
An Evaluation of the Java-based Approaches to Web
Database Access∗�

Stavros Papastavrou1, Panos Chrysanthis1, George Samaras2, Evaggelia Pitoura3

1 Dept. of Computer Science, University of Pittsburgh
{stavrosp, panos}@cs.pitt.edu

2 Dept. of Computer Science, University of Cyprus
cssamara@cs.ucy.ac.cy

3 Dept. of Computer Science, University of Ioannina
pitoura@cs.uoi.gr

Abstract. Given the undeniable popularity of the Web, providing efficient
and secure access to remote databases using a Web browser is crucial for the
emerging cooperative information systems and applications. In this paper, we
evaluate all currently available Java-based approaches that support persistent
connections between Web clients and database servers. These approaches in-
clude Java applets, Java Sockets, Servlets, Remote Method Invocation,
CORBA, and mobile agents technology. Our comparison is along the impor-
tant parameters of performance and programmability.

1 Introduction

Providing efficient and secure access to remote databases using a Web browser [2,6]
is crucial for the emerging cooperative information systems, such as Virtual Enter-
prises. A number of methods for Web database connectivity and integration have
been proposed such as CGI scripts, active pages, databases speaking http, external
viewers or plug-ins, and HyperWave [9]. These methods enhance the Web server
capabilities with dynamic functionality for interactive and cooperative applications
to create database connections, execute queries and transactions, and generate dy-
namic Web pages. However, there is an increasing interest in those that are Java-
based due to the inherent advantages of Java, namely, platform independence sup-
port, highly secure program execution, and small size of compiled code.

Several Java-based methods are currently available that can be used for the de-
velopment of Web cooperative information systems but in the best of our knowl-
edge, there is no quantitative comparison of them in a database context. Existing
studies either primarily focused on the various server side scripting mechanisms to
support database connectivity (e.g., [8, 12]), or evaluated the Java client/server

∗ This work was partially supported by NSF IRI-9502091 and IIS-9812532, and AFOSR

F49620-98-1-043 awards.

communication paradigm without any database connectivity or lengthy computa-
tions (e.g., [14]). This experimental paper contributes a comparison of the six Java-
based approaches that support persistent database connections, specifically, Java
applets using JDBC (Applet JDBC), Java Sockets, Java Servlets, Remote Method
Invocation (RMI), CORBA, and Java Mobile Agents (JMA). We focus on these
methods because of their support for persistent database connections, which are
essential for cooperative environments with long, and repeated data retrievals and
updates.

For our evaluation, we used each approach to implement a Web cl ient accessing
and querying a remote database. Each approach differs in the way the client estab-
lishes connection with remote database servers with the help of a middleware and
the implementation of the middleware. Depending on the way the client establishes
connection with the middleware, the approaches can be classified as (1) non-RPC
ones, that do not provide for remote method invocation mechanism, (2) RPC ones
with clear remote method invocation semantics, and (3) RPC-like ones involving
mobile agent technology.

We compared the behavior of the different approaches along the following two
important parameters: (1) performance expressed in terms of response time under
different loads, and (2) programmability expressed in terms of the number of system
calls at the cl ient and the server site. The two salient results of our study are: (1)
Best performance is not always achievable with high programmabili ty and low re-
source requirements, and (2) the mobile agent technology needs to improve its pro-
grammabil i ty while giving particular emphasis in its infrastructure.

In the next section, we provide a brief review of Java and Java database connec-
tivity. In Section 3, we first discuss our experimental testbed and then elaborate on
the implementation details of the six approaches under evaluation. In Section 4, we
discuss our performance evaluation results whereas in Section 5, we compare the
different approaches from programmabil ity point of view.

2 Background: Java and Java database connectivity

Java [17,1] is an object-oriented programming language designed to support the
development of distributed, secure, and portable applications. The uniqueness of
Java lies on the fact that its compiled code can run on any platform, which supports
a Java runtime environment. Further, Java programs can run in Java-enabled Web
browsers in the form of applets, which are downloaded as part of an html page.
Security is achieved by restricting the execution of applets within the context of the
client's web browser, and by permitting the communication of applets only with
their originating web server. That is, Java applets are not allowed to access any
system resources or communicate with any arbitrary site. Java’s portabili ty is further
enhanced by other safety features, such as the absence of pointers, and automatic
array bound check.

