An Evaluation of the Java-based Approachesto Web
Database Access®

Stavros Papastavrou', Panos Chrysanthis', George Samaras’, Evaggelia Pitoura®

1 Dept. of Computer Science, University of Pittsburgh
{ stavrosp, panos} @cs.pitt.edu
2 Dept. of Computer Science, University of Cyprus
cssamara@cs.ucy.ac.cy
3 Dept. of Computer Science, University of loannina
pitoura@cs.uoi.gr

Abstract. Given the undeniable popularity of the Web, providing efficient
and secure access to remote databases using a Web browser is crucia for the
emerging cooperative information systems and applications. In this paper, we
evaluate all currently available Java-based approaches that support persistent
connections between Web clients and database servers. These approaches in-
clude Java applets, Java Sockets, Servliets, Remote Method Invocation,
CORBA, and mobile agents technology. Our comparison is aong the impor-
tant parameters of performance and programmability.

1 Introduction

Providing efficient and secure access to remote databases using a Web browser [2,6]
is crucial for the emerging cooperative information systems, such as Virtual Enter-
prises. A number of methods for Web database connectivity and integration have
been proposed such as CGlI scripts, active pages, databases speaking http, external
viewers or plug-ins, and HyperWave [9]. These methods enhance the Web server
capabilities with dynamic functionality for interactive and cooperative applications
to create database connections, execute queries and transactions, and generate dy-
namic Web pages. However, there is an increasing interest in those that are Java
based due to the inherent advantages of Java, namely, platform independence sup-
port, highly secure program execution, and small size of compiled code.

Several Java-based methods are currently available that can be used for the de-
velopment of Web cooperative information systems but in the best of our knowl-
edge, there is no quantitative comparison of them in a database context. Existing
studies either primarily focused on the various server side scripting mechanisms to
support database connectivity (e.g., [8, 12]), or evaluated the Java client/server

U This work was partially supported by NSF IRI-9502091 and 11S-9812532, and AFOSR
F49620-98-1-043 awards.

communication paradigm without any database connrectivity or lengthy computa-
tions (e.g., [14]). This experimental paper contributes a comparison of the six Java-
based approaches that suppart persistent database wnnedions, spedficdly, Java
applets using JDBC (Applet JDBC), Java Sockets, Java Servlets, Remote Method
Invocation (RMI), CORBA, and Java Mobile Agents (JMA). We focus on these
methods because of their support for persistent database cnnedions, which are
esential for cooperative environments with long, and repeaed data retrievals and
updates.

For our evaluation, we used ead approach to implement a Web client accessng
and querying a remote database. Each approach dffersin the way the dient estab-
lishes connedion with remote database servers with the help of a middleware and
the implementation of the middleware. Depending onthe way the dient establishes
connedion with the middleware, the gproaches can be classified as (1) non-RPC
ones, that do not provide for remote method invocation mecdhanism, (2) RPC ones
with clear remote method invocation semantics, and (3) RPC-like ones involving
mobile agent technol ogy.

We ompared the behavior of the different approaches along the following two
important parameters. (1) performance expressed in terms of resporse time under
different loads, and (2) programmability expressed in terms of the number of system
cdls at the client and the server site. The two salient results of our study are: (1)
Best performance is not always achievable with high programmability and low re-
source requirements, and (2) the mobile agent technology needs to improve its pro-
grammabil ity whil e giving particular emphasisin itsinfrastructure.

In the next sedion, we provide abrief review of Java and Java database cnnec-
tivity. In Sedion 3, we first discussour experimental testbed and then elaborate on
the implementation detail s of the six approaches under evaluation. In Sedion 4, we
discuss our performance evaluation results whereas in Section 5, we compare the
diff erent approaches from programmability paint of view.

