Caching

Subhasish Mazumdar

Computer Science Dept.
New Mexico Tech
Socorro, NM 87801 Socorro,

mazumdar@nmt.edu

ABSTRACT

As mobile devices get ubiquitous and grow in computational
power, their management of interdependent data also be-
comes increasingly important. The mobile environment ex-
hibits all the characteristics of a distributed database plus
the feature of whimsical connectivity. Consequently, trans-
actions respecting data consistency can suffer unbounded
and unpredictable delays at both mobile and stationary nodes.
The currently popular multi-tier model, in which mobile de-
vices are in one end and always-connected stationary servers
in the other, has certain practical advantages. However, it
assumes that all integrity constraints are evaluated at the
servers and hence relies on the semantics of operations for
any autonomy enhancement of the mobile devices. In this
paper, we examine the idea of constraint localization in cases
where two mobile nodes each own data that share a con-

straint. It relies on reformulation of a constraint into more
flexible local constraints that give more autonomy to the
mobile nodes. The scheme also involves dynamic changes

of these local constraints through negotiation, which we call
re-localization. To overcome the problem of simultaneous
requests for such re-localization, we give algorithms along
with experimental results indicating their effectiveness.

1. INTRODUCTION

As mobile devices increase in popularity and grow stronger
in computational power, their role as a seamless extension
of databases on stationary servers becomes increasingly at-
tractive. This means that mobile databases need transaction
support; however, the standard client-server database tech-
nology is not quite directly applicable. The most important
and interesting difference is that mobile devices when dis-
connected, are often operational. Disconnection from the
fixed network can be either involuntary, caused by the na-

*This work was partially supported by NSF awards IRI-
9509789, IRI-95020091, and IIS-9812532.

JrCurrently at Quidnunc Inc, San Francisco, CA.

Permission to make digital or hard copies of al or part of this work for
persona or classroom use is granted without fee provided that copies
are not made or distributed for profit or commeda advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permisson and/or a fee.

CIKM’01, November 5-10, 2001, Atlanta, Georgia, USA.
Copyright2001 ACM [-58113-436-3/01/0011...85.00.

Mateusz Pletrzva
Computer Sciencebept.
New Mexico Tech

NM 87801

mateuszp@aquidnunc.com

442

Constrained Mobile Data *

Panos K. Chrvsanthis
Computer Science Dept.
University of Pittsburgh
Pittsburgh, PA 15260

panos@cs.pitt.edu

ture of the physical environment around the mobile device,
or voluntary, owing to the fragility of battery power and the
economics of wireless communication. Consequently, infor-
mation stored within the mobile device becomes crucial to
maintaining productivity during a period of disconnection.

Client data caching and dynamic data replication, in par-
ticular, improve hoth performance as well as data availabil-
ity [1). In order to be more effective, the cache granularity
should be that of objects instead of pages, with an inter-
transactional lifetime, i.e. they are potentially accessed by
more than one transaction. Further, to preserve correctness,
we require a cache consistency protocol [3] that takes into ac-
count the whimsical connectivity of mobile nodes. Towards
this end, many cache consistency algorithms have been pro-
posed supporting different degrees of consistency from st
(eager replication) to eentua (lazy replication) consistency.
In eager, all replicas are updated atomically. In lazy, replica
updates are asynchronously propagated to other nodes af-
ter the updating transaction commits; while this is useful
for disconnection, inconsistencies that may need (typically
manual) reconciliation. In [4], the woter replication model
was proposed as a practical compromise between the two.

Motivation

The two-tier replication model, generalized to the multi-tier
model has become popular because it allows mobile nodes
to read and update replicated objects during disconnections
while it avoids concurrency anomalies such as loss of up-
dates. Our goal in this paper is to extend its applicability
and effectiveness to more transaction classes than the ones
considered in the original model.

In the two-tier replication scheme, each object is mastered
at one node: a few by mobile nodes, most by stationary or
base nodes. A mobile node has a copy of an object mas-
tered at a base node and creates a tentative version when
it updates it. There are two kinds of transactions: a base
transaction runs on one or more base nodes and at most
one connected mobile node, accessing only master data and
producing master data. Base transactions execute under
one-copy serializability so the master state is a result of
an execution equivalent to some serial execution using no
replication. A tentative transaction 7T originates at a mo-
bile node, accesses data mastered on that node and possibly
copies of objects mastered at base nodes and produces tenta-
tive versions; it is later run as a base transaction accessing
all master data when the mobile node re-connects with a
base node. It can now fail because of a constraint violation;
such failure can be made less likely through semantic tricks,

eg., commutative updates.

In general, however, the situation is more difficult. For ex-
ample, suppose Dy is a data item mastered on a base node
Bg while Dy, Dy, and D3 are mastered on mobile nodes
M1, M,, and Ms, respectively. Also suppose (Do, D1) and
g(D2, Ds3) are integrity constraints. Now consider transac-
tions Tp and To:

« To runs on base node By and updates Dy. This trans-
action cannot commit until My is connected and the
master D; is checked for constraint violation.

« T2 at Mz updates Dsy. It too can only commit tenta-
tively. However, even with M, connected, T, cannot
be rerun as a base transaction until Mz is connected.

Transactions Tp and T2 may suffer inordinate delays. Per-
haps for this reason, such transactions were outlawed in the
two-tier replication model.