Two features of Java, important for building cooperative database applications,
are: (a) its graphical interface library that supports the development of sophisticated

interfaces, and (2) i ts database connectivity interface (JDBC API) that facili tates
application access to relational databases over the Web at different URLs [11].

The JDBC API is implemented by various drivers, executing under the control of
a JDBC manager [19]. A JDBC driver can be implemented in four different ways,
as shown in Figure 1. These drives differ in two significant ways: (1) the size of
their downloadable code, and (2) in the way they support multiple database connec-
tions.

UsesUses

Java Database Connectivity API

DBMS Applet
within a

Web Browser

Stand-Alone
Java DBMS
Application

JDBC-ODBC
Birdge Driver

(type1)

SQL Server

JDBC Net Driver
(type 3)

GateWay ServerODBC Dr iver

JDBC Native
Driver
(type 2)

JDBC Net
Driver
(type 4)

Native Code

Server Layer

Client Layer

Figure 1: Standard JDBC Methodologies

The type 1 JDBC driver, namely, the JDBC-ODBC Bridge driver, translates
JDBC calls to ODBC ones and is suitable to access databases with only ODBC in-
terface. A type 1 driver requires remote clients to pre-install some ODBC binary
code and is not designed to be downloadable by Java applets.

The type 3 JDBC driver, the net-protocol fully Java technology-enabled driver, is
the most flexible with Java applets. It is written entirely in Java and can be ful ly
downloaded at run time, requiring no code pre-installation. A type 3 driver trans-
lates a cl ient’s query into an intermediate language that is converted into a vendor-
specific protocol by a middle-tier gateway. The more vendor protocols the gateway
supports, the more databases a client can access, without downloading additional
drivers.

3 The Experimental Testbed

We use each Java method to implement a Web cl ient querying a remote database.
Our testbed is structured along a three-tier client/middleware/database model. Two
design principles were adopted in the selection of the various components during the
development of the testbed. First, our Web clients should be lean for allowing fast
downloads, and therefore increasing support for wireless clients. Second, no a-priori
configuration of the Web client should be necessary to run the experiments in order
to maintain portabilit y, and therefore, support arbitrary cl ients.

Our Web client program is a Java applet, installed on a Web server along with an
html page. Every experiment was initiated by pointing to the html page from a re-
mote computer. After the Java applet was downloaded and initiali zed at the client
computer, database connectivity was established, and queries were issued through
the applet’s GUI to be executed on the remote database server. Our remote database
system, a 3-table Microsoft Access, was on the same machine with the Web server.

The role of the middleware is to accept client requests, execute them on the data-
base server on behalf of the client, and return the results back to it. Due to secu-
rity/communication restrictions of Java applets, part of the middleware in al l ap-
proaches has to execute on the Web server machine. In the experiments reported
here, because the database server co-resides with the Web server, the entire middle-
ware in all approaches executes on the same machine. Given that an Access data-
base can only be accessed using ODBC, the middleware of all approaches except
Applet JDBC, use a JDBC-ODBC (type 1) driver to connect to the database. In the
Applet JDBC approach, a type 3 JDBC driver is used whose gateway converts the
JDBC calls into ODBC ones. To improve performance, the middleware attempts to
connect to the database server when it is activated and before any client request is
submitted.

In the rest of this section, we elaborate on the implementation of each approach.
Initialization phase is the procedure for establishing database connectivity, and
execution phase is the procedure for querying the database after database connection
is established.

3.1 Non-RPC Approaches: Java Socket and Java Servlet

Both the Java Socket and Java Servlet approaches use sockets to connect a client
and the middleware program. In the Java Socket approach, sockets are created by
the clients, whereas in the Servlet approach, are created by the run-time environ-
ment.

3.1.1 The Java socket approach. In this first approach, the middleware is a stand-
alone Java application server running on the Web server machine. The client col-
laborates with the application server by establishing an explicit socket connection
[18]. Figure 2 il lustrates the steps involved for the first query. The applet submits
the query through the socket connection to the application server, which decodes the
incoming stream of data, and executes the query on the database server. The result
table is then passed to the client applet again by the means of data streams.

Cl ient

Socket
Application Server

W e b
Server

[2] Socket
connection

& submission of
query

[3] JDBC-ODBC
call

[1] Applet

[4] Result in byte
streams

windows
DB

server

Figure 2: The Socket approach

The cost of the first query in this approach is
1. Initiali zation phase:

A. The time for the client to open a socket connection with the application
server.

2. Execution phase:
A. The time for the cl ient to pass to the application server the data stream

containing the SQL statement.
B. The time for the application server to execute the query, obtain the results

and return them to the client.
All subsequent queries require only the execution phase.