2 Background: Java and Java database connectivity

Java [17,1] is an objed-oriented programming language designed to support the
development of distributed, seaure, and portable gplications. The uniqueness of
Java lies on the fad that its compiled code can run on any platform, which supports
a Java runtime environment. Further, Java programs can run in Java-enabled Web
browsers in the form of applets, which are downloaded as part of an html page.
Security is achieved by restricting the execution of applets within the context of the
client's web browser, and by permitting the communication of applets only with
their originating web server. That is, Java gplets are not allowed to access any
system resources or communicate with any arbitrary site. Java's portability isfurther
enhanced by ather safety feaures, such as the esence of pointers, and automatic
array bound check.

Two features of Java, important for building cooperative database goplications,
are: (@) its graphicd interface library that supparts the development of sophisticated

interfaces, and (2) its database mnnedivity interface (JDBC API) that fadlitates
application acaess to relational databases over the Web at different URLs [11].

The JDBC APl isimplemented by various drivers, exeauting urder the control of
a JDBC manager [19]. A JDBC driver can be implemented in four different ways,
as $own in Figure 1. These drives differ in two significant ways: (1) the size of
their downloadable code, and (2) in the way they suppart multiple database connec-
tions.

Client Layer

Stand-Alone DBMS Applet
Java DBMS within a
Application Web Browser
L I
‘ Java Database Connectivity API D
I

JDBC Net Driver
(type 3)

JDBC-ODBC
Birdge Driver

JDBC Native
Driver
(type 2)

:::::

Server Laver

Figure 1. Standard JDBC Methodol ogies

The type 1 JDBC driver, namely, the JDBC-ODBC Bridge driver, transates
JDBC cdls to ODBC ones and is auitable to access databases with only ODBC in-
terface A type 1 driver requires remote dients to pre-install some ODBC binary
code andis not designed to be downloadable by Java gplets.

The type 3 JDBC driver, the net-protocol fully Java technology-enabled driver, is
the most flexible with Java gplets. It is written entirely in Java and can be fully
downloaded at run time, requiring ro code pre-installation. A type 3 driver trans-
lates a client’s query into an intermediate language that is converted into a vendor-
spedfic protocol by a middle-tier gateway. The more vendor protocols the gateway
supports, the more databases a dient can access withou downloading additional
drivers.

3 TheExperimental Testbed

We use eat Java method to implement a Web client querying a remote database.
Our testbed is dructured along a threetier client/middleware/database model. Two
design principles were adopted in the seledion of the various comporents during the
development of the testbed. First, our Web clients ould be lean for alowing fast
downloads, and therefore increasing support for wirelessclients. Second, no a-priori
configuration o the Web client should be necessary to run the experiments in order
to maintain portability, and therefore, support arbitrary clients.

Our Web client program is a Java gpplet, installed ona Web server along with an
html page. Every experiment was initiated by pointing to the html page from a re-
mote computer. After the Java goplet was downloaded and initialized at the dient
computer, database cnnedivity was established, and queries were isaued through
the gpplet’s GUI to be exeauted aon the remote database server. Our remote database
system, a 3-table Microsoft Access was on the same machine with the Web server.

The role of the middleware isto accept client requests, exeaute them on the data-
base server on tehalf of the dient, and return the results bad to it. Due to seas-
rity/communication restrictions of Java gplets, part of the middleware in all ap-
proaches has to exeaute on the Web server machine. In the experiments reported
here, becauise the database server co-resides with the Web server, the entire middle-
ware in al approaches exeautes on the same machine. Given that an Access data-
base can only be acessed using ODBC, the middleware of all approaches except
Applet IDBC, use aJDBC-ODBC (type 1) driver to conrect to the database. In the
Applet IDBC approach, a type 3 JDBC driver is used whose gateway converts the
JDBC cdls into ODBC ones. To improve performance, the middieware atempts to
conned to the database server when it is adivated and before ay client request is
submitted.

In the rest of this ®dion, we daborate on the implementation of each approach.
Initialization phase is the procedure for establishing database cnnedivity, and
execution phase is the procedure for querying the database ter database connedion
is established.