Approach and Contribution

In this paper, we use the idea of constraint localization to al-
low transactions such as Ty and T, to be accepted within the
two-tier replication model while eliminating the probability
of messy reconciliation for a tentative transaction Ti .

Our approach based on constraint localization is a pre-
emptive one. In the above scenario, the global constraint will
be reformulated into local constraints by a process we call
localization. The key idea is that for some distributed con-
straints, it is possible to find a conjunction of entirely local
constraints that forms a sufficient condition for the original
constraint [8]. Such a local constraint could very well be
more restrictive than the original one: that is the cost while
the benefit is the enhanced autonomy so obtained. As a re-
flection of this autonomy, Ty, Ty, T» all shed their constraint
violation tentativeness. The theoretical framework behind
our approach for mobile databases is sketched in [9].

Given that local constraints could be more restrictive, it
becomes necessary to readjust the local constraints dynam-
ically on demand; we refer to this as relocalization. 1t would
work as follows. Let constraint p be reformulated into local
constraints po on Do (local to By) and p1 on D (local to
M,) and similarly ¢ into local constraints gz on Dg (local to
M) and gs on Dj (local to M3). Suppose that a transaction
on mobile node M fails the local constraint p; on data Di;
since p; is a sufficient condition only, it is possible that a
dynamic adjustment of the sufficient conditions on Do and
Dy may yield a more favorable p, at M;i. To negotiate this,
M, contacts a base node B. Note that we have traded the
problem of tentative commits (that may fail later and re-
quire reconciliation) for a new problem of aborts (that may
succeed later with a readjustment of constraints); the trade-
off is not symmetric because we avoid the messy problem
of reconciliation. In this example, B having full access to
Dy, performs this negotiation. In this paper, we propose to
achieve this in the general case using strong local constraints
managed by constraint guardians. A constraint guardian is
a process that runs on the stationary network and is as-
signed to a global integrity constraint involving mastered
data, at least one of which is mastered by a mobile node. In
some sense, constraint guardians are metadata proxy man-
agers [13] for mobile mastered data. The complexity of a
constraint guardian depends on the type of constraint it is
responsible for.

For integrity constraints, we consider linear and quadratic

443

inequalities. Linear inequalities are common in traditional
databases; support for quadratic inequalities became impor-
tant in emerging applications [14] where quality assurance is
essential, eg., in the trucking industry which we were study-
ing [9]. We present a geometric method that works for both
classes and is the basis of the initial localization and dynamic
relocalization performed by the constraint guardian. Relo-
calization must deal with the problem of constraint change
requests from more than one node simultaneously. For this
purpose, we have developed, implemented and tested new
algorithms; we discuss them as well as the results obtained.

In the next section, we explain localization. In the follow-
ing section, we explore how it can be used to expand the
applicability of the two-tier replication model and introduce
the notion of constraint guardians. Finally, we outline the
relocalization algorithm for handling simultaneous requests
for constraint change along with experimental results.

2. USING LOCALIZATION
21 An Example

The trucking industry is increasingly using mobile com-
puters [17]. Each truck is equipped with a computer and
a satellite or radio link. We envision a truck picking up
goods while also checking to see if they meet their specifi-
cations, i.e., if a quality control attribute A (e.g., diameter
of a washer) is within its specified tolerance. The idea is to
perform quality control during pick-up itself so as to avoid
returning unsatisfactory goods later.

In our example, two trucks independently are assigned to
pick up @1, @2 number of goods respectively. However, these
are partial contracts. When the two truckloads are merged
at the destination, the overall mean g and variance ¢2 of
A of the merged collection must be within tolerable limits:
My < p < M; and 0 < o*/p® < K, where Mo, M1, K
are constants (we capitalize constants). Each truck’s mobile
computer measures the mean and variance of A for the goods
it picks up. If these two metrics are outside their acceptable
range, the goods are rejected on the spot.

Assume that the quality control attribute A is uniformly
distributed at the two sources. Let the two trucks observe
means g1, g2 and variances ¢, o2 while handling quanti-
ties @, and (), respectively. The fraction of goods handled
by them are Ry= Q1/(Q1+ Q2), Rz = (1 - Ri) respec-
tively. Then, the restriction on the overall 4 and ¢ lead
to constraints Pl through P4 (two linear and two quadratic
polynomial inequalities in four variables g1, p2, o2, a2):

P1: Ryp1 + Rap2 2 Mo
P2: Ry + Rops < M
P3: Rioi+ Rza'g + Rl Rop? + R Rop2 = 2Ry Ropuipu2 > 0
P4: Rjoi + Ryo? + Ri(l -Ri = KRy)u?
+R(R1 — KRo2)uj + R2(R1 — KRo)}
—2RiR:(1+ K)pp2 <0

Clearly, it makes sense to master w1, af at the first truck
instead of the stationary node (similarly w2, o3 at the second
truck). But the truck driver after measuring e, o2, must
attempt to verify P1 through P4. But to do so, helshe must
acess pa, o2 measured by the second truck, thus violating
the precondition of the two-tier model. We will show in the
next section that localization solves this problem.

2.2 Formalizing the Notion

We assume that data is distributed among nodes 1,2, N.
We call a constraint C Jgeal if it involves only one node and
distributed otherwise.

Definition 1: A distributed constraint C(Z1, Tn)
where z; reside in node i (1 < i <N) is said to be
localizable if there is a non-trivial rule

Ci(@1)AC:(Z2)A .. . ACN(EN) 2 C(T1, ..
such that C; is local for 1 <i £N.