3.1.2 Java Servlets Approach. In the Java Servlet approach, the middleware pro-
gram is a Java servlet [5], which is a Java program that runs as a child process
within the context of a Web server program. The Web server is responsible for load-
ing, maintaining, and terminating servlets. In our case, servlets were loaded during
the Web Server start-up time.

Client’s queries are routed by the Web server to a servlet, which submits them to
the database server for processing. The results are returned to the client again
through the Web server. All queries involve both an initiali zation and an execution
phase. Thus, the cost of any query in this approach is

1. Initiali zation phase:
A. The time for the client to open a URL connection with the Web server.

2. Execution phase:
A. The time for the applet to invoke, through the Web server, the correspond-

ing servlet passing the SQL statement as a parameter (stating explicitly the
servlet name and type of operation).

B. The time for the servlet to execute the request, obtain and return the entire
result table to the client.

3.2 RPC approaches: Java RMI, CORBA, and Applet JDBC

The RPC approaches can be classified based on whether or not the client directly
maintains the database connection. In the RMI and CORBA approaches, the connec-
tion is maintained by the middleware whereas in the Applet JDBC approach, by the
web client.

3.2.1 The RMI approach. Java Remote Method Invocation (RMI) [4] is a Java
application interface for implementing remote procedure calls between distributed
Java objects. In RMI, the middleware consists of two objects: The first object is the
application server which is responsible for handling requests by allowing clients to
remotely invoke methods on it. The second object is the installer object, which is
used to start up the application server, and register it under a unique service name
with the Java virtual machine running on the Web server.

Figure 3 shows the steps for the first query. The client calls a bind method of the
RMI to obtain a reference of the application server. The parameters of this bind
method are the URL of the machine on which the application server object was
registered, and the unique service name with which it was registered. Using this
reference, the client calls a method on the remote application server passing the
query as a parameter. The application server executes the query at the database
server, and returns the result table to the client as the return value of the method
called.

Cl ient

RMI Application
Server

W e b
Server[2] RMI binding

& RPC
[3] JDBC-ODBC

call

[1] Applet

[4] Results as a
return value

of RPC

windows
D B

server

Figure 3. RMI approach

The cost of the initial query is
1. Initialization phase:

A. The time for the applet to obtain a reference to the remote application
server (bind to it).

2. Execution phase:
A. The time for the client to invoke a method on the application server passing

the SQL statement as a parameter.
B. The time for the application server to execute the SQL statement, obtain

and return the results.
The time required for a subsequent query is the execution phase.

3.2.2 The CORBA approach. CORBA, the Common Object Gateway Request
Broker Architecture [13], is an emerging distributed object standard that defines
client/server relationships between objects in a common interface language. Unlike

RMI, CORBA objects can be implemented in any programming language. In order
for a CORBA client object to util ize a CORBA server object, an implementation of
CORBA’s basic functionali ty, called the Object Request Broker (ORB), has to be
loaded at both the client and the server sites. In our testbed we use Visigenic’s Visi-
broker for Java [20], which is also included in Netscape Navigator and hence, the
client does not download the ORB classes from the Web server which would have
been the alternative. For security purposes, CORBA allows an applet to bind to a
remote CORBA server object only through a firewall called the IIOP (Internet Inter-
ORB Protocol) Gatekeeper [21], instal led at the Web server machine from which the
applet is downloaded. That is, the IIOP Gatekeeper is responsible for routing the
client’s calls on the loaded ORB, and to the application server.

Except from the IIOP Gatekeeper, the middleware in the CORBA approach is
similar to the one in the RMI approach. There is an application server object and an
installer object. The instal ler object in this case is also used to load the ORB, and
register the application server with a unique service name with the ORB.

The steps required for the first query are shown in Figure 4. After the client loads
the ORB, it bounds to the application server via the Gatekeeper by call ing a special
bind method and passing as parameter only the unique service name of the applica-
tion server. The client then calls the appropriate method on the application server to
carry out the request. The application server will execute the client’ s request on the
database, and return the result table as the return value of the method called.