3.1 Non-RPC Approaches: Java Socket and Java Servlet

Both the Java Socket and Java Servlet approaches use sockets to conned a dient
and the middleware program. In the Java Socket approach, sockets are aeaed by
the dients, whereas in the Servlet approach, are aeated by the run-time environ-
ment.

3.1.1 The Java socket approach. In this first approach, the middieware is a stand-
alone Java gplicaion server running an the Web server machine. The dient col-
laborates with the goplication server by establishing an explicit socket connedion
[18]. Figure 2 illustrates the steps involved for the first query. The gplet submits
the query through the socket connedion to the application server, which decodes the
incoming stream of data, and exeautes the query on the database server. The result
tableisthen passed to the dient applet again by the means of data streams.

[1] Applet

——_ [2] Socket] Web
connection Server [3] JDBC-ODBC
& submission of ~ call

3 \ query 2 Socket {
- = Application Server
Client [4] Result in byte —— |

streams

Figure 2: The Socket approach

The st of the first query in thisapproadc is
1. Initiaizaion phese:
A. The time for the dient to open a socket connedion with the goplication
server.
2. Exeaution plese:
A. The time for the client to passto the gplication server the data stream
containing the SQL statement.
B. Thetime for the application server to execute the query, obtain the results
and return them to the client.
All subsequent queries require only the exeaution phase.

3.1.2 Java Servlets Approach. In the Java Servlet approach, the middleware pro-
gram is a Java servlet [5], which is a Java program that runs as a child process
within the context of a Web server program. The Web server is responsible for load-
ing, maintaining, and terminating servlets. In ou case, servlets were loaded duing
the Web Server start-up time.

Client’s queries are routed by the Web server to a serviet, which submits them to
the database server for procesing. The results are returned to the dient again
through the Web server. All queries involve bath an initialization and an exeaution
phase. Thus, the cost of any query in this approach is

1. Initiaizaion phese:

A. Thetimefor the dient to open a URL connedion with the Web server.

2. Exeaution plese:

A. The time for the gplet to invoke, through the Web server, the correspord-
ing servlet pasdng the SQL statement as a parameter (stating explicitly the
servlet name and type of operation).

B. The time for the servlet to execute the request, obtain and return the entire
result table to the dient.

3.2 RPC approaches. Java RM|, CORBA, and Applet JDBC

The RPC approaches can be classified based on whether or not the client directly
maintains the database connection. In the RMI and CORBA approaches, the connec-
tion is maintained by the middleware whereas in the Applet JIDBC approach, by the
web client.

3.2.1 The RMI approach. Java Remote Method Invocation (RMI) [4] is a Java
application interface for implementing remote procedure calls between distributed
Java objects. In RMI, the middleware consists of two objects: The first object is the
application server which is responsible for handling requests by alowing clients to
remotely invoke methods on it. The second object is the installer object, which is
used to start up the application server, and register it under a unique service name
with the Java virtual machine running on the Web server.

Figure 3 shows the steps for the first query. The client calls a bind method of the
RMI to obtain a reference of the application server. The parameters of this bind
method are the URL of the machine on which the application server object was
registered, and the unique service name with which it was registered. Using this
reference, the client calls a method on the remote application server passing the
query as a parameter. The application server executes the query at the database
server, and returns the result table to the client as the return value of the method
called.

11 Applet\
Web
T 121 RMI binding Server [3] JDBC-ODB
& RPC call

™~ RMI Application {
[4]1 Results as a Server
—/

return value
of RPC

Figure 3. RMI approach

The cost of theinitial query is
1. Initialization phase:
A. The time for the applet to obtain a reference to the remote application
server (bind to it).
2. Execution phase:
A. Thetime for the client to invoke a method on the application server passing
the SQL statement as a parameter.
B. The time for the application server to execute the SQL statement, obtain
and return the results.
The time required for a subsequent query isthe execution phase.