The variables and quantifiers (not shown) conform to the
rules for Horn clauses [7]. The rule is trivial if any Ci in
the left hand side (LHS) is false. We denote the LHS of
the rule by SC, a sufficient condition for C, and say that
C is localizable through SC (or that SC localizes C). So,
instead of enforcing C which is distributed, we enforce the
local constraint C; at each node i for 1<i <N.

For example, let C be P1. It is a distributed constraint
involving 2 nodes (the 2 trucks), i.e, N = 2; it uses variables
p1 and po respectively. Using the rule Cy A C2 = P1, where
Cr = {m > L1),and C2 = (p2 2 L2), and L1, Ly are
constants such that Ry Iy + Ry La > Mo, we see that Plis
localizable. Thus, we can enforce @1 > Li at the first truck
and p2 > Lo at the second, both local constraints, assured
that their simultaneous enforcement implies P1.

Now, since SC is only sufficient for C, a local update may
violate C; and hence SC, while still satisfying C. In this
case, we would like SC to be dynamically transformable to,
say, SC' that could accommodate the updated value. SC
would be of the form:

SC'=CiACyA ... ACx.

Though the transformation of SC to SC' typically involves
constraint changes at more than one node, we want to achieve
this in an incremental node-by-node manner (perhaps in a
pre-determined order), avoiding synchronization delays due
to commit protocols arising from distributed transactions.

Definition 2: SC is said to be relocalizable to SC’
through a sequence of constraints Wy(= SC), Wi,
Wy (=SC) if W; =5 C for 0 <i < N and the se-
guence is incremental in the sense that W;_; and W;
differ in only one conjunct C; (for some) in W;_, which
gets replaced by Cj in W;. Such a transformation of SC
to SC is referred to as relocalization.

Returning to our example, if the first truck observes a
mean p < L, it does not mean that P1 is violated. It
may be possible to reduce L; to L} and increase L; to L}
such that Ry Ly + RyLy = RiL) + RaLb; also, Ly, L2 can
be changed without a distributed transaction if the second
truck increases L» before the first decreases L;. This is
relocalization through a sequence Wy, Wi, W2 where

.. TN),

Wo = SC = (m 2 L1)A (u2 2 L),
Wy = (w2 Li)A (2> L), and
W = 8¢ = (1 > LY) A (p2 > L3).

Wo, Wh, We all imply the original constraint P1, ie., at each
step, the original constraint P1 is maintained. If the order
of constraint changes was reversed (ie, the fist truck de-
creased L, before the second truck increased Lz), the re-
sulting intermediate state with Wy = (11> Li) A (u2 > L2)
may not have satisfied P1.

444

Note that this is basically what is achieved by the Escrow
method [5, 6, 16] and Demarcation Protocol [2], but these
methods neither work for constraints P3 and P4 (owing to
the product term pipe, P3 and P4 cannot be converted into
a linear form), nor can these methods be easily extended to
do so. We will show in the next subsection that our method,
by exploiting the localization perspective, works uniformly
for constraints P1 through P4. In general, our method works
for distributed polynomial inequality constraints.

The following remarks cover some useful properties of lo-
calization and indicate why node autonomy is enhanced.

Rml If a local transaction at node ¢ satisfies the local con-
straint C;, no global constraint needs to be checked
and therefore unpredictable delays are avoided.

Node i can unilaterally change its local constraint from

C; to ¢} if the new constraint is more restrictive, i.e.,

Ci; = C;, provided the data which now satisfies C; will

also satisfy Ci.

Rm3 If C; = C}, local data need not be inaccessible (e.g.,
locked) during the transformation. This is because
the data, even if it is updated during this process of
constraint change, will, by satisfying the current con-
straint (;, satisfy the eventual constraint Cj too.

Rm4 Relocalization does not need a distributed transaction
with expensive commit protocols. The two trucks had
to change their local constraints in a certain sequence;
but while one did so, it made no synchronization re-
quirement on the data of the other. At each step, the
global constraint was ensured.

Rmb Suppose the sequence < W; > is broken because of
disconnection. While the final local constraints would
not be achieved because of the premature termination,
there would not be any violation of the global con-
straint either (at each step of the sequence, the global
constraint is satisfied).

Rm2

2.3 Handling Inequality Constraints

Our example generated four inequality constraints P1..P4:
two linear inequalities on two variables g1 and pe and two
quadratic inequalities on four variables g1 . pe, 0%, and o2

Any inequality constraint C = p(x1, xn), Where each
z; can be represented by a real number, defines a domain
Dom(C) in the N-dimensional space in the Cartesian co-
ordinate system, with the i-th coordinate for g;, The con-
straint C can be geometrically interpreted as: the datum
(z1,...,xn) satisfies C if and only if thepoint {z1,. ... &N) in
the N-dimensional space is in Dom(C). Now, suppose we
are able to find Ri,.... Rn, each a range of R such that

(T €R)A...A(zy ERY =[x, xN) € Dom(C)].