Client
+ ORB

C O R B A
Application

Server

W e b
Server

[3] JDBC-ODBC ca l l

[1] Applet

[4] Results as a
return value

of RPC

windows
D B

server
Gatekeeper

O R B

[2] Corba
biding
& RPC

Figure 4: CORBA approach

The cost of the first query is

1. Initiali zation phase:
A. The time for the client to initiali ze core ORB classes.
B. The time for the client to bind to the application server.

2. Execution phase:
A. The time for the client to invoke a method on the application server

passing the SQL statement as a parameter.
B. The time for the application server to execute the SQL, obtain and return

the results to the cl ient.
Execution phase is only required for any subsequent query.

3.2.3 The Applet JDBC approach: Applets that use directly the JDBC API. In
this approach, the cl ient applet downloads a type 3 JDBC driver and uses directly
the JDBC API to connect to the database. The Gateway of the type 3 driver plays
the role of the middleware. We used a type 3 driver because it is the only JDBC

driver that satisfies our two design principles discussed at the beginning of this sec-
tion.

Client

Gateway

windows
D B

server

W e b
Server[2] JDBC

call [3] Vendor-specific
call

or ODBC call

[1] Applet + JDBC
driver

[4] Result Set

Figure 5: The Applet JDBC approach using a type 3 JDBC driver

After the client downloads the JDBC driver, it establishes database connectivity
issuing JDBC calls on the Gateway, which are subsequently mapped on the database
server. Figure 5 illustrates the four steps involved in the first query. Their cost is

1. Initialization phase:
A. The time for JDBC driver to be downloaded from the Web server and

initiated by the applet.
B. The time for the applet to establish connection to the database though the

gateway program.
2. Execution phase:

A. The time for the applet to issue an SQL statement to the database and
obtain the results.

All subsequent queries require only the execution phase.

3.3 RPC-like approach: Java Mobile Agents (JMA).

Finally, in this subsection, we describe the approach of using mobile agents to
achieve Web database connectivity, and specifically, the best of the three variants
proposed in [15]. Mobile agents [3, 7] are processes capable of pausing their execu-
tion on one machine, dispatching themselves on another machine and resuming their
execution on the new machine. The idea in the JMA approach is to use one or more
mobile agents to implement the middleware and carry out the requests of the client.
In the best variant, the results as well as subsequent queries are sent to and from the
client using a message. This message passing is implemented implicitly as an RPC
invocation from the client applet on the dispatched mobile agent.

For our experiments, we used Aglets [10], for two reasons: (a) availability of
code, and (b) support for hosting mobile agents within applets without significant
overhead based on our prior experience with their use. Aglets can be fired from
within a special applet, called the FijiApplet that provides an aglet execution envi-
ronment similar to the general stand-alone aglet runtime environment called the
Tahiti Server.

In the JMA approach, the middleware consists of three components: The DBMS-
aglet, the (Stationary) Assistant-aglet and the Aglet Router. The DBMS-aglet can
connect to a database and submit queries. Each database server is associated with

an Assistant-aglet identif ied by a unique aglet ID and the URL of its Tahiti server.
An Assistant-aglet provides the information necessary for a DBMS-agent to load the
appropriate JDBC driver and connect to the database server. An Aglet Router is
required to route aglets and messages, dispatched from a Fij iApplet to any destina-
tion, and vice versa, because of the Java security restrictions. An aglet created
within a FijiApplet is neither allowed to dispatch, nor to send a message directly to
any URL other than the Web server URL.

Cl ient

W e b
Server

[1] Applet

windows
DB

server

Aglet
Router Tahiti

aglet server

[2] DBMS-aglet
travels

with request

Assistant
stationary

aglet

DBMS-
aglet

[3] gets
 info

[4] JDBC-ODBC call[5] Results as an
aglet message

Figure 6: Mobile agents approach configuration (message variation)

 When the user enters his f irst query (Figure 6), the client applet (an extension of
the FijiApplet) creates a DBMS-aglet with a specific URL-based itinerary (travel
plan) and the specified SQL statement. The DBMS-aglet travels through the aglet
router to the database server machine. Upon its arrival, the DBMS-aglet communi-
cates with the Assistant-aglet to retrieve information on the database and the avail-
able JDBC driver. It then loads the JDBC-ODBC driver, connects to the database
server and executes the client’ s request. After sending the query result in a message
to the client, the DBMS-aglet remains connected to the database server, waiting for
a message with new requests from the client. The cost of the initial query is

1. Initiali zation phase:
A. The time for the client to create the DBMS-aglet
B. The time for the client to initiali ze the DBMS-aglet (SQL statement,

itinerary, etc.)
C. The time for the DBMS-aglet to travel to the remote database server
D. The time for the DBMS-aglet to negotiate with the assistant aglet
E. The time for the DBMS-aglet to establish connection with the database

2. Execution phase:
A. The time for the DBMS-aglet to query the database and send the results

to the cl ient using a message.
All subsequent requests required only one message from the cl ient to DBMS-aglet,
which includes the new SQL statement, plus the execution phase.