3.2.2 The CORBA approach. CORBA, the Common Object Gateway Request
Broker Architecture [13], is an emerging distributed object standard that defines
client/server relationships between objects in a common interface language. Unlike

RMI, CORBA objeds can be implemented in any programming language. In order
for a CORBA client objed to uilize aCORBA server objed, an implementation of
CORBA's hasic functionality, called the Object Request Broker (ORB), has to be
loaded at both the dient and the server sites. In aur testbed we use Visigenic's Visi-
broker for Java [20], which is aso included in Netscgpe Navigator and hence, the
client does not download the ORB classs from the Web server which would have
been the dternative. For seaurity purposes, CORBA allows an applet to bind to a
remote CORBA server object only through a firewall called the Il OP (Internet Inter-
ORB Protocol) Gatekeeper [21], installed at the Web server machine from which the
applet is downloaded. That is, the I1OP Gatekeeper is responsible for routing the
client’s cdls on the loaded ORB, and to the gplicaion server.

Except from the I|OP Gatekeeper, the middleware in the CORBA approach is
similar to the one in the RMI approach. There is an application server objed and an
installer object. The installer objed in this case is aso used to load the ORB, and
register the gplication server with a unique service name with the ORB.

The steps required for the first query are shown in Figure 4. After the dient loads
the ORB, it bounds to the goplication server via the Gatekeeper by cdling a spedal
bind method and passng as parameter only the unique service name of the gplica-
tion server. The dient then cadls the gpropriate method on the goplication server to
carry out the request. The goplication server will exeaute the dient’s request on the
database, and return the result table & the return value of the methodcdled.

[1] Applet:
Web
—_[2] Corba Server CORBA
biding —™————_| | Application
& RPC e N » Server
S = Gatekeeper| |

Client [4] Results as a |

+ ORB — return value — | ORB
of RPC [3] JDBC-ODBC call

Figure 4: CORBA approach

The st of thefirst query is
1. Initialization phese:
A. Thetimefor the client toinitialize mre ORB classes.
B. Thetimefor the client to bind to the goplication server.
2. Exeadution phese:
A. The time for the dient to invoke a method an the gplication server
passing the SQL statement as a parameter.
B. Thetime for the application server to exeaute the SQL, obtain and return
the resultsto the client.
Exeaution phese isonly required for any subsequent query.

3.2.3 The Applet JDBC approach: Applets that use directly the JDBC API. In
this approach, the dient applet downloads a type 3 JDBC driver and uses directly
the JDBC API to conned to the database. The Gateway of the type 3 driver plays
the role of the middleware. We used a type 3 driver because it is the only JDBC

driver that satisfies our two design principles discussed at the beginning of this sec-
tion.

[1] Applet + JDBC —_—]
driver ~

[2] JDBC
call [3] Vendor-specific
call

L | Gateway or ODBC call

Figure5: The Applet JDBC approach using atype 3 JDBC driver

Web
Server

After the client downloads the JDBC driver, it establishes database connectivity
issuing JDBC calls on the Gateway, which are subsequently mapped on the database
server. Figure 5 illustrates the four stepsinvolved in the first query. Their cost is

1. Initialization phase:

A. The time for JDBC driver to be downloaded from the Web server and
initiated by the applet.

B. Thetime for the applet to establish connection to the database though the
gateway program.

2. Execution phase:

A. The time for the applet to issue an SQL statement to the database and
obtain the results.
All subsequent queries require only the execution phase.

3.3 RPC-like approach: Java M obile Agents (JMA).

Finally, in this subsection, we describe the approach of using mobile agents to
achieve Web database connectivity, and specifically, the best of the three variants
proposed in [15]. Mobile agents [3, 7] are processes capable of pausing their execu-
tion on one machine, dispatching themselves on another machine and resuming their
execution on the new machine. The idea in the IMA approach is to use one or more
mobile agents to implement the middleware and carry out the requests of the client.
In the best variant, the results as well as subsequent queries are sent to and from the
client using a message. This message passing is implemented implicitly as an RPC
invocation from the client applet on the dispatched maobile agent.