The right hand side of the above is C and the LHS is a
sufficient condition SC for C; further, since each conjunct
is local, we establish localization. Of course, this begs the
question how these R; can be found. Geometrically, the
same LHS defines a rectangular subset of Dom(C). All we
need to do for localization therefore is to find and maintain a
(N-dimensional) rectangle that is contained within Dom(C)
(intuitively, the closer it is to Dom/(C), the better). Once
we find such a rectangle, the node in charge of z; needs to
maintain its data value within a range that is the projection
of the rectangle on the axis z;. Relocalization allows the
change of one rectangle into another making sure that all

H A Nb
s C QT
P | P
v e:
I . (PRIV A g R __‘_D
T \
o P T dwd N
Figure 1: Quadratic Inequality

intermediate rectangles are contained in Dom(C). Thus,

the geometric approach reduces to rectangle management.
Let us illustrate the geometric approach with quadratic

constraints. Consider a distributed constraint C of the form

(or >0),

indicating a region bounded by a conic section or two parallel
lines. Suppose by analysis [15] we find that Dom(C) is the
interior of an ellipse. We then find a rectangle which is well-

oriented (i, has sides parallel to the z1-z2 axes), inside the
ellipse, and is maximal (enlarging would make the rectangle
extend beyond the containing ellipse). The interior of the
rectangle represents the subset we are seeking. Figure 1

shows such an ellipse containing a well-oriented maximal
rectangle with diagonal AB whose projections on the z;-
and zs-axes give the local constraints (p < z; < ¢) and

{r < gy <s). Computation of such a rectangle is a simple

matter for conic sections.

Suppose the current global datum is P(u,v). Now let a
local transaction at node 1 attempt to change z1 from « to
4’ which is greater than the local bound g¢. It is effectively
attempting to move P to P’, which is not in rectangle AB
but still inside the ellipse. Node 2 using the value «' and its
own bounds, then computes a new rectangle (shown dashed)
with diagonal CD (since there is no unique solution, we use
heuristics [11]), whose projections on the axes &1, z2 are the
new local constraints. It first restricts its own bounds, which
it can do unilaterally (Rm 2), thus shrinking the rectangle to
QR, and then informs Node 1 that it can increase its bound
and thereby enlarge the rectangle to CD.

The above example applies to P3 and P4 with one differ-
ence: P3, P4 involve 4 variables (not 2); thus, our rectangle
is 4-dimensional. At any moment, the projections of that
rectangle on the four axes p1, p2, af, o3 will give us the in-
dependent bounds on each of these four variables. While
four variables are involved, piand o2 are on one machine
and p2 and o% are on another. There is a short-cut based
on approximation that lets us revert to 2 dimensions. This
is based on accepting a common bound on the variance at
each node, i.e., 0 < af/p; <L, for i=1,2, where L is a
constant. Using this, P3 and P4 reduce to the form of C
above based on two variables g, ps instead of four. Then
the above example applies verbatim.

3. EXTENDING THE TWO-TIER MODEL

Let us outline how localization re-establishes the applica-
bility of the two-tier model when there is a constraint relat-
ing a mobile mastered data with data on some other node

2 2
A1x] + Aszizo + A3y + Agxy + Asz2 + As< 0

(mobile or stationary). Our solution has three ingredients:

strong local constraints, deadlines on constraint validity, and
congtraint guardians.
& Dom(p)
v
v
o w u v w o
Figure 2: The Use of Non-maximal Rectangles

While in our previous discussion on rectangle manage-
ment, we stated that the rectangles created should be max-
imal, we now make them non-maximal to get strong local
constraints. The difference between this rectangle and the
maximal rectangle is the leeway in the local constraint. For
example, in Figure 2, AB is the initial rectangle set up given
the initial value I and constraint p (in the special case where
NULL values are allowed and no initial value is known, a
rectangle such as AB is set up heuristically to be adjusted
later dynamically based on actual values). Thus, p is local-
ized into po: uw < do < ', and p1: v < di < V.

In addition, deadlines are set on each of these constraints.
Committed tentative transactions are now guaranteed to
commit when run as a base transaction provided that hap-
pens before the deadline expires, ie, the tentativeness owing
to constraint violation aborts is now eliminated. Thus, the
probability of messy reconciliations is reduced.

A constraint guardian is set up to handle the local con-
straints, their deadlines, and their future changes. This
guardian is a process that runs on the stationary network
and can be invoked from any base node or from a special
base node (since the base nodes are always connected, the
difference between these two cases is only in performance).
It exploits the leeway in case of disconnection (see below).

When a node requests an alteration (enlargement) of its
local constraint, the guardian checks to see if the other node
involved in the constraint is connected. If so, it guides them
to negotiate a constraint change affecting both. One prop-
erty of localization is that even if this negotiation is inter-
rupted by the involuntary disconnection of one of the nodes,
no inconsistency results (see Rm 5).

If the other node is not connected (it must be a mobile
node), the guardian allows an alteration based on its cur-
rent leeway. The deadline set is tighter if the alteration is
larger. It is tightest when the alteration leads to a maximal
rectangle, because there is no leeway left with the guardian.
For example, after AB is set up, a change request from Mp
to accommodate a value of Dg >’ could lead to AC, and
subsequently AF and DF with increasingly tight deadlines;
all this without M; being connected. At this point, if M
connects and requests an enlargement, EF is the maximal
rectangle that can be achieved. If this is inadequate for M,
it will have to wait until the (tight) deadline on Mo expires.
As in the standard two-tier model, when the mobile node
re-connects and submits its tentative transactions, they are

run as base transactions; in addition, we require that a new
local constraint be negotiated with the guardian.