4 Performance Evaluation

We contacted two sets of experiments to evaluate the abili ty of each approach to
support (1) small interactions that typically involve a small size of query results
(128 bytes), and (2) heavy cooperation that involve a wide range of query results.

Given our interest to support both mobile clients and clients over a wide-area net-
work with relatively slow communication l inks (limited bandwidth), we contacted
our experiments on a wireless 1.2Mbps LAN of Pentium PCs. We used Netscape
Navigator v4.6 as the Web cl ient’s Java-enabled browser. For each approach, a
suff icient number of runs were performed to obtain statistically significant results.

4.1 Small Interactions

We measured the response time (a) of the first query and (b) of subsequent queries
(Graph 1). Short-duration interactions consist of a single query as opposed to long-
duration ones. The first query differs from the subsequent ones because it incurs the
overhead of establishing the connection between the client and the remote database.

0.22
0.08

0.34
0.31

2.48

0.56

3.21

0.09

4.03

0.14

8.15

0.1
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

R
es

po
ns

e
T

im
e

(S
ec

on
ds

)

Socket Servlet JMA Corba Applet
JDBC

RMI

Initial Query

Subsequent Query

Graph 1. Performance of all approaches for 128 bytes result size

For the first query (short-duration interactions), the non-RPC approaches have by

far the lowest response time. This can be explained by the fact that their initializa-
tion phase does not engage any special package loading by the client. Compared to
the Socket approach, the Servlet approach performs slightly worse because (a) the
communication between the client and the servlet is marshaled by the Web server,
and (b) by executing as a Web server thread, the servlet receives less CPU time than
the socket application server. Thus, servlets respond slower to requests and take
more time to assemble the query results.

From the other approaches, the JMA approach offers the best performance for a
single query. Significant part of its cost (around 2 sec) is due to the process of dis-
patching the DBMS-aglet from the cl ient applet to the aglet router on the Web
server and from there to the database server. In the case of the CORBA approach,
the first query is sl ightly more expensive than the one in the JMA approach because
of the overhead of initiali zing the necessary ORB classes and the binding to the
application server. This overhead is quite significant (around 3.20 sec). Following
the CORBA approach is the Java JDBC approach in which the response time of the

first query is increased by a considerable amount of time by the downloading of the
JDBC driver.

To our surprise, the RMI approach performs by far the worst for the first query.
We expected the RMI approach to exhibit better performance because, as opposed
to the other RPC approaches, it does not involve the loading of any specific pack-
age. The only way to explain this is to attribute the increased response time to the
interpreted method of RMI calls when binding the client applet to the application
server. CORBA compilers create hard-coded encoding/decoding routines for mar-
shaling of objects used as RPC parameters, whereas RMI uses object serialization in
an introspective manner. This means that (a) RMI encodes additional class informa-
tion for each object passed as a RPC parameter, and (b) marshaling is done in an
interpreted fashion. Consequently, RMI remote calls are more demanding in terms
of CPU time and size of code transmitted, a fact that we observed in all our experi-
ments.

For subsequent queries (long-duration interactions), the performance of the
CORBA and RMI approaches dramatically improves, and becomes close to the best
performance exhibited by the Socket approach. The reason is that the client applet is
already bound to the application server and only a remote procedure call is required
to query the database. For a similar reason, the JDBC applet approach also exhibits
a significant performance improvement for subsequent queries.

Having the DBMS-aglet already connected to the remote database and ready to
process a new query, the JMA approach also improves its response time for subse-
quent queries. However, this response time is the worst of all other approaches. We
attribute this to two reasons: (1) the two required messages to implement subsequent
queries have to be routed through the aglet router, and (2) a mobile agent is not a
stand-alone process and it does not receive full CPU time.