For our experiments, we used Aglets [10], for two reasons. (a) availability of
code, and (b) support for hosting mobile agents within applets without significant
overhead based on our prior experience with their use. Aglets can be fired from
within a special applet, called the FijiApplet that provides an aglet execution envi-
ronment similar to the general stand-alone aglet runtime environment called the
Tahiti Server.

In the IMA approach, the middleware consists of three components. The DBMS
aglet, the (Stationary) Assistant-aglet and the Aglet Router. The DBMS-aglet can
connect to a database and submit queries. Each database server is associated with

an Asdstant-aglet identified by a unique aglet ID and the URL of its Tahiti server.
An Assistant-aglet provides the information necessary for a DBM S-agent to load the
appropriate JDBC driver and conned to the database server. An Aglet Router is
required to route aglets and messages, dispatched from a FijiApplet to any destina-
tion, and vice versa, becaise of the Java seaurity restrictions. An aglet created
within a FijiApplet is neither allowed to dispatch, nor to send a message diredly to
any URL other than the Web server URL.

[1] Applet | Web —

[2] DBMS-aglet

e server | | (Rmsom, s {2505

with request T y nfo 5, 2dlet

\ aglet e
2 = Aglet Big
Client //ﬂuﬂ’/’ Tahiti
d I

[sa]ql?!:lsuns oo 2glet server [4] JIDBC-ODBC call

Figure 6: Mobile ayents approach corfiguration (message variation)

When the user enters his first query (Figure 6), the dient applet (an extension of
the FijiApplet) credes a DBMS-aglet with a spedfic URL-based itinerary (travel
plan) and the spedfied SQL statement. The DBMS-aglet travels through the aglet
router to the database server machine. Upon its arrival, the DBM S-aglet communi-
cates with the Assstant-aglet to retrieve information an the database and the avail-
able JDBC driver. It then loads the JDBC-ODBC driver, conneds to the database
server and exeautes the dient’s request. After sending the query result in a message
to the dient, the DBMS-aglet remains connected to the database server, waiting for
amessage with new requests from the dient. The st of theinitia query is

1. Initialization phese:

A. Thetime for the client to create the DBMS-aglet

B. The time for the dient to initialize the DBMS-aglet (SQL statement,
itinerary, etc.)

C. Thetimefor the DBMS-aglet to travel to the remote database server

D. Thetimefor the DBMS-aglet to negatiate with the asgstant aglet

E. Thetime for the DBMS-aglet to establi sh connedion with the database

2. Exeadution phese:

A. The time for the DBMS-aglet to query the database and send the results
to the client using a message.
All subsequent requests required only one message from the dient to DBMS-aglet,
which includes the new SQL statement, plusthe exeaution phase.

4 Performance Evaluation

We contacted two sets of experiments to evaluate the aility of ead approach to
support (1) small interactions that typicdly involve a small size of query results
(128 bytes), and (2) heavy cooperation that involve a wide range of query results.

Given ou interest to support both mobile dients and clients over a wide-areanet-
work with relatively sow communication links (limited bandwidth), we cntacted
our experiments on a wireless 1.2Mbps LAN of Pentium PCs. We used Netscape
Navigator v4.6 as the Web client’s Jva-enabled browser. For ead approach, a
sufficient number of runs were performed to obtain statisticaly significant results.

4.1 Small Interactions

We measured the response time (@) of the first query and (b) of subsequent queries
(Graph 1). Short-duration interactions consist of a single query as opposed to long-
duration mes. The first query differs from the subsequent ones because it incurs the
overhead of establishing the connedion between the dient and the remote database.