Let us revisit the example in the Introduction where con-
straintspandq are localized: p(Do, D1) into po(Do), p1(D1),
and ¢(D2, Ds) into g2(Da2), gs(Ds). Because of localization,
all three transactions Tp, Ty, and T3 benefit, i.e,, the two-tier
model is re-established though there is a constraint relating
a mobile mastered data with data on some other node. If Tp
satisfies pp, it can commit immediately as it is a base trans-
action; no delays are encountered (Type A in Section 4.2).
If not, then Ty is aborted. If the abort was owing to a vi-
olation of pp, then we check if there is a clear violation of
the global constraint p (the updated value is clearly out-
side Dom(p)). If so, the transaction is rejected permanently
(Type B in Section 4.2); else, the transaction is rerun later
and on a violation of po (it may now satisfy po: Type C2 in
Section 4.2}, an attempt is made to enlarge pp by contacting
the guardian. If My is not in contact but there is leeway,
the request is granted. If the maximal rectangle has been
reached or if the granted enlargement is inadequate, we have
to wait until the deadline on p, at M; expires. When M,
is in contact, but still the maximum enlargement is inad-
equate, then it means that the global constraint would be
violated, hence the transaction should be aborted.

The same is the case with the commit for T2. If T2 aborts
(owing to a violation of sufficient condition only), then M,
asks for an enlargement of its constraint. The guardian will
use its leeway to grant this request if Mz is not connected.
This parallels the Ty case.

If the tentative transaction T; commits at Mji, it is guar-
anteed to commit as a base transaction provided that M,
connects to the stationary network before the deadline ex-
pires. However, if it aborts owing to a violation of suffi-
cient condition only, then it is enough to re-run it as a base
transaction and let the guardian be invoked to negotiate an
enlarged constraint if it aborts there.

4. HANDLING RELOCALIZATION

We have already discussed how the local sufficient condi-
tions can be adjusted dynamically based on demand. The
actual mechanism is complicated owing to two factors: first,
the change of constraints must itself avoid a distributed
transaction, and second, simultaneous requests for constraint
change from more than one node can result in inconsistency.
In this section, we will discuss the algorithm needed to sup-
port such constraint transformations. It can be wused in a
peer-to-peer mode in the stationary part of the database.
In the two-tier model, it is used by the guardian when one
of the nodes is a base node and the other is a mobile node,
or on behalf of a mobile node which requested a constraint
change and then got disconnected. When the guardian finds
that both/all nodes involved in a constraint are connected, it
may instruct them to negotiate directly with each other pro-
vided that they inform the guardian of the outcome. While
describing the algorithms below, to keep them general, we
will not mention the special role of the guardian. We present
some results we obtained by implementing this algorithm
and experimenting on the simultaneity problem partly on a
simulated network and partly on a real network.

Again, we assume that the constraint involves N 2> 2
nodes. We first deal with the case without simultaneity
and then discuss the complexity introduced by simultaneity.
The framework for simultaneity resolution presented in this

446

section is a significant improvement over that in {12]: (1)
we present a general framework for an arbitrary number of
database nodes, and (2) we avoid m-sending requests after
an asymmetric delay in case of simultaneity, lowering sub-
stantially the transaction response time and use of resources.

Relocalization can be explained using procedures Request;,
Consider-i, Accept;, and ResolveSimulteneity; at node i. Be-
low, we discuss the main steps in these procedures. Pseudo-
codes are given in [10].

Assume that data item g; is at node i (1 <i < N).
Through localization, node ¢ maintains its local condition
C;. Suppose a transaction T; at i attempts to update z;
to z}. If 2} violates C;, T; is blocked (or aborted). Node
i enqueues a request (reg;) in a queue @; and asks for a
change of constraints through Request;, which finds reg: in
@; and broadcasts a message to all other nodes passing reg;.
This message invokes Consider; at nodes j # i.

In the general case, reg; does not contain any data —
it is just a signal that node i needs a more relaxed local
constraint. Consider; (at all other nodes j) restricts (e.g.,
locks) =; and heuristically computes how C; can be “sacri-
ficed” in order to “help” C;. If this is possible, it updates
Cj to a “shrunk” Cj. It then frees z; and sends a reply
rep; = (C;) (whether Cj is updated or not). Replies are
received by Accept;. The last reply triggers an algorithm,
which attempts to compute a more relaxed C; given current
C;’s (revised or not) at all other nodes. If successful, it up-
grades C; to C; and arranges for the resume (or restart) of
T;. If unsuccessful (possibly because other nodes could not
“sacrifice” their constraints), Accepi; just dequeues Q.

It is worth noting that when N = 2, the algorithm can be
simplified. We can have req: = (C1, z1). Then, the only re-
cipient of reqq (i.e., Considerz) has all necessary information
to compute both ¢ and C%, such that g} is accommodated.
Subsequently, we can have rep; =(C) if Considers’s com-
putation was successful, and repa = (“no”) otherwise.

4.1 Simultaneous Requests

Undetected simultaneous initiations of constraint change
could lead to inconsistency; eg. for N = 2, Considerl and
Consider, may localize differently, yielding different SC"’s:
the two nodes could adopt local sufficient conditions whose
conjunction does not imply the global constraint.

