ef-
ficient atomic commit protocol and many optimizations have been sug-
gested to improve the basic two-phase commit protocol, either for the
normal or failure case. Of these optimizations, the read-only optimiza-
tion is the best known and most widely used, whereas the flattening-
of-the-commit-tree optimization is the most recent one proposed for In-
ternet transactions. In this paper, we study in depth the combined use
of these two optimizations and show the limitations of the flattening-of-
the-commit-tree method in committing large trees. Further, we propose
a new restructuring method of the commit tree and show using simula-
tion that it performs better than flattening method even when dealing
with large trees.

Keywords: Atomic Commit Protocols, Commit Optimizations, Dis-
tributed Transaction Processing

1 Introduction

A transaction provides reliability guarantees for accessing shared data and is tra-
ditionally defined so as to provide the properties of atomicity, consistency, iso-
lation, and durability (ACID) [8]. In order to ensure the atomicity of distributed
transactions that access data stored at multiple sites, an atomic commit protocol
(ACP) needs to be followed by all sites participating in a transaction’s execution
to agree on the transaction’s final outcome despite of program, site and com-
munication failures. That is, an ACP ensures that a distributed transaction is
either committed and all its effects become persistent across all sites, or aborted
and all its effects are obliterated as if the transaction had never executed at any

* This work was supported in part by the European IST project DBGlobe, IST-2001-
32645.

** This work was supported in part by the National Science Foundation under grant
11S-9812532.

Y. Manolopoulos et al. (Eds.): PCI 2001, LNCS 2563, pp. 82-99, 2003.
© Springer-Verlag Berlin Heidelberg 2003



Two-Phase Commit Processing with Restructured Commit Tree 83

site. The two-phase commit protocol (2PC) is the first proposed and simplest
ACP [7, 14].

It has been found that commit processing consumes a substantial amount
of a transaction’s execution time [22]. This is attributed to the following three
factors:

Message Complexity, that is the number of messages that are needed to be
exchanged among the sites participating in the execution of a transaction in
order to reach a consistent decision regarding the final status of the transac-
tion. This captures the cost of delays due to network traffic and congestion.

Log Complexity, that is the amount of information that needs to be recorded
at each participant site in order to achieve resilience to failures. Log com-
plexity considers the required number of non-forced log records, which are
written into the log buffer in main memory, and the forced log records, which
are written into the log on a disk (stable storage) that sustains system fail-
ures. Typically, however, log complexity is expressed only in terms of forced
log writes because during forced log writes, the commit processing is sus-
pended until the log record is guaranteed to be on stable storage. Thus, this
captures the cost due to I/O delays.

Time Complexity, that is the number of rounds or sequential exchanges of
messages that are required in order for a decision to reach the participants.
This captures the cost due to propagation and network latencies.

An increase to any one of these factors, it will increase the delay in mak-
ing the final decision to commit a transaction and consequently will increase
the transaction response time. Further, any delay in making and propagating
the final decision to commit a transaction, it delays the release of resources
which in turn decreases the level of concurrency and adversely affects the overall
performance of a distributed transaction processing system. For these reasons,
extensive research has been carried out over the years to reduce message, log
and time complexities in an effort to optimize 2PC, improving both response
time and system throughput during normal processing or during recovery from
failures.

These research efforts resulted in a number of 2PC variants and new atomic
commit protocols [16, 13, 24, 21, 10, 19, 15, 5, 1, 4] and an even greater number of
commit optimizations for different environments [20, 6]. Of these optimizations,
the read-only optimization is the best known and most widely used, whereas
the flattening-of-the-commit-tree optimization is the most recent one originally
proposed in [20] for Internet transactions, distributed across sites in a wide area
network. Interestingly, the performance effects on transaction processing when
combining some of these optimizations have not been studied in depth.

In this paper, we concentrate on the combined use of read-only and flattening-
of-the-commit-tree optimizations. We show using simulation how the flattening-
of-the-commit-tree optimization improves distributed commit processing by min-
imizing propagation latencies and allowing forced log writes to be performed in
parallel. A major shortfall of the flattening method when dealing with large