9.00 —
@ sool 11 @ Initial Query e ——
S ol W Subsequent Query —
(5]
$ 6,00+
:: 5.00
'E 4,004 i
g 3,00 o
8_ 2,00+
[7] 9
Q 1.00+
T e 8 B e e U=
0.00
Socket Serdet JMA Corba Applet RMI
JDBC

Graph 1. Performance of all approaches for 128 bytes result size

For the first query (short-duration interadions), the non-RPC approaches have by
far the lowest response time. This can be explained by the fad that their initializa-
tion phase does not engage any spedal padkage loading by the dient. Compared to
the Socket approach, the Serviet approach performs dightly worse because (a) the
communication between the dient and the servlet is marshaled by the Web server,
and (b) by exeauting as a Web server thread, the servlet recaves lessCPU time than
the socket application server. Thus, servlets respond slower to requests and take
more time to assemble the query results.

From the other approaches, the IMA approach dfers the best performance for a
single query. Significant part of its cost (around 2 sec) is due to the processof dis-
patching the DBMS-aglet from the dient applet to the ajlet router on the Web
server and from there to the database server. In the cae of the CORBA approach,
the first query is dightly more expensive than the one in the IMA approach becaise
of the overheal of initializing the necessary ORB classes and the binding to the
applicaion server. This overhead is quite significant (around 320 sec). Following
the CORBA approacd is the Java JDBC approach in which the resporse time of the

first query isincreased by a considerable amount of time by the downloading of the
JDBC driver.

To our surprise, the RMI approach performs by far the worst for the first query.
We expected the RMI approach to exhibit better performance because, as opposed
to the other RPC approaches, it does not involve the loading of any specific pack-
age. The only way to explain this is to attribute the increased response time to the
interpreted method of RMI calls when binding the client applet to the application
server. CORBA compilers create hard-coded encoding/decoding routines for mar-
shaling of objects used as RPC parameters, whereas RM| uses object serialization in
an introspective manner. This means that (2) RMI encodes additiona class informa-
tion for each object passed as a RPC parameter, and (b) marshaling is done in an
interpreted fashion. Consequently, RMI remote calls are more demanding in terms
of CPU time and size of code transmitted, a fact that we observed in al our experi-
ments.

For subsequent queries (long-duration interactions), the performance of the
CORBA and RMI approaches dramatically improves, and becomes close to the best
performance exhibited by the Socket approach. The reason is that the client applet is
already bound to the application server and only a remote procedure call is required
to query the database. For a similar reason, the JDBC applet approach also exhibits
asignificant performance improvement for subsequent queries.

Having the DBM S-aglet already connected to the remote database and ready to
process a new query, the IMA approach also improves its response time for subse-
quent queries. However, this response time is the worst of all other approaches. We
attribute this to two reasons:. (1) the two required messages to implement subsequent
queries have to be routed through the aglet router, and (2) a mobile agent is not a
stand-alone process and it does not receive full CPU time.

Finally, the Servlet approach improves dightly its performance although the steps
for executing any query are the same. This improvement is due to the fact that any
subsequent connection between the client and the Web server require less time be-
cause the URL of the Web server has already been resolved in the initial query.

20.0
18.0

16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0

Response Time (Seconds)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Consecutive Queries

—==—Socket —ll— Serviet —&— JMA —O— Corba —+— Applet JDBC —@— RMI

Graph 2: Average performance for up to 30 consecutive queries (128 bytes of result size)

In order to better illustrate the overall performance of each approach, we plotted
in Graph 2 the average time required by each approach for a number of consecutive
queries. It is clear that the socket approach is the most efficient for both short and
long interactions. Thisis not a surprise since all other approaches are built on top of
sockets. Both the Serviet and JMA approaches scale very badly. The CORBA,
JDBC applet, and RMI approaches appear to scale well, however, the RMI approach
appears less attractive due to itsworst performance for initial queries.