We will say that node i is involved in an occurrence of
simultaneity when at least one request reg; is received by
Consider;, while there is a request reg: sent out from node
i for which no reply has been yet received. In such cases we
will say that reg; is simultaneous with reg;. Clearly, while
waiting for replies for regs, node i may receive the awaited
replies from some nodes, and requests simultaneous with
reg; from others. We will refer to the set of nodes that sent
requests, plus the node i itself, as the simultaneity cluster.

Our solution to the problem of simultaneous requests is
to ensure that there is at most one simultaneity cluster at
a time and all nodes involved in an occurrence observe the
cluster correctly. Having achieved this, we can force sequen-
tial processing of the requests among nodes in the cluster.

Simultaneity can be detected by setting a flag whenever
there is a request sent out from node ¢ for which no reply
has been received and checking it when a request is received
from another node. Such detection is symmetric (if message
order is preserved) with respect to each pair of nodes.

However, this alone will not solve the problem. For ex-

reql

Node 0 @ @ Node 1

requests

replies

Figure 3: Simultaneity detection

ample, let N = 3 and consider the scenario described by
the following sequence of events and depicted in Figure 3:
Node 0 broadcasts a request (rego). Node 1 follows with
(req1). Node 2 receives reqo and sends a reply (repo). It
then broadcasts a request (regz). Node O receives repo and
req: and detects simultaneity with node 1. Next, node 2
receives reqy and detects simultaneity with node 1. Finally,
node 1 receives reqp and reqe and detects simultaneity with
nodes 0 and 2. At this point, we have inconsistent simul-
taneity detection: nodes 0 and 2 detected simultaneity with
node 1 only, while node 1 detected simultaneity with both 0
and 2. Since the observed simultaneity clusters are different
at each node, sequential processing of requests is impossible.

To cope with this problem, we introduce mandatory ac-
knowledgements for replies to non-simultaneous (or regular)
requests. A node replying for a regular request cannot send
its own request until an acknowledgement is received from
the requester. The acknowledgement will be sent if the re-
quester it is not involved in simultaneity, or simultaneity
has been resolved. Thus, in the above scenario, regs cannot
be broadcast because node 2 now must wait for an acknowl-
edgement for repg from node 0. Consequently, node 2 would
receive reqy and send a reply to node 1 (which means that
node 2 must now wait for 2 acknowledgements). Node 1, in
turn, would receive that reply and rego, and detect simul-
taneity with node 0. The acknowledgements from nodes 0
and 1 would be sent only after both nodes resolve the cor-
rectly observed simultaneity.

It can be proven that, when the above acknowledgement
regime is enforced, involvement in simultaneity is both sym-
metric and transitive, and that there can be at most one
simultaneity cluster at a time, ie., our problem is solved.
Note that the above acknowledgement scheme can be ig-
nored when N = 2 since here the simultaneity cluster al-
ways has 2 nodes in it, i.e., the above problem is nonexistent.

To handle simultaneity, Consider; and Accept; recognize
two phases: a detection phase and a resolution phase. The
detection phase at node i starts when Consider; receives
the first request simultaneous with its own request and ends
when the node finishes computing the simultaneity cluster.
During this phase, the node waits for messages from all
other nodes: a reply (received by Accept;) indicates that
the sender is outside of the cluster, and a request (received
by Consider;) indicates that the sender is inside the cluster.
The resolution phase starts when the node has received mes-
sages from all other nodes. A queue SQ of nodes from the

447

cluster (identical at all nodes) is created; SQ is a sub-list of
NL (the list of all nodes). Then, simultaneous requests are
processed in a sequence induced by SQ.

es from dl qther

messay) v sequential processing
nodes are heing received

of sim. requests

ahead of i afteri time

~— (letection phase —w--— resoluion phase —

tl 2 13 t4 t5
request request all messages dl replies simultaneity
sent received; (requests or received; resolved
sim. _replies) local constraint
observed received, possb(liy
sim. updated
detected

Figure 4: Simultaneity resolution at node i

Let us consider a typical scenario of simultaneity resolu-
tion at node § depicted in Figure 4. At time t1, a request 7;
is sent by node 4. From now on, node § waits for messages
from all other nodes. At %a, the first request (r;) simulta-
neous with r; is received. Thus, at least two nodes (i.e., j
and ¢ itself) are in the simultaneity cluster. At #3, messages
from all nodes are in, completing the detection phase.

Now, an asynchronous process (ResolveSimultenesty;) con-
ducts the resolution phase. Let k = Head(SQ). If k #
i, ResolveSimulieneity; processes the request from node IF,
sends a reply, and dequeues SQ. All other involved nodes
except k do the same so that k gets replies from all. If
k = ¢, it is now node i's turn in the sequential processing.
ResolveSimulteneity; blocks until all replies are in (24 in Fig-
ure 4). It then possibly updates C;, resumes or restarts the
originating user transaction, sends all required acknowledge-
ments, and dequeues SQ. This loop ends when SQ is empty
{ts in Figure 4). The simultaneity incidence is resolved.

To avoid having some nodes suffer from being at the end
of SQ every time, NL is rotated circularly after each simul-
taneity occurrence. Nodes outside of the cluster are notified
of the new value of NL by piggybacking it on the acknowl-
edgements (that those nodes must wait for).

Interestingly, the acknowledgements do not degrade the
performance (in terms of transaction response time) as much
as one may suspect. In fact, when relocalization requests are
not frequent, it is the replying node that has to wait for ac-
knowledgements, but this does not hold up any of its trans-
actions. On the other hand, when relocalization requests
are frequent, simultaneity is likely, but acknowledgements
are required for replies to regular requests only.