Finally, the Servlet approach improves slightly its performance although the steps
for executing any query are the same. This improvement is due to the fact that any
subsequent connection between the client and the Web server require less time be-
cause the URL of the Web server has already been resolved in the initial query.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Consecutive Queries

R
es

po
ns

e
T

im
e

(S
ec

on
ds

)

Socket Servlet JMA Corba Applet JDBC RMI

Graph 2: Average performance for up to 30 consecutive queries (128 bytes of result size)

In order to better illustrate the overall performance of each approach, we plotted
in Graph 2 the average time required by each approach for a number of consecutive
queries. It is clear that the socket approach is the most efficient for both short and
long interactions. This is not a surprise since all other approaches are built on top of
sockets. Both the Servlet and JMA approaches scale very badly. The CORBA,
JDBC applet, and RMI approaches appear to scale well, however, the RMI approach
appears less attractive due to its worst performance for initial queries.

0

50

100

150

200

250

5KB 10KB 20KB 64KB

Size of Query Result

Socket

Servlet

Corba

RMI

JMA

Applet JDBC

 Graph 3. Subsequent Query

4.2 Heavy Cooperation

In order to evaluate heavy cooperation we adjusted the size of the query result from
5 kilobytes (95 tuples) to 64 kilobytes (1000 tuples) by changing the complexity of
the SQL statement issued through the client applet.Query result size directly affects
the response time in two ways: (1) in the amount of time spent for the query to exe-
cute, and (2) in the transport time for the results to reach the client. For these ex-
periments, we also measured response times of first and subsequent queries. In both
cases, each approach exhibited the similar sensitivity which is shown in Graphs 3.

The first observation is that the average response times of Java JDBC applet and
JMA approaches increase exponentially with query result sizes larger than 20KB.
The JDBC applet approach performs by far the worst for increased result size. This
can be explained by the fact that in JDBC rows from a query result are retrieved one
at a time. Specifically, to retrieve one row from the query result, the client must call

a method on a Java ResultSet object, which is mapped on the remote database server
through the Gateway. Consequently, for a large size of query result, a large number
of those remote calls have to take place. In that case, large query results not only
increase dramatically the response time but they also increase the Internet traffic.

The bad scaling of the JMA approach can be explained in the same way as the
bad performance of the Servlet approach. Both mobile agents and servlets do not
execute as stand-alone processes, and therefore, they do not receive full CPU time
and heavily depend on the supporting execution environment. The other RPC ap-
proaches exhibit acceptable performances (close to l inear for sizes above 20KB)
with the CORBA approach being slightly better. As indicated above, the implemen-
tation of RPC calls in CORBA is much faster compared to RMI’ s one.

5. Programmability Comparison

In this section, we compare the different approaches in terms of development effort.
Our goal is to understand if there is any correlation or trade-off between perform-
ance and programming complexity. To quantify the development effort, we use the
number of required system calls. The number of systems calls used in each approach
is, in some sense, analogous to the number of code l ines implementing each ap-
proach.

Table 1 shows the total number of system calls required for each approach. Table
1 also distinguishes between the number of system calls required to establish com-
munication between the Web client and the middleware, and the number of calls
required to submit a query and get back the results.

A first observation is that the development effort of the client is related to the
level of abstraction of communication between the client and the middleware, in
general, and the naming scheme used to identify the database services to establish
communication, in particular. Not surprisingly, the RPC approaches involve less
complex APIs, more transparent cl ient/server communication and hence exhibit high
programmabili ty. All non-RPC approaches, including the JMA approach (the RPC-
like one), require more development effort and hence have low programmabil i ty.

A second observation is that despite the fact that the JMA approach supports
RPC-like communication, it exhibits the lowest programmabil ity as indicated by the
largest number of system calls required. Most of these system calls are used to con-
struct, maintain and execute the URL-based itinerary.

 Socket Servlet CORBA RMI Applet

JDBC
JMA

System Calls
29

25

15

12

6

29

Total Number
Establi sh
Connection

At the
Client

7 11 2 1 3 11

 At the
Middleware

11 3 8 6 0 11

Submit Query
and Get Results

At the
Client

3 3 1 1 3 2

 At the
Middleware

8 8 4 4 0 5

Client
Execution Code

6K 6K 23K 9K 50K 27K

Programmability

Low Low High High High Low

Table 1: Programmability of the approaches

Finally, the level of programmability does not correspond to the size of the client

executable code. Interestingly, the Non-RPC approaches, namely, Java Socket and
Servlet, support the smallest client size (6K). On the other hand, the Applet JDBC
has the largest client size of 50K: the Java applet is 6K and the JDBC driver is 46K.
The JMA approach is the second most resource demanding approach after Applet
JDBC with 27K: Java applet 10K, FijiApplet 10K and DBMS-Aglet 7K.