250

—=— Socket /
200
—&— Servlet

—&— Corba

S
\

—¢—RM
—B— IMA

//
—e— Applet JBC / //a
0 4.é.é/£;/‘

5KB 10KB 20KB 64KB
Size of Query Result

8
|

Respone Time [Seconds)

(<)}
(e}

Graph 3. Subsequent Query

4.2 Heavy Cooperation

In order to evaluate heavy cooperation we adjusted the size of the query result from
5 kilobytes (95 tuples) to 64 kilobytes (1000 tuples) by changing the complexity of
the SQL statement issued through the client applet.Query result size directly affects
the response time in two ways: (1) in the amount of time spent for the query to exe-
cute, and (2) in the transport time for the results to reach the client. For these ex-
periments, we also measured response times of first and subsequent queries. In both
cases, each approach exhibited the similar sensitivity which is shown in Graphs 3.
The first observation is that the average response times of Java JDBC applet and
JMA approaches increase exponentially with query result sizes larger than 20KB.
The JDBC applet approach performs by far the worst for increased result size. This
can be explained by the fact that in JIDBC rows from a query result are retrieved one
at a time. Specifically, to retrieve one row from the query result, the client must call

amethod an a Java ResultSet objed, which is mapped on the remote database server
through the Gateway. Consequently, for a large size of query result, a large number
of those remote calls have to take place In that case, large query results not only
increase dramaticaly the response time but they also increase the Internet traffic.

The bad scaling of the IMA approach can be explained in the same way as the
bad performance of the Servlet approach. Both mobile agents and servlets do rot
execute & gand-alone processes, and therefore, they do not recave full CPU time
and heavily depend an the supporting exeaution environment. The other RPC ap-
proaches exhibit acceptable performances (close to linear for sizes above 20KB)
with the CORBA approach being dightly better. Asindicated above, the implemen-
tation of RPC cdlsin CORBA is much faster compared to RMI’ s one.

5. Programmability Comparison

In this £dion, we compare the different approaches in terms of development effort.
Our godal is to urderstand if there is any correlation or trade-off between perform-
ance and programming complexity. To quantify the development effort, we use the
number of required system cdls. The number of systems cdls used in each approach
is, in some sense, anaogous to the number of code lines implementing ead ap-
proach.

Table 1 shows the total number of system calsrequired for eat approach. Table
1 also dstinguishes between the number of system cdls required to establish com-
munication between the Web client and the middleware, and the number of cdls
required to submit a query and get badk the results.

A first observation is that the development effort of the dient is related to the
level of abstradion of communication between the dient and the middleware, in
general, and the naming scheme used to identify the database services to establish
communication, in particular. Not surprisingly, the RPC approaches involve less
complex APls, more transparent client/server communication and hence exhibit high
programmability. All non-RPC approaches, including the IMA approach (the RPC-
like one), require more development eff ort and hence have low programmability.

A seoond abservation is that despite the fact that the IMA approach supports
RPC-like communication, it exhibits the lowest programmability as indicated by the
largest number of system cals required. Most of these system cdls are used to con-
struct, maintain and execute the URL -based iti nerary.

Socket | Servlet | CORBA | RMI Applet JMA
JDBC
System Calls
29 25 15 12 6 29
Total Number
Establish At the 7 11 2 1 3 11
Conredion Client
At the 11 3 8 6 0 11
Middleware

Submit Query At the 3 3 1 1 3 2
and Get Results Client

At the 8 8 4 4 0 5
Middleware
Client 6K 6K 23K 9K 50K 27K
Execution Code

Programmability Low Low High High High Low

Table 1: Programmability of the approaches

Finally, the level of programmability does not correspond to the size of the client
executable code. Interestingly, the Non-RPC approaches, namely, Java Socket and
Servlet, support the smallest client size (6K). On the other hand, the Applet JDBC
has the largest client size of 50K: the Java applet is 6K and the JDBC driver is46K.
The JMA approach is the second most resource demanding approach after Applet
JDBC with 27K: Java applet 10K, FijiApplet 10K and DBMS-Aglet 7K.

6 Conclusionsand Future Work

In this experimental paper, we have implemented, evaluated, and compared all cur-
rently available Java-based approaches that support persistent Web database connec-
tivity. Our comparison proceeded aong the lines of the performance of query proc-
essing and of the programmability of each approach.