42 Categorizing User Transactions
We categorize all user updates at node ¢ as follows:
type A — Update satisfies Cj.
type B Update cannot satisfy any Ci.
type C — Update violates C; and reg; is enqueued in Q.
Subdivided into:
type Cl — req; is processed avoiding simultaneity.
type Cls — reg; results in a simultaneity occurrence.
type C2 — Owing to a beneficial relocalization (due to a
request ahead of req in Q), the update now satisfies C;.

Types A, B, and C2 are processed locally; Cl and Cls
require 1 network “round-trip” message (request and reply).
An acknowledgement is required for type Cl when N > 2.
For N = 2, we ignore acknowledgements, and subdivide type
Cls into Clsc when §Q = (4, j), and Clsw when SQ = (j, i).

4.3 The Experiment

We implemented the above procedures as asynchronous
processes on Pentium-class machines running Linux. We
simulated a transaction environment (using additional pro-
cedures) while sharing a constrained data element, perform-
ing relocalization as needed, allowing us to monitor the ef-
fects of simultaneous requests. Our implementation pro-
cessed messages in the order they were sent (for N > 2, this
was a pair-wise condition). For N = 2, we simulated the
network delays on a single machine and used the simplified
version of relocalization (described in Section 4); for N > 2,
we used a real network of similar machines.

We first report on an experiment in whichN =2, C =
% +x3 < 4, and initially (z,) = (0,0). Next, we present
our studies on the effect of simultaneity clusters for N > 2
without reference to any particular constraint.

431 Resultsfor N=2

We observed the outcomes of various user updates, and
measured actual times on the simulated network. We relied
on the operating system to handle buffering. This closely ap-
proximated the relative timings involved in a typical database
operation, i.e., delays due to context switches, locks, send-
ing/receiving messages, etc. are taken care of. However,
since delays from/to actual user transaction were missing,
we added a compensating adjustment of 02 ms. Two pa-
rameters were chosen to explore the algorithm's performance

o user speed IS an interval (minsleep,mazsleep). The time
between successive update transactions is a random
value within this interval.

o user restraint r is the degree of restraint in update:
¢’ = z + w.g/r relates the updated data z’ with the
current value z, where w is a random value (-1 £ w <
1), and g is a constant.

Three user speeds were chosen: (50, 1000), (10, 20), and
(0.1,5), all in ms, and denoted User1, User2, and User3
respectively, g was 4 (the diameter of the constraint circle),
and ¢ varied from 05 to 5.0 in increments of 0.5, and then
to 10.0 in increments of 1. For each user speed (Users 1, 2,
and 3) and every r, 15 minute-long simulations were run.

In Figure 5, for User 3 and each r, we see a bar show-
ing the percentages of transactions in each of the categories
(types A, B, ClI, Clsc, Clsw, and C2). A large majority
of transactions (close to 75%) do not need any requests be-
cause of localization. For large r, most user updates are
executed locally; for small r, they are rejected locally. For a
certain value of user restraint close to 2, there is a maximum
of user updates needing request messages to be sent over the
network (types Cl, Clsc, and Clsw).

In Figure 6, we plot the average response time (the time
from the moment a request has been enqueued to the mo-
ment it either has been re-executed successfully after relo-
calization or is eliminated after a “no” reply) for type C re-
quests against r, for each user speed. We observe that a slow
user has a reasonably constant response time of roughly the
network delay, which, in our experiment, was 20 ms each

448

User3

120 |

Figure 5: Distribution of user updates; User 3
Type C
0.2 T
User 1 —t
User2 --x---
User3 ---%---
LA
0.08
2
0.06
x .
,_;__x_,,‘,*_“_*__:;;;:t:;;;;,-_-;;w-v-.w-—-wf:::
0.04
002
0 2 4 6 8 10 12 14 16
restraint
Figure 6: Average response time for Type C

way. This is because when a constraint change request is
sent, it is mostly resolved without simultaneity (type CI).
For a fast user, the response time is higher due to simul-
taneity and the need to delay buffered requests.

In Figure 7, we plot the average response time for all re-
quests. Comparing with Figure 6, one sees that the overall
response times are much smaller. The reason is that a ma-
jority of user updates are processed locally.

Based on our observations and analysis, the only category
with a significantly higher response time than just the net-
work delay is Clsw those requests that wait in case of
simultaneity. But, this category makes up only half of the
simultaneous requests. The other half (type Clsc) have ap-
proximately equal response time to that of regular requests.
To summarize, localization is clearly useful; simultaneity is
important but our approach at tackling it is effective.

432 Resultsfor N=5

Using five machines on a network, we simulated Users 1,
2, 3, and 4 using sleep intervals (1 s, 2 s), (05 s, 1 s), (0.1
s, 05 s), and (50 ms, 0.1 s) respectively. Here each trans-
action had a 25% chance of violating the local constraint.
When requests were considered, no constraint changes were
computed since we were only interested in the simultaneity
issue. Note that due to the absence of the actual constraint,
in this experiment category (2 is missing.