6 Conclusions and Future Work

In this experimental paper, we have implemented, evaluated, and compared all cur-
rently available Java-based approaches that support persistent Web database connec-
tivity. Our comparison proceeded along the lines of the performance of query proc-
essing and of the programmability of each approach.

The results of our comparison showed that the CORBA approach offers high pro-
grammability and hence, is easy to develop, while its performance is comparable to
the best performing approach that employs sockets. Therefore, the CORBA ap-
proach offers the best promise for the development of large Web applications, in
particular, in those with long cooperative interactions involving multiple queries of
varying result sizes. For short interactions, typically involving a single query, and
environments with resource-starved clients, the socket and servlet approaches should
be considered. These approaches yield Web client with the smallest footprint, just 6
Kbytes. Clearly, the best performance is not always achievable with high program-
mability and low resource requirements.

The recent advancements of the Web technology and mobile computing led to a
renew interest on mobile agents technology. Given this renewed interest, our study
provided an insight to potential scalability problems with the currently available
mobile agent implementations. The JMA approach cannot support interactions that
require movement or exchange of large amounts of data such as large number of
consecutive queries with increased size of query result. Hence, it is necessary to
develop more efficient mobile agent infrastructures, if the full potential of mobile
agents is to be explored. As part of our future work, we investigate the possibility of
merging mobile agents and the CORBA technology in order to facilitate a scalable
and efficient JMA-based Web database connectivity.

References

1. E. Anuff . Java Sourcebook. Whiley Publishing, 1996.
2. T. Berners-Lee and D. Connolly. Hypertext Markup Language Specification 2.0, Inter-

net Draft, Internet Engineering Task Force (IETF), HTML Working Group. Available at
<www.ics.uci.edu/ietf/html/html2spec.ps.gz>, June 1995.

3. D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik. Itinerant Agents
for Mobile Computing. IEEE Personal Communications, Vol. 2, No. 5, October 1993.

4. T. B. Downing. Java RMI: Remote Method Invocation. IDG Books Worldwide, 1998.
5. J. Goodwill . Developing Java Servlets. Sams Publishing, 1999.
6. S. P. Hadjiefthymiades and D. I. Martakos. A Generic Framework for the Development

of Structured Databases on the WWW. Fifth Int’ l WWW Conference, May 1996.
7. C. G. Harrison, D. M. Chessm, A. Kershenbaum. Mobile Agents: Are they a good idea?

Research Report, IBM Research Division, 1994.
8. G. Helmayer, G. Kappel, and S. Reich. Connecting Databases on the Web: A Taxonomy

of Gateways. Eighth Int’ l DEXA Conference, Sept. 1997.
9. H. Maurer. Hyperwave: The Next Generation Web Solution, Addison-Wesley, 1996.
10. IBM Japan Research Group. Aglets Workbench. Web site:

<http:/www.trl.ibm.co.jp/aglets>.
11. B. Jepson. Java Database Programming. Wiley Computer Publishing, 1997.
12. A. Lambrinidis and N. Rousopoulos. Generating dynamic content at database-backed

web server: cgi-bin vs mod_perl. Sigmod Record, March 2000.
13. Object Management Group. The Common Object Request Broker: Architecture and

specification. February 1998.
14. R. Orfali, D. Harkley. Client Server Programming with Java and CORBA. Second Edi-

tion. Whiley Publishing, 1998.
15. S. Papastavrou, G. Samaras, and E. Pitoura. Mobile Agents for WWW Distributed

Database Access. Fourteenth IEEE Int’ l Conference on Data Engineering, Feb. 1999.
16. Sun Microsystems Inc., Java Development Kit, <http://java.sun.com/jdk>.
17. Sun Microsystems Inc. Java Sockets Documentation, <http://java.sun.com/docs>.
18. Sun Microsystems Inc., JDBC drivers,

<http://java.sun.com/products/jdbc/drivers.html>.
19. Visibroker for Java: Programmer’s Guide, V.3.0. Borland,

<http://www.inprise.com/visibroker>.