The results of our comparison showed that the CORBA approach offers high pro-
grammability and hence, is easy to develop, while its performance is comparable to
the best performing approach that employs sockets. Therefore, the CORBA ap-
proach offers the best promise for the development of large Web applications, in
particular, in those with long cooperative interactions involving multiple queries of
varying result sizes. For short interactions, typically involving a single query, and
environments with resource-starved clients, the socket and servlet approaches should
be considered. These approaches yield Web client with the smallest footprint, just 6
Kbytes. Clearly, the best performance is not always achievable with high program-
mability and low resource requirements.

The recent advancements of the Web technology and mobile computing led to a
renew interest on mobile agents technology. Given this renewed interest, our study
provided an insight to potential scalability problems with the currently available
mobile agent implementations. The IMA approach cannot support interactions that
require movement or exchange of large amounts of data such as large number of
consecutive queries with increased size of query result. Hence, it is necessary to
develop more efficient mobile agent infrastructures, if the full potential of mobile
agents is to be explored. As part of our future work, we investigate the possibility of
merging mobile agents and the CORBA technology in order to facilitate a scalable
and efficient IMA-based Web database connectivity.

References

1.
2.

IS

11.
12.

13.
14.
15.
16.
17.
18.

19.

E. Anuff. Java Soucebook. Whiley Publishing, 1996.

T. Berners-Lee aad D. Conndly. Hypertext Markup Languege Spedfication 2.Q Inter-
net Draft, Internet Engineaing Task Force (IETF), HTML Working Group. Available &
<www.ics.uci.edu/ietf/html/html 2spec.ps.gz>, June 1995.

D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik. Itinerant Agents
for Mobile Computing. IEEE Persond Communications, Vol. 2, No. 5,October 1993.
T. B. Downing. Java RMI: Remote Method Invocation. IDG Books Worldwide, 1998.

J. Goodwill. Devédoping Java Srvlets. Sams Publishing, 1999.

S. P. Hadjiefthymiades and D. |. Martakos. A Generic Framework for the Development
of Structured Databases onthe WWW. Fifth Int'l WWWConference May 19%.

C. G. Harrison, D. M. Chesan, A. Kershenbaum. Mobile Agents: Are they agoodidea?
Reseach Report, IBM Research Division, 1994.

G. Helmayer, G. Kappel, and S. Reich. Conneding Databases onthe Web: A Taxonamy
of Gateways. Eighth Int’| DEXA Conference, Sept. 1997.

H. Maurer. Hyperwave The Next Generation Web Sdution, Addison-Wesley, 1996.

. IBM Japan Reseach Group. Adlets Workbench. Web site:

<http:/www.trl.ibm.co.jp/aglets>.

B. Jepson. Java Database Programming. Wiley Computer Publishing, 1997.

A. Lambrinidis and N. Rousopouos. Generating dynamic content at database-badked
web server: cgi-bin vs mod_perl. Sgmod Record, March 2000.

Objead Management Group. The Common Objed Request Broker: Architedure and
spedfication. February 1998.

R. Orfdi, D. Harkley. Client Server Programming with Java and CORBA. Seaond Edi-
tion. Whiley Publishing, 198.

S. Papastavrou, G. Samaras, and E. Pitoura Mobile Agents for WWW Distributed
Database Access Fourteenth IEEE Int'| Conferenceon Data Engineaing, Feb. 1999.
Sun Microsystems I nc., Java Development Kit, <http://java.sun.com/jdk>.

Sun Microsystems I nc. Java Sockets Documentation, <http://java.sun.com/docs>.

Sun Microsystems Inc., JbBC drivers,
<http://java.sun.com/products/jdbc/drivers.html>.

Visibroker for Java: Programmer’s Guide, V.3.0. Borland,
<http://www.inprise.com/visibroker>.