In Table 1, we tabulate for each user U, regs (the number
of user updates during the whole simulation) C (the % of

Total

User1 —+—
User2 ---¢---
User3 ---#--

0.025

002 |

seconds
x

0015 b K

0.005

restrainl

Figure 7: Overall average response time

type C updates), sent (the % of type C updates that resulted
in a constraint update request; C2 is missing, but if the user
is fast Q is nonempty when the simulation stopped), sim
(% of requests sent that were simultaneous), and sim n (%
of simultaneous requests in cluster size n for n = 2..5).

In Table 2, we report the response times of all type C
requests that were sent (C), of non-simultaneous requests
(nonsim), of simultaneous requests for all cluster sizes (sim),
of simultaneous requests (cluster size n) (sim n). All times
are averages in seconds.

These two tables show that cluster size increases with the
user transaction rate. However, smaller clusters are much
more frequent than larger ones and with our algorithm, the
time degradation due to simultaneity is not significant.

U regs C sent [sim sim2 sim3 sim{ [simJ
1 191 | 23 | 100 7.0 100 0 0 0
2 379 | 25| 100 { 11.6 | 100 0 0 0
3 944 [25 | 100 | 18.5 | 97.7 2.3 0 0
4 | 3270 | 27 | 99.8 | 60.1 | 67.5 | 26.5 5.3 0.8
Table 1: Distribution of Simultaneity
U| C |[nonsim | sim | sstm2 | sim3 | simf | simb
110.07 0.08 | 0.07] 0.07 0 0 0
2 [0.06 0.06 |1 0.13] 0.13 0 0 0
3 [0.06 0.06 | 0.07 [0.07 | 0.13 0 0
4 10.07 0.05 [0.08 [0.07 [0.10 [0.14 [0.10
Table 2: Response Times

5. CONCLUSON

For data replication in a mobile environment, the two-tier
model had been shown to be the best compromise maintain-
ing strict consistency while minimizing the effects of recon-
ciliation by limiting the kinds of transactions. The contri-
butions of this paper are twofold.

1. Instead of relying on ad-hoc methods for transactions
outside the scope of the two-tier model, our approach
based on localization extends the applicability of the
model to transactions as typified by Ty, Ty, and T,
in a systematic manner. Localization involves refor-
mulation of constraints into local sufficient conditions
thereby enhancing the node autonomy;

449

2. We introduce the notion of a constraint guardian, which
we view as a proxy for metadata management as op-
posed to the traditional proxy which is used for the
management of data on behalf of a mobile node and is
less lean and flexible. Also, we have implemented and
tested algorithms for relocalization taking care of the
problem of simultaneous constraint change; we present
those results.

6. REFERENCES

[1] R. Alonso, D. Barbara, and H. Garcia-Molina. Data
Caching Issues in an Information Retrieval System.
ACM TODS, 15(3):359-384, Sep. 1990.

[2] D. Barbar4g and H. Garcia-Molina. The Demarcation
Protocol: A Technique for Maintaining Linear
Arithmetic ~ Constraints in Distributed Database
Systems. In Proc. EDBT Conf. pp. 373-388, 1992.

[3] M. Franklin, M. Carey, and M. Livny. Transactional
Client-Server Cache Consistency: Alternatives and
Performance. ACM TODS, 22(3):315-363, Sep. 1997.

[4] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The

Dangers of Replication and a Solution. In Proc.

SIGMOD (Conf., pp. 173-182, 1996.

N. Krishnakumar and A. Bernstein. High Throughput

Escrow Algorithms for Replicated Databases. In Proc.

18th VLDB Conf., pp. 175-186, 1992.

A. Kumar and M. Stonebraker. Semantics-based

Transaction Management Techniques for Replicated

Data. In Proe. SIGMOD Conj., pp. 117-125, 1988.

J. Lloyd. Foundations Of Logic Programming.

Springer-Verlag, 1984

S. Mazumdar. Optimizing Distributed Integrity

Constraints. In Proc. 3™¢ Intl. Symp. on Database

Systems for Advanced Applications, pp. 327-334, 1993

S. Mazumdar and P. Chrysanthis. Achieving

Consistency in Mobile Databases through Localization

in PRO-MOTION. In Proc. DEXA-MDDS Wkshp.,

pp. 8289, 1999.

[10] S. Mazumdar, M. Pietrzyk, and P. Chrysanthis.
Caching Constrained Mobile Data. TR-CS 01/5/401,
New Mexico Tech, May 2001

[11] S. Mazumdar and G. Yuan. Localizing a Class of
Distributed Constraints: A Geometric Approach. J.
Computing and Information, 3/1CCI98/6/2, 1998.

[12) M. Pietrzyk, S. Mazumdar, and R. Cline. Dynamic
Adjustment of Localized Constraints. In Proc. DEXA
Conf., pp. 791-801. 1999,

[13] E. Pitoura and G. Samaras. Data Management for
Mobile Computing. Kluwer, 1998.

[14] K Bamamritham and P. Chrysanthis. Advances in
Concurrency Control and Transaction Processing.
IEEE Computer Society Press, 1996.

[15] L. L. Smail. Analytic Geometry and Calculus.
Appleton-Century-Crofts ~ Inc., 1953.

[16] N. Soparker and A. Silberschatz. Data-value
Partitioning and Virtual Messages. In Proc.
Symp., pp. 357-367, 1990.

[17] G. D. Walborn and P. Chrysanthis. PRO-MOTION:
Support for Mobile Database Access. J. of Personal
Technologies, 1(3):171-181, 1997.

(5]

(9]

of

PODS

